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Abstract. This paper presents a system for automatically drawing directed graphs 
by using a graphanalysis that decomposes a graph into modules we call clans. Our sys- 
tem, CG (Clan-based Graph Drawing Tool), uses a unique clan-based graph decomposi- 
tion to determine intrinsic subgraphs (clans) in the original graph and to produce a parse 
tree. The tree is given attributes that specify the node layout. CG then uses tree prop- 
erties with the addition of"routing nodes" to route the edges. The objective of the system 
is to provide, automatically, an aesthetically pleasing visual layout for arbitrary directed 
graphs. Using the clan-based decomposition, CG's drawings are unique in several ways: 
(1)The node layout can be balanced both vertically and horizontally; (2) Nodes within a 
clan, a subgraph of nodes that have a common relationship with the rest of the nodes in 
the graph, are placed close to each other in the drawing; (3) Nodes are grouped according 
to a two-dimensional affinity rather than a single dimension such as level or rank [13]; 
(4) The users can contract a clan into a single node and later expand the node to show the 
subgraph in its original clan; and (5) Crossings reduction processing by clan-based graph 
decomposition is faster than Sugiyama, Tagawa, and Toda [20, 21] barycentric ordering 
algorithm. 

In addition to the capabilities of the old drawing system [ 16], several features have 
been added: (1) The modified barycentric technique is used to reduce crossings. In the 
modified technique, the components of matrix representation are clans instead of nodes. 
The users can (2) specify a node's size, shape, and label, and a edge's label in the textual 
input file; (3) contract a clan (subgraph) into a single node; (4) extract a clan (subgraph) 
and hide the rest of the graph; and (5) save the drawing into a file in Postscript format. 

1. Introduction 

Directed graphs, or digraphs, are an excellent means of  conveying the struc- 
ture and operation of  many types of  systems. They are capable of  representing not only 
the overall structure of  such a system, but also the smallest details in a simple and 
effective way. However, drawing digraphs by hand can be tedious and time consum- 
ing, because much time can be spent just trying to plan how the graph should be 
organized on the page, especially if  the number of  nodes and edges is large. In addi- 
tion, it is difficult for a user to draw a graph when the data is generated by applications 
(e.g., compiler-generated parse trees[l] and dialogue state diagrams generated by re- 
verse engineering [3]). We have developed an automated system capable of  converting 
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a textual description of a digraph into a well organized and readable drawing of the 
digraph. 

Many researchers have studied this problem and many graph drawing systems 
have been developed [see 6 for complete list]. The aesthetic criteria of the systems 
vary. The objectives may include requirements of uniform edge length, minimum 
number of edge crossings, straight edges, grid drawings (edges are either horizontal or 
vertical), minimal bends in the edges, etc. Cruz and Tamassia [4], Tamassia, Batini, and 
Battista [22], and Messinger [17] have lists of aesthetic criteria of drawings. Some 
criteria limit the input graphs to a particular class such as planar graphs, trees, graphs 
with maximum degree of four, or some application-specific graphs such as Petri nets, 
data-flow diagrams, DBMS models diagrams, digital system schematic diagrams, 
PERT diagrams, flowcharts, etc. Originally, CG is designed for program dependency 
graphs of parallel computation, and has been adopted by social networks, automatic 
graphical user interface design, reverse engineering graphical representations [3]. Like 
dot [13, 14] and its predecessor DAG [12], CG takes a textual description of an arbi- 
trary directed graph (digraph) and produces a visual representation of it. 

The remainder of the paper is divided into several sections which are related 
to CG: (section 2) clan-based graph decomposition; (section 3) node layout; (section 4) 
edge routing; (section 5) crossings reduction; (sections 6) subgraphs contract/extract; 
(section 7) cyclic directed graphs; and (section 8) example of applications. 

2. Clan-Based Graph Decomposition 

In general, a graph can be decomposed in two ways: (1) application-specific 
decompositions suggested by the semantics of the input graph; and (2) graph-theoretic 
decompositions based on syntactic decomposing algorithms [18]. CG uses a new meth- 
od called clan-based parsing [15, 16]. Clan-based graph decomposition is a parse of a 
directed acyclic graph (DAG) into a hierarchy of subgraphs. These new subgraphs 
generated by the decomposition are called clans [9, 10]. 

Let G be a DAG. A subset X c_ G is a clan iff for all x, y ~ X and all z ~ G - 
X, (a) z is an ancestor of x iff z is an ancestor of y, and (b) z is a descendant of x iff z is 
a descendant of y. A simple clan C, with more than three vertices, is classified as one 
of three types. It is (i) primitive if the only clans in C are the trivial clans; (ii) parallel if 
every subgraph of C is a clan; or (iii) series if for every pair of vertices x and y in C, x 
is an ancestor or descendant of y. Any graph can be constructed from these simple 
clans. Applying clan-based graph decomposition algorithms, any DAG can be decom- 
posed into a tree of subgraphs (clans) whose leaves are trivial clans (graph nodes) and 
whose internal nodes are complex clans (series or parallel) built from their descendants 
[15, 16]. The primitive clans are decomposed into series and parallel clans by aug- 
menting edges from all the source nodes of the primitive to the union of the children of 
the sources [15, 16]. After adding edges (2, 7), (2, 10), (3, 7), (3, 9), (3, 10), and (4, 5) 
into figure l(a), sets {2, 3, 4}, {8, 9}, {7, 10}, {7, 8, 9, 10}, and {5, 6, 7, 8, 9, 10} are 
some of the nontrivial clans. Figure l(b) is the parse tree of the figure l(a) graph. After 
graph decomposition, the series clan are displayed vertically and connected by inter- 
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clan edges, and the parallel clans are displayed horizontally and there are no 
connected between them. 

edges 

~ 5  0 = series clan f.~/ " ~  

10 7 g 8 

(a) graph (b) parse tree 

Figure 1. Graph and Its Parse Tree 

3. Node Layout 

The parse tree of the graph is used to preserve node attributes (such as shape, 
and label) and to provide geometric interpretations to the graph. A node's shape and 
label are used to determine the size of its bounding box. The default shape for a node 
is a circle and default label is a number. The user can specify the shape and label for 
each node in the textual description input file. Figure 2 shows two parse trees with the 
node shape attribute specified for figure 1. In figure 2(a), the nodes shapes are from 
system default values. In figure 2(b), the shapes are user specified. 

1 

v v �9 IW v w 
i.lo1_=,, r 9 8 lo 7 9 s (smLdrde) (sml_drde) (smldrde) (smldrde) (ov~ ($rd~) (oval) 

(a) node shape defined by system (b) node shape specified by the user 

Figure 2. Parse Trees with Node Shape Attribute 
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A "bounding box" with computed dimension is associated with each clan and 
the nodes in the clan are assigned locations within the bounding box. A bounding box 
is used to specify the allotted area for a subgraph. To calculate the bounding box for 
the parse tree, the bounding boxes of leaves are computed first. For a leaf node N, the 
bounding box length (N.1) and width (N.w) can be determined by N's shape, label size, 
application-specific settings, or user-specific settings. A series clan is bounded by a 
rectangle whose length is the sum of the lengths of the component clans and whose 
width is the maximum width of the component clans. An parallel clan is placed in an 
area whose width is the sum of the widths of the component clans and whose length is 
the maximum of the lengths of the component clans. After all the bounding boxes have 
been computed, CG uses the parse tree with the computed bounding boxes to map the 
graph onto coordinates in the planar window [15, 16]. Figure 3(a) and 3(c) show the 
parse trees with bounding boxes computed from figure 2's defined shapes. The bound- 
ing boxes of figure 3(a) are computed from figure 2(a)'s shape settings and figure 3(c) 
are from figure 2(b)'s. Figure 3(b) and 3(d) are node layouts for 3(a) and 3(c) 
respectively. 

(l,t) 
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- . �9 O �9 �9 
�9 . node  10 7 9 B 

( l , l )  (1 .1)  (1.1)  (1.1) 

(a) parse tree associated with bounding box 
computed from figure 2(a)'s node shapes 
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(c) parse tree associated with bounding box 
computed from figure 2(b)'s node shapes 
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(b) node layout of (a) 
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(d) node layout of (c) 

Figure 3. Parse Tree with Bounding Box and Node Layout 
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4. Edge Routing 

Using the parse tree to place nodes is simple and elegant and provides for an 
aesthetically pleasing balanced placement. If adjacent nodes are connected by straight 
edges, several unacceptable visualizations may occur when the nodes are placed ac- 
cording to the location attributes. 

�9 Edges could pass through nodes on their path. 
�9 Edges might be superimposed upon other edges 
�9 Unnecessarily long edges may be drawn. 
�9 There may be an unnecessary number of edge crossings. 

The first 3 problems listed above are caused by "long" edges, i.e. edges con- 
netting nodes whose levels (y-values) differ by more than one. The traditional solution 
is to place dummy nodes at each intermediate level and route the long edge through the 
intermediate nodes [21]. One of the problems with this approach is that the long edges, 
by passing through nodes placed at arbitrary horizontal displacements, may contain 
unnecessary bends and may cross other edges unnecessarily. CG provides inter-clan 
and short-clan heuristics to solve the long edge problems [16]. 

Inter-clan routes edges between nodes in different linear clans. For edge 
(x,y), let lca be the nearest common ancestor. By definition, Ica must be a series node. 
Let Px and Py be the parallel children of lca that are parents of x and y, respectively. 
Inter-clan adds dummy nodes to the parse tree in three ways. 

1. For all series clans in the traversal from x to lca, dummy nodes are added 
as children in each clan to the right of the ancestor of x. 

2. For all parallel clans that are children of lca between Px and Py, a dummy 
node is added in the appropriate location. 

3. For all series nodes in the traversal down the tree from lca to y, dummy 
children are added for each node to the left of y's ancestor. 

Short-clan is invoked when node or series clan C has bounding box height less 
than the bounding box height of its parent. Dummy nodes are added both at the top and 
bottom of the clan. For each clan source, dummy nodes are added for each in-coming 
edge, and for each clan sink, dummy nodes are added for each out-going edge. Figure 
4 shows drawings before and after applying CG routing heuristics. 

5. Reducing Edge Crossings 

Minimizing the number of edge crossing is a NP-hard problem [7, 8]. Waft- 
ield [23] developed a heuristic method, barycentric ordering, for two-level graphs. A 
value called barycenter is computed for each of the vertices in the two levels. For each 
vertex, this value is a weighted average of the horizontal positions of the vertices in the 
adjacent level to which the vertex is connected. The barycenters of each of the vertices 
in a level are computed and the vertices are sorted according to their barycenters. Car- 
pano [2], and Sugiyama, Tagawa, and Toda [20, 21] generalized the two-level 
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(b) dummy nodes 11 added by inter-clan 
heuristic, and 12, 15, & 16 added by 
short-clan heuristic 
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(d) final drawing with unnecessary bend,. 
removed 

Figure 4. Drawings Before and After Applying Inter-clan and Short-clan 

Heuristics 

barycentric method to reduce edge crossings for k-level hierarchical graphs. CG adopts 
the concept of barycentering to be used in conjunction with clans. A matrix is used to 
describe the connections of subgraphs (clans) instead of nodes. The value [i, j] of a 
matrix is defined as the number of the connecting edges between clani and clanj. 

In CG, matrices are formed for the component clans of series clans not of 
parallel clans, because, by definition, there are no connections between parallel clans. 
There are fewer matrices used in CG and each is no larger than a matrix of individual 
nodes, because they are formed by subgraphs. As a result, CG's crossings reduction 
processing is faster than the original barycentric method. Figure 5 shows the matrix 
representation of the original barycentric technique and CG. After adding edges (c, m) 
and (d, m) into figure 5(a), the parse is produced as figure 5(c). According to the parse 
tree, only two matrices are required, MI for series clan Co and M2 for C2. There is no 
matrix needed for series clans C1, C5, C4, and C3, because each of them contains two 
components and at least one of the two components is a single node. In the matrix MI, 
the value of [C2, C3] is 2, because there are two edges between clan C2 and C3. 
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(b) matrix representation of (a) by using 
barycentric ordering algorithm 
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Figure 5. Graph and Matrix Representation 

6. Subgraphs (Clans) Contract/Extract 

Because the graph layout is based on a parse tree created by extracting sub- 
graphs, it is possible to abstract those subgraphs and represent them by a single node, 
or just to display the selected subgraph. CG supports subgraph contraction, expansion, 
and extraction. 

Since clans are defined as sets of nodes with identical ancestors and descen- 
dants within the rest of the graph, clans can easily be contracted to a single node. By 
selecting a single node, the user can contract the smallest non-trivial clan containing 
that node into a single node. Any node not in the clan that was connected to a clan 
source or sink will be connected to the contracted node. By allowing segments of the 
graph to be contacted, the user can simplify dense graphs for viewing by contracting 
those parts which are not relevant to the investigation. Contracted nodes can be ex- 
panded to show the original clan configuration. Similarly, CG can extract and display 
only the clan, ignoring the rest of the graph. In figure 6(b), the user contracts the clan 
containing node 6. In figure 6(c), the user displays the clan containing node 6. The 
parse tree of figure 6(a) is in figure l(b). 
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(a) original drawing (b) contract a subgraph 
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(c) display subgraph 

Figure 6. Subgraph Contract/Extract 

7. Cyclic Directed Graphs 

The clan-based graph decomposition can be used to draw cyclic directed 
graphs by reversing certain edges [19]. A simple transformation is required to apply 
the graph decomposition method to cyclic graphs. Cycles can be found in a depth-first 
graph traversal. To break a cycle, the edge that identifies the cycle is given the reverse 
orientation. When the layout is ready, its orientation will be corrected. This method of 
breaking cycles will show a cycle not as a circular arrangement of nodes, but as a ver- 
tical line of nodes with an edge connecting the bottom to the top. This view is 
consistent with some applications such as the visualization of program control flow 
graphs. The general philosophy of a top to bottom flow for directed graphs is supported 
by this layout, with only few edges reversing that direction. 
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8. Example of Applications 

One of application areas that are currently interested in CG is that of social 
networks. Figure 7. is an example of data reported in the 1940's by anthropologists [5]. 
They tallied the co-attendence of 18 women over a series of  14 small informal social 
events. Freeman and White began with their person by event matrix and constructed a 
Galois lattice that represents the person-person, the event-event and the person-event 
dependencies [11]. It shows that there are two pretty clear-cut sub-groups of women, 
and three kinds of  events: those involving one group of women, those involving the 
other group, and those events that bridge the two. The 65 points in the graph picture 
the overall dependency structure. Events are labeled as A to N and women labeled as 1 
to 18. Each point represents some collection of women and some collection of events. 
The uppermost point is the collection of all women and the null set of events. The 
lowermost point is the universal set of events and the null set of women. Each woman 
(or set of women) participated in those events labeled at or above her labeled point in 
the line diagram and each event (or set of events) included all the women labeled at or 
below its point. 

Figure 7. Social Networks Lattice 
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