
Generating Customized Layouts

Xiaobo Wang and Isao Miyamoto

Information and Computer Sciences Department
University of Hawaii, Honolulu, HI 96922, USA

Abstract . A good layout tool should be able to generate customized
layouts according to different requirements given by the user or ap-
plications. To achieve this goal, existing layout techniques should be
enhanced and integrated to take their advantages while compensating
their disadvantages. This paper presents three layout techniques based on
the force-directed placement approach, including a revised force-directed
placement to draw graphs with vertices of nontrivial sizes, a divide-and-
conquer approach to generate structured layouts, and an integrated ap-
proach to support constraints. The combination of the three techniques
significantly improves the layout ability of the force-directed placement.
They can be used to generate customized layouts that reflect semantics,
preference, or principles of perceptual psychology.

1 I n t r o d u c t i o n

Graphs are widely used to represent relational problems in software systems.
An important task for a graph-based application is generating the layouts of
the graphs. Manual layout is time-consuming and error-prone. Automating the
layout task consequently has received much attention in recent years [1].

A classical requirement on an automatic layout method is that the layout
generated by the method should be syntactically valid and satisfy the aesthetic
criteria, e.g., the layout should have no overlapping vertices and a small number
of edge-crossings. Secor, dly, the layout should satisfy constraints derived from
preference, semantics, or principles of perceptual psychology [3, 9]. This ensures
that the layout conveys the correct message to the user. The third requirement is
that the response time of the layout method should be reasonable for interactive
application.

In the algorithmic approach, the layout of the graph is generated by opti-
mizing the aesthetics of the graph. The algorithmic approach is computationally
efficient and is very successful in generating layouts that are aesthetically pleas-
ant to the eye. But the algorithmic approach draws the graph according to a
set of pre-defined criteria. Most algorithmic methods do not support constraints
and can not generate customized layout to reflect the semantics of the graph or
the preference of the user. In the declarative approach, the layout of the graph is
generated by searching a solution of a set of constraints. The power of constraints
makes the declarative approach well-suited t o express semantics or preference
in the drawing of the graph. But it is difficult to specify global criteria such as
aesthetics with constraints. I t is also computationally inefficient to solve a large

505

number of constraints. The drawbacks of the algorithmic and the declarative
approaches make them inadequate to be adopted by current applications [10].

The work of Eades and Lin [10] has shown that an integrated approach can
take the advantages of both algorithmic and declarative approaches while com-
pensating their disadvantages. In this paper, we focus on the force-directed place-
ment [6] and discuss how to enhance the algorithm to satisfy the requirements
described above. We present a layout tool called LYCA. The tool employs the
force-directed placement to improve aesthetics of undirected graphs. A constraint
solver is integrated with the layout algorithm to satisfy constraints. LYCA has
several features:

- The force-directed placement in [6] is modified to draw graphs that contain
vertices of different sizes. The improved algorithm can distribute vertices
evenly if sizes of vertices are considered. Overlaps between large vertices are
eliminated.

- A divide-and-conquer approach is introduced to generate structured layouts
that reflect zones, proximity, and symmetries of subgraphs.

- The constraint solver and the layout algorithm cooperate to resolve the
blocking problem caused by the competition between the constraint solver
and the layout algorithm. This improves the layout quality.

With those functions, LYCA can generate layouts that are nice-looking as well
as functional.

The organization of this paper is the following. Section 2 briefly explains
Fruchterman's algorithm and discusses how to improve the algorithm to draw
graphs with vertices of different sizes. Section 3 presents the divide-and-conquer
approach. Section 4 describes the integration of the constraint solver and the
force-directed placement. The last section gives discussion and concluding re-
marks.

2 D r a w i n g G r a p h s w i t h L a r g e V e r t i c e s

In the first half of this section, we explain the force-directed placement algo-
rithm [6]. In the second half of the section, we discuss how to modify the algo-
rithm to draw graphs with vertices of different sizes.

2.1 Force-directed P lacement

LYCA uses the force-directed placement [6] to improve aesthetics of undirected
graphs. The force-directed placement is a variation of the well-known spring
embedding algorithm [3, 4, 8, 13]. The algorithm draws graphs by applying an
analogy from a physical process. Briefly, vertices are represented as atomic parti-
cles that exert forces upon each other. All vertices repel each other with repulsive
forces. Neighbor vertices attract each other with attractive forces. Given an ini-
tial layout, the vertices are moved by the forces until they reach a stable state,
which is returned as the final layout.

506

In [6], the strengths of forces between vertices are defined as:

Fr = - k 2 / d

Fo = d~/k

where Fa is the attractive force, Fr is the repulsive force, d is the distance
between a pair of vertices, k is the optimal distance between vertices.

2.2 T h e R e v i s e d F o r c e - d i r e c t e d P l a c e m e n t

In the algorithm of [6], k represents the optimal distance between the centers of
vertices. When drawing graphs which contain vertices of different sizes, k must
be increased by the size of the largest vertex to avoid overlaps between vertices.
This may yield layout with large area and uneven distribution of vertices if we
consider sizes of vertices in the distribution, as shown in Figure 1 (a).

(a) layout of the original algorithm (b) layout of the revised algorithm

Fig. 1. Example layouts of graph with vertices of different sizes

To overcome the problem, we modify the forces between a pair of vertices v
and w as follows:

0 if w, v overlap

F a = 2
otherwise

kl 2
C- 3- if w, v overlap

r r m k ~2

"3- otherwise

where Fa is the attractive force between v and w, Fr is the repulsive force
between v and w, d is the distance between the centers of v and w, dour is the

507

dout 0
V

W

Fig. 2. Distance between vertices with areas

distance between the boundaries of v and w (see Figure 2), din = d - dour, k' is
the optimal distance between vertices, and C is a constant.

In the revised algorithm, the repulsive and attractive forces between a pair of
vertices cancel each other when dour between the vertices is equal to k'. There-
fore, U represents the optimal distance between the boundaries of vertices. Be-
cause the revised algorithm adjusts distances between vertices according to the
actual sizes of the vertices, it distributes vertices evenly into a compact area.
Overlaps between vertices are effectively eliminated since the attractive force be-
tween a pair of vertices becomes zero while the repulsive force is increased when
the vertices overlap. An example layout created by the revised force-directed
placement is shown in Figure 1 (b).

3 Generating Structured Layouts

Kosak el at. [9] pointed out that an important property of a layout is its percep-
tual organization. It was found that layouts that are organized according to the
principles of perceptual psychology are easy to understand, while layouts that
violate those principles are likely misleading [9].

We use a divide-and-conquer approach to generate visually structured layouts
and display certain Visual Organization Features defined in [9], including zones,
proximity, and symmetries of subgraphs.

3.1 Basic N o t a t i o n s

We first explain necessary concepts before presenting the divide-and-conquer
algorithm.

Given a graph G = (V, E), a partition P splits G into disjoint subgraphs,
P = { G 1 , . . . , G , } , such that

ai = (~ , Ei)
n

Ui=1�88 = y
l d N I ,) = O f o r i C j
Ei = {(v, w) e Ely, ~ e ~ }

P also divides the edges of G into intra-edges and inter-edges. Intra-edges are
edges between vertices in the same subgraph:

n

Eintra : U Ei i=1

508

Inter-edges are edges between vertices in different subgraphs:

Einter = E - E i n t r a

An undirected graph Grneta called a meta-graph is constructed by collapsing
subgraphs of G into meta-vertices and transforming inter-edges of G into meta-
edges. A layout of Grneta is called a meta-layout of G. A meta-layout can be
obtained by the force-directed placement where the dimensions and center of
each meta-vertex are se t to the dimensions and center of the underlying sub-
graph, respectively.

Forces in the force-directed placement [6] are also divide into two categories:
a force between a pair of vertices in the same subgraph is called an intra-force,
a force between a pair of vertices in different subgraphs is called an inter-force.
For a meta layout constructed from a partition P and a layout obtained by
the original force-directed placement [6], the improved force-directed placement
described in the previous section is used to calculate forces between meta-vertices
in the meta-layout. The net force on a meta-vertex is defined as the meta-force
on all vertices contained by the subgraph that is represented by the meta-vertex.

In Figure 3, a layout and a partition are given on the left side, the corre-
sponding meta-layout is shown on the right side. The intra-force on vertex C is
the sum of the forces between C, A and C, B, the inter-force on C is the sum of
forces between C and vertices in subgraphs $2 and .93, the meta-force on C is
the net force on the meta vertex S1 in the meta-layout on the right side.

S3

Fig. 3. Meta-graph and meta-layout

3.2 T h e Divide-and-conquer Approach

A divide-and-conquer approach draws a graph in three steps: 1) partition a
graph into subgraphs, 2) draw subgraphs, 3) compose subgraph layouts together
to form the resulting layout. A difficulty in divide-and-conquer layout is how to
position inter-edges. If inter-edges are ignored in subgraph layouts, the resulting
layout may have long-edges and edge-crossings. On the other hand, considering
inter-edges in subgraph layouts leads to a circular dependency problem: inter-
edges depend on subgraph layouts which in turn depend on inter-edges. In LYCA,
this problem is solved as follows.

509

The divide-and-conquer approach uses a composite force to position a vertex:

Foomp = + S(t)Fi ,o + (1 - S (t)) F m . a

where Feo,np is the net force on a vertex, Fintra is the intra-force on a vertex,
Fi,,~r is the inter-force on a vertex, and F,~ta is the meta force on a vertex.
S(t) E [0, 1] is a function of layout time t such that S(t) decreases as t increases
after a threshold t ' and reaches 0 at another threshold t" (> t~).

The layout process consists of three phases. Between time 0 and time t',
S(t) = 1, Fco,~p = Finter + Fintra. The force-directed placement [6] is used to
generate a layout with uniform edges and a small number of edge-crossings, as
shown in Figure 4 (a). In the phase between time t ' and t", S(t) decreases. This
reduces the strengths of inter-forces. Meanwhile, the strengths of meta-forces
are increased. At the time threshold t", S(t) reaches 0, F~o,~p = Fintra -b Fmeta.
Since meta forces do not change the relative positions of vertices in a subgraph,
vertices in subgraphs are positioned by intra-forces like in divide-and-conquer
layout.

The divide-and-conquer approach displays zones of subgraphs because the
recta-forces eliminate overlaps between subgraphs in the last phase of the layout
process. Proximity can be reflected if vertices in subgraphs are placed closely and
subgraphs are placed sparsely. This can be achieved by choosing a small optimal
distance between vertices and a large optimal distance between meta-vertices. A
problem of the force-directed placement is that it may not display symmetries
of subgraphs if the entire graph is not symmetric. This problem is resolved in
the divide-and-conquer approach since inter-forces are masked after the time
threshold t". In addition, because the resulting layout is evolved from the layout
generated at time t ~ which has uniform edges and small number of edge-crossings,
long edges and edge-crossings are avoided in the resulting layout. A structured
layout created by the divide-and-conquer approach is shown in Figure 4 (b).

4 I n t e g r a t i o n o f C o n s t r a i n t S o l v e r a n d L a y o u t A l g o r i t h m

A major limitation of the force-directed placement is that it does not support
constraints. LYCA's solution to the problem is integrating the layout algorithm
with a constraint solver. In this section, we focus on the issue of how to integrate
the solver with the layout algorithm to ensure layout quality.

4.1 The Integrated Approach

LYCA takes an integrated approach to support constraints. A constraint solver
is employed to solve three kinds of constraints: 1) an absolute constraint fixes a
vertex at its current position, 2) a relative constraint constrains the position of
a vertex in relation with others, 3) a cluster constraint clusters several vertices
into a subgraph that can be processed as a whole. The solver uses a propagation
style algorithm to satisfy constraints [15].

510

(a) Layout created at time t' (b) Resulting layout

Fig. 4. Structured Layout

. $ ~ o r " �9 r

(a) A . x = B . x (b) A . x < B . x (c) A . x > B . x

Fig. 5. Examples of barriers caused by solving constraints

During the layout process, the solver inputs coordinates of vertices from the
layout algorithm and changes coordinates of constrained vertices to satisfy con-
straints. This integration may return poor layouts since solving constraints may
make a vertex block others from reaching their optimal positions calculated by
the force-directed placement. We define vertex B as a barr i e r for vertex A if
solving a constraint between A and B prevents A from reaching its optimal po-
sition assigned by the force-directed placement. Figure 5 gives several examples
of barriers. In the figure, the arrows on A and B indicate the movements of A
and B assigned by the force-directed placement, respectively. Since the move-
ments violate the constraint between A and B (shown below A and B), the
solver has to change the position of either A or B to satisfy the constraint. If the
solver chooses to change the position of A to satisfy the constraint, B becomes
a barrier for A since it blocks A from being improved by the layout algorithm.

In Figure 5, if we move A and B together by the forces on them, we can
reduce the total force on A and B. The solver will not change the position of A

511

to satisfy constraint because the constraint between A and B is not violated when
A and B are moved together. Therefore, we can avoid barriers while improving
the overall aesthetics of a graph with the principle of force-directed placement.

Based on the above observation, we introduce rigid st icks in the force-directed
placement to represent constraints. If vertex vl becomes a barrier for vertex v2,
a rigid stick is introduced between vl and v2 such that Vl and v2 must move
together like one rigid object. The movements of vl and v2 are determined by
the weighted average of forces on them:

wlA + w2Y2
f=

wl + w2

where f is the new force on vl and v2, f l and f2 are the original forces on vl and
v2, respectively, and wl and w2 are weights of vl and v2, respectively. During the
layout process, the solver and the layout algori thm cooperate to remove barriers
caused by constraints with following rules:

- If vertices vl and v~ are aligned by an "equal" or a "neighbor" constraint,
vl and v2 are connected by rigid stick.

- If vl and v2 are constrained by a " l e s s - t h a n " or " g r e a t e r - t h a n " constraint,
a rigid stick is introduced between vl and v2 only when one of the vertices
becomes a barrier for the other one.

- If v is constrained as in the center of a set of vertices vl , �9 �9 vn, the force on
v is evenly distributed on v l , . . . , vn.

With the cooperation between the solver and the layout algorithm, each layout
iteration consists of four steps:

- Step 1. Calculate forces.
- Step 2. Introduce sticks and distribute forces.
- Step 3. Calculate new positions.
- Step 4. Satisfy constraints.

Step 1 and step 3 are performed by the layout algorithm. Step 2 and step 4
are performed by the solver. Our experiments showed that the heuristic works
reasonably well to remove barriers and improve layout quality. As illustrated
by the example in Figure 6, if the solver changes the positions of n6 and n7 to
satisfy constraints "n6.x > n l5 .x - 32" and "n7.x < n8.x + 32", n15 and n8
become barriers for n6 and n7, respectively. If the barriers are not removed, the
resulting layout has a long edge (see Figure 6 (a)). The problem is resolved when
the solver and the layout algorithm cooperate to remove barriers, as shown in
Figure 6 (b).

The integrated approach enhances the expressive capability of the force-
directed placement significantly. Two example layouts generated with constraints
are shown in Figure 7 and Figure 8. The constraints used to generated the layout
in Figure 8 are given below:

(a) Without cooperation

512

3

~ 4
.14

(b) With cooperation

Fig. 6. Remove barriers caused by solving constraints

o o

FI

IS

(a) Example one (b) Example two

Fig. 7. Example layouts generated with constraints

a b s (a 4 . x - a2 .x) <= 120
a b s (a l . x - a5 .x) <= 70
a5 .y = a l . y = a 2 . y - 64
a4 .y = a3 .y = a 2 . y
c 2 . y = c 5 . y = c 4 . y = c l . y
d 3 . y = d S . y

4.2 Ana lys i s

LYCA uses a propagation style algorithm with linear time-complexity to solve
constraints [15]. Internally constraints as represented as constraint graphs. Each
edge in a constraint graph represents one constraint. To overcome barriers, the
solver first marks the edges that are causing barriers as rigid sticks. The solver

513

Fig. 8. Layout with constraints

then retrieves the vertices that are connected by rigid sticks and distributes
forces on the retrieved vertices. The two steps also can be done in linear time.
Therefore, the integrated approach is efficient. In our experiment, LYCA took
less than 6 seconds on a Sparc 10 workstation to generate the layout shown in
Figure 4. Since the current implementation of LYCA is not optimal, we expect
that the time performance could be further improved.

5 C o n c l u d i n g R e m a r k s

In the paper, we first discussed how to revise the force-directed placement in [6]
to generate compact layouts for graphs with vertices of different sizes. A related
work is the force-scan algorithm reported in [12]. The force-scan algorithm can
keep the user's mental map on an existing layout while resolving overlaps between
vertices in layout adjustment. In LYCA, the force-directed placement is mainly
used for layout creation so it does not maintain the user's mental map on existing
layouts.

LYCA's divide-and-conquer method draws a graph twice to create a struc-
tured layout: it first generates an aesthetically pleasing layout, it then trans-
forms the first layout into a structured one. This may double the layout time.
But the penalty is necessary to avoid long edges and edge-crossings in the result-
ing layout. Otherwise, manual modifications of the resulting layout or recursive
adjustment of subgraph layouts have to be applied to ensure the layout qual-
ity in divide-and-conquer layout [7, 11]. Both LYCA and ANDD [3] use spring

514

algorithm to generate visually organized layouts. The difference between LYCA
and ANDD is that ANDD processes constraints and aesthetics together, while
LYCA processes constraints and aesthetics separately.

About layout quality, our initial experiments showed that the integrated ap-
pr0ach works reasonably well. In general, LYCA can return good layouts when
a few constraints or a lot of constraints are defined on the graph. In the for-
mer case, the layout algorithm dominates the layout process and the solver
performs minor adjustment to satisfy constraints. In the latter case, the solver
dominates the layout process and the layout algorithm "beautifies" the layout
generated by the solver into a nice-looking one. However, if neither the solver
nor the layout algorithm can dominate the layout process, poor layout may be
returned and manual adjustment is needed. Obviously there is no trivial solu-
tion since the constrained optimization problem is computationally intractable.
It will be interesting to investigate how to improve the layout quality with some
known techniques, e.g., local temperature [5] or positioning vertices in certain
order [14]. More experimental study is also needed to evaluate the performance
of the integrated approach.

A c k n o w l e d g e

I would like to thank Peter Eades, Kozo Sugiyama, and Joe Marks for their helps
and suggestions. I would also like to thank anonymous referees for their useful
comments.

References

1. G. D. Battista, P. Eades, R. Tamassia and I. G, Tollis, "Algorithms for draw-
ing graphs: An annotated bibliography," Tech. Iteport, Computer Science Dept.,
Brown Univ., June, 1993.

2. It. Davidson and D. I-Iarel, "Drawing graphs nicely using simulated annealing,"
Technical Report CS89-13, Department of Applied Mathematics and Computer
Science, The Weizmann Institute of Science, Itehovot, Israel, 1989.

3. E. Dengler, M. Friedell and J. Marks, "Constraint-driven diagram layout," Proc.
of Visual Language 93, 1993.

4. P. Eades, "A heuristic for graph drawing," Congress Numeratium, Vol. 42, 1984.
5. A. Frick, A. Ludwing, and H. Mehldau, "A fast adaptive layout algorithm for

undirected graphs," Graph Drawing 94, Princeton, New Jersey, October, 1994.
6. T. J. Fruchterman and E. M. Iteingold, "Graph drawing by force-directed place-

ment," Software - Practice and Experience, Vol. 21, No. 11, Nov. 1991, pp. 1129-
1164.

7. T. It. Henry, "Interactive graph layout: The exploration of large graphs," Tech.
Iteport 92-03, Computer Science Dept., Univ. of Arizona, Tucson, Arizona, 1992.

8. T. Kamada and S. Kawai, "An algorithm for drawing general undirected graphs,"
In]ormation Processing Letters, Vol. 31, 1989.

9. C. Kosak, J. Marks and S. Shieber, "Automating the layout of network diagrams
with specified visual organization," IEEE Trans. on Syst., Man, and Cyb., Vol.
24., No. 3, March 1994.

515

10. T. Lin and P. Eades, "Integration of declarative and algorithmic approaches for
layout creation," Graph Drawing 94, Princeton, New Jersey, October, 1994.

11. S. C. North, "Drawing ranked digraphs with recursive clusters," Proc. of ALCOM
Int'l Workshop on Graph Drawing, Paris, France, Sept. 1993.

12. K. Misue, P. Eades, W. Lal and K. Sugiyama, "Layout adjustment and the mental
map," Research Report ISIS-RR-94-6E, FUJITSU Lab. Ltd., Shizuoka, Japan,
1994.

13. K. Sugiyama and and K. Misue, "A simple and unified method for drawing graphs:
magnetic-spring algorithm," Graph Drawing 94, Princeton, New Jersey, October,
1994.

14. D. Tunkelang, "An aesthetic layout algorithm for undirected graphs," Thesis for
Master Degree, Computer Science and Engineering Department, M.I.T., 1992.

15. X. Wang, "Generating Customized Layouts Automatically," PhD thesis, Univ. of
Hawaii at Manoa, August, 1995.

