
Generating Customized Layouts 

Xiaobo Wang and Isao Miyamoto 

Information and Computer Sciences Department 
University of Hawaii, Honolulu, HI 96922, USA 

Abstract .  A good layout tool should be able to generate customized 
layouts according to different requirements given by the user or ap- 
plications. To achieve this goal, existing layout techniques should be 
enhanced and integrated to take their advantages while compensating 
their disadvantages. This paper presents three layout techniques based on 
the force-directed placement approach, including a revised force-directed 
placement to draw graphs with vertices of nontrivial sizes, a divide-and- 
conquer approach to generate structured layouts, and an integrated ap- 
proach to support constraints. The combination of the three techniques 
significantly improves the layout ability of the force-directed placement. 
They can be used to generate customized layouts that reflect semantics, 
preference, or principles of perceptual psychology. 

1 I n t r o d u c t i o n  

Graphs are widely used to represent relational problems in software systems. 
An important task for a graph-based application is generating the layouts of 
the graphs. Manual layout is time-consuming and error-prone. Automating the 
layout task consequently has received much attention in recent years [1]. 

A classical requirement on an automatic  layout method is that  the layout 
generated by the method should be syntactically valid and satisfy the aesthetic 
criteria, e.g., the layout should have no overlapping vertices and a small number 
of edge-crossings. Secor, dly, the layout should satisfy constraints derived from 
preference, semantics, or principles of perceptual psychology [3, 9]. This ensures 
that  the layout conveys the correct message to the user. The third requirement is 
that  the response time of the layout method should be reasonable for interactive 
application. 

In the algorithmic approach, the layout  of the graph is generated by opti- 
mizing the aesthetics of the graph. The algorithmic approach is computationally 
efficient and is very successful in generating layouts that  are aesthetically pleas- 
ant to the eye. But the algorithmic approach draws the graph according to a 
set of pre-defined criteria. Most algorithmic methods do not support constraints 
and can not generate customized layout to reflect the semantics of the graph or 
the preference of the user. In the declarative approach, the layout of the graph is 
generated by searching a solution of a set of constraints. The power of constraints 
makes the declarative approach well-suited t o  express semantics or preference 
in the drawing of the graph. But it is difficult to specify global criteria such as 
aesthetics with constraints. I t  is also computationally inefficient to solve a large 
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number of constraints. The drawbacks of the algorithmic and the declarative 
approaches make them inadequate to be adopted by current applications [10]. 

The work of Eades and Lin [10] has shown that an integrated approach can 
take the advantages of both algorithmic and declarative approaches while com- 
pensating their disadvantages. In this paper, we focus on the force-directed place- 
ment [6] and discuss how to enhance the algorithm to satisfy the requirements 
described above. We present a layout tool called LYCA. The tool employs the 
force-directed placement to improve aesthetics of undirected graphs. A constraint 
solver is integrated with the layout algorithm to satisfy constraints. LYCA has 
several features: 

- The force-directed placement in [6] is modified to draw graphs that contain 
vertices of different sizes. The improved algorithm can distribute vertices 
evenly if sizes of vertices are considered. Overlaps between large vertices are 
eliminated. 

- A divide-and-conquer approach is introduced to generate structured layouts 
that reflect zones, proximity, and symmetries of subgraphs. 

- The constraint solver and the layout algorithm cooperate to resolve the 
blocking problem caused by the competition between the constraint solver 
and the layout algorithm. This improves the layout quality. 

With those functions, LYCA can generate layouts that are nice-looking as well 
as functional. 

The organization of this paper is the following. Section 2 briefly explains 
Fruchterman's algorithm and discusses how to improve the algorithm to draw 
graphs with vertices of different sizes. Section 3 presents the divide-and-conquer 
approach. Section 4 describes the integration of the constraint solver and the 
force-directed placement. The last section gives discussion and concluding re- 
marks. 

2 D r a w i n g  G r a p h s  w i t h  L a r g e  V e r t i c e s  

In the first half of this section, we explain the force-directed placement algo- 
rithm [6]. In the second half of the section, we discuss how to modify the algo- 
rithm to draw graphs with vertices of different sizes. 

2.1 Force-directed P lacement  

LYCA uses the force-directed placement [6] to improve aesthetics of undirected 
graphs. The force-directed placement is a variation of the well-known spring 
embedding algorithm [3, 4, 8, 13]. The algorithm draws graphs by applying an 
analogy from a physical process. Briefly, vertices are represented as atomic parti- 
cles that exert forces upon each other. All vertices repel each other with repulsive 
forces. Neighbor vertices attract each other with attractive forces. Given an ini- 
tial layout, the vertices are moved by the forces until they reach a stable state, 
which is returned as the final layout. 
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In [6], the strengths of forces between vertices are defined as: 

Fr = - k 2 / d  

Fo = d~/k 

where Fa is the attractive force, Fr is the repulsive force, d is the distance 
between a pair of vertices, k is the optimal distance between vertices. 

2.2 T h e  R e v i s e d  F o r c e - d i r e c t e d  P l a c e m e n t  

In the algorithm of [6], k represents the optimal distance between the centers of 
vertices. When drawing graphs which contain vertices of different sizes, k must 
be increased by the size of the largest vertex to avoid overlaps between vertices. 
This may yield layout with large area and uneven distribution of vertices if we 
consider sizes of vertices in the distribution, as shown in Figure 1 (a). 

(a) layout of the original algorithm (b) layout of the revised algorithm 

Fig. 1. Example layouts of graph with vertices of different sizes 

To overcome the problem, we modify the forces between a pair of vertices v 
and w as follows: 

0 if w, v overlap 

F a =  2 
otherwise 

kl 2 
C- 3- if w, v overlap 

r r  m k ~2 

"3- otherwise 

where Fa is the attractive force between v and w, Fr is the repulsive force 
between v and w, d is the distance between the centers of v and w, dour is the 
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Fig. 2. Distance between vertices with areas 

distance between the boundaries of v and w (see Figure 2), din = d - dour, k' is 
the optimal distance between vertices, and C is a constant. 

In the revised algorithm, the repulsive and attractive forces between a pair of 
vertices cancel each other when dour between the vertices is equal to k'. There- 
fore, U represents the optimal distance between the boundaries of vertices. Be- 
cause the revised algorithm adjusts distances between vertices according to the 
actual sizes of the vertices, it distributes vertices evenly into a compact area. 
Overlaps between vertices are effectively eliminated since the attractive force be- 
tween a pair of vertices becomes zero while the repulsive force is increased when 
the vertices overlap. An example layout created by the revised force-directed 
placement is shown in Figure 1 (b). 

3 Generating Structured Layouts 

Kosak el at. [9] pointed out that  an important property of a layout is its percep- 
tual organization. It was found that  layouts that  are organized according to the 
principles of perceptual psychology are easy to understand, while layouts that  
violate those principles are likely misleading [9]. 

We use a divide-and-conquer approach to generate visually structured layouts 
and display certain Visual Organization Features defined in [9], including zones, 
proximity, and symmetries of subgraphs. 

3.1 Basic  N o t a t i o n s  

We first explain necessary concepts before presenting the divide-and-conquer 
algorithm. 

Given a graph G = (V, E), a partition P splits G into disjoint subgraphs, 
P = { G 1 , . . . , G , } ,  such that 

ai  = ( ~ ,  Ei) 
n 

Ui=1�88 = y 
l d N I , ) = O f o r i C j  
Ei = {(v, w) e Ely, ~ e ~ }  

P also divides the edges of G into intra-edges and inter-edges. Intra-edges are 
edges between vertices in the same subgraph: 

n 

Eintra : U Ei i=1 



508 

Inter-edges are edges between vertices in different subgraphs: 

Einter = E - E i n t r  a 

An undirected graph Grneta called a meta-graph is constructed by collapsing 
subgraphs of G into meta-vertices and transforming inter-edges of G into meta- 
edges. A layout of Grneta is called a meta-layout of G. A meta-layout can be 
obtained by the force-directed placement where the dimensions and center of 
each meta-vertex are se t to  the dimensions and center of the underlying sub- 
graph, respectively. 

Forces in the force-directed placement [6] are also divide into two categories: 
a force between a pair of vertices in the same subgraph is called an intra-force, 
a force between a pair of vertices in different subgraphs is called an inter-force. 
For a meta layout constructed from a partition P and a layout obtained by 
the original force-directed placement [6], the improved force-directed placement 
described in the previous section is used to calculate forces between meta-vertices 
in the meta-layout. The net force on a meta-vertex is defined as the meta-force 
on all vertices contained by the subgraph that is represented by the meta-vertex. 

In Figure 3, a layout and a partition are given on the left side, the corre- 
sponding meta-layout is shown on the right side. The intra-force on vertex C is 
the sum of the forces between C, A and C, B, the inter-force on C is the sum of 
forces between C and vertices in subgraphs $2 and .93, the meta-force on C is 
the net force on the meta vertex S1 in the meta-layout on the right side. 

S3 

Fig. 3. Meta-graph and meta-layout 

3.2 T h e  Divide-and-conquer  Approach  

A divide-and-conquer approach draws a graph in three steps: 1) partition a 
graph into subgraphs, 2) draw subgraphs, 3) compose subgraph layouts together 
to form the resulting layout. A difficulty in divide-and-conquer layout is how to 
position inter-edges. If inter-edges are ignored in subgraph layouts, the resulting 
layout may have long-edges and edge-crossings. On the other hand, considering 
inter-edges in subgraph layouts leads to a circular dependency problem: inter- 
edges depend on subgraph layouts which in turn depend on inter-edges. In LYCA, 
this problem is solved as follows. 
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The divide-and-conquer approach uses a composite force to position a vertex: 

Foomp = + S(t)Fi ,o  + (1 - S ( t ) ) F m . a  

where Feo,np is the net force on a vertex, Fintra is the intra-force on a vertex, 
Fi,,~r is the inter-force on a vertex, and F,~ta is the meta force on a vertex. 
S(t) E [0, 1] is a function of layout time t such that  S(t) decreases as t increases 
after a threshold t '  and reaches 0 at another threshold t"  (> t~). 

The layout process consists of three phases. Between time 0 and time t', 
S(t) = 1, Fco,~p = Finter + Fintra. The force-directed placement [6] is used to 
generate a layout with uniform edges and a small number of edge-crossings, as 
shown in Figure 4 (a). In the phase between time t '  and t", S(t) decreases. This 
reduces the strengths of inter-forces. Meanwhile, the strengths of meta-forces 
are increased. At the time threshold t",  S(t) reaches 0, F~o,~p = Fintra -b Fmeta. 
Since meta forces do not change the relative positions of vertices in a subgraph, 
vertices in subgraphs are positioned by intra-forces like in divide-and-conquer 
layout. 

The divide-and-conquer approach displays zones of subgraphs because the 
recta-forces eliminate overlaps between subgraphs in the last phase of the layout 
process. Proximity can be reflected if vertices in subgraphs are placed closely and 
subgraphs are placed sparsely. This can be achieved by choosing a small optimal 
distance between vertices and a large optimal distance between meta-vertices. A 
problem of the force-directed placement is that  it may not display symmetries 
of subgraphs if the entire graph is not symmetric. This problem is resolved in 
the divide-and-conquer approach since inter-forces are masked after the time 
threshold t".  In addition, because the resulting layout is evolved from the layout 
generated at time t ~ which has uniform edges and small number of edge-crossings, 
long edges and edge-crossings are avoided in the resulting layout. A structured 
layout created by the divide-and-conquer approach is shown in Figure 4 (b). 

4 I n t e g r a t i o n  o f  C o n s t r a i n t  S o l v e r  a n d  L a y o u t  A l g o r i t h m  

A major limitation of the force-directed placement is that  it does not support 
constraints. LYCA's solution to the problem is integrating the layout algorithm 
with a constraint solver. In this section, we focus on the issue of how to integrate 
the solver with the layout algorithm to ensure layout quality. 

4.1 The Integrated Approach 

LYCA takes an integrated approach to support constraints. A constraint solver 
is employed to solve three kinds of constraints: 1) an absolute constraint fixes a 
vertex at its current position, 2) a relative constraint constrains the position of 
a vertex in relation with others, 3) a cluster constraint clusters several vertices 
into a subgraph that  can be processed as a whole. The solver uses a propagation 
style algorithm to satisfy constraints [15]. 
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(a) Layout created at time t' (b) Resulting layout 

Fig. 4. Structured Layout 

. . . . . .  $ ~ o r "  �9 r 

(a) A . x  = B . x  (b) A . x  < B . x  (c) A . x  > B . x  

Fig. 5. Examples of barriers caused by solving constraints 

During the layout process, the solver inputs coordinates of vertices from the 
layout algorithm and changes coordinates of constrained vertices to satisfy con- 
straints. This integration may return poor layouts since solving constraints may 
make a vertex block others from reaching their optimal positions calculated by 
the force-directed placement. We define vertex B as a barr i e r  for vertex A if 
solving a constraint between A and B prevents A from reaching its optimal po- 
sition assigned by the force-directed placement. Figure 5 gives several examples 
of barriers. In the figure, the arrows on A and B indicate the movements of A 
and B assigned by the force-directed placement, respectively. Since the move- 
ments violate the constraint between A and B (shown below A and B), the 
solver has to change the position of either A or B to satisfy the constraint. If the 
solver chooses to change the position of A to satisfy the constraint, B becomes 
a barrier for A since it blocks A from being improved by the layout algorithm. 

In Figure 5, if we move A and B together by the forces on them, we can 
reduce the total force on A and B. The solver will not change the position of A 
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to satisfy constraint because the constraint between A and B is not violated when 
A and B are moved together. Therefore, we can avoid barriers while improving 
the overall aesthetics of a graph with the principle of force-directed placement.  

Based on the above observation, we introduce rigid st icks in the force-directed 
placement to represent constraints. If  vertex vl becomes a barrier for vertex v2, 
a rigid stick is introduced between vl and v2 such that  Vl and v2 must move 
together like one rigid object. The movements  of vl and v2 are determined by 
the weighted average of forces on them: 

wlA + w2Y2 
f=  

wl  + w2 

where f is the new force on vl and v2, f l  and f2 are the original forces on vl and 
v2, respectively, and wl and w2 are weights of vl and v2, respectively. During the 
layout process, the solver and the layout algori thm cooperate to remove barriers 
caused by constraints with following rules: 

- If  vertices vl and v~ are aligned by an "equal" or a "neighbor" constraint, 
vl and v2 are connected by rigid stick. 

- If  vl and v2 are constrained by a " l e s s - t h a n "  or " g r e a t e r - t h a n "  constraint,  
a rigid stick is introduced between vl and v2 only when one of the vertices 
becomes a barrier for the other one. 

- If  v is constrained as in the center of a set of vertices vl ,  �9 �9 vn, the force on 
v is evenly distributed on v l , . . . ,  vn. 

With  the cooperation between the solver and the layout algorithm, each layout 
iteration consists of four steps: 

- Step 1. Calculate forces. 
- Step 2. Introduce sticks and distribute forces. 
- Step 3. Calculate new positions. 
- Step 4. Satisfy constraints. 

Step 1 and step 3 are performed by the layout algorithm. Step 2 and step 4 
are performed by the solver. Our experiments showed that  the heuristic works 
reasonably well to remove barriers and improve layout quality. As illustrated 
by the example in Figure 6, if the solver changes the positions of n6 and n7 to 
satisfy constraints "n6.x > n l5 .x  - 32" and "n7.x  < n8.x + 32", n15 and n8 
become barriers for n6 and n7, respectively. If  the barriers are not removed, the 
resulting layout has a long edge (see Figure 6 (a)). The problem is resolved when 
the solver and the layout algorithm cooperate to remove barriers, as shown in 
Figure 6 (b). 

The integrated approach enhances the expressive capability of the force- 
directed placement significantly. Two example layouts generated with constraints 
are shown in Figure 7 and Figure 8. The constraints used to generated the layout 
in Figure 8 are given below: 
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(b) With cooperation 

Fig. 6. Remove barriers caused by solving constraints 

o o 

FI 

IS 

(a) Example one (b) Example two 

Fig. 7. Example layouts generated with constraints 

a b s ( a 4 . x  - a2 .x )  <= 120 
a b s ( a l . x  - a5 .x )  <= 70 
a5 .y  = a l . y  = a 2 . y  - 64 
a4 .y  = a3 .y  = a 2 . y  
c 2 . y  = c 5 . y  = c 4 . y  = c l . y  
d 3 . y = d S . y  

4.2 Ana lys i s  

LYCA uses a propagation style algorithm with linear time-complexity to solve 
constraints [15]. Internally constraints as represented as constraint graphs. Each 
edge in a constraint graph represents one constraint. To overcome barriers, the 
solver first marks the edges that are causing barriers as rigid sticks. The solver 
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Fig. 8. Layout with constraints 

then retrieves the vertices that are connected by rigid sticks and distributes 
forces on the retrieved vertices. The two steps also can be done in linear time. 
Therefore, the integrated approach is efficient. In our experiment, LYCA took 
less than 6 seconds on a Sparc 10 workstation to generate the layout shown in 
Figure 4. Since the current implementation of LYCA is not optimal, we expect 
that  the time performance could be further improved. 

5 C o n c l u d i n g  R e m a r k s  

In the paper, we first discussed how to revise the force-directed placement in [6] 
to generate compact layouts for graphs with vertices of different sizes. A related 
work is the force-scan algorithm reported in [12]. The force-scan algorithm can 
keep the user's mental map on an existing layout while resolving overlaps between 
vertices in layout adjustment. In LYCA, the force-directed placement is mainly 
used for layout creation so it does not maintain the user's mental map on existing 
layouts. 

LYCA's divide-and-conquer method draws a graph twice to create a struc- 
tured layout: it first generates an aesthetically pleasing layout, it then trans- 
forms the first layout into a structured one. This may double the layout time. 
But the penalty is necessary to avoid long edges and edge-crossings in the result- 
ing layout. Otherwise, manual modifications of the resulting layout or recursive 
adjustment of subgraph layouts have to be applied to ensure the layout qual- 
ity in divide-and-conquer layout [7, 11]. Both LYCA and ANDD [3] use spring 
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algorithm to generate visually organized layouts. The difference between LYCA 
and ANDD is that  ANDD processes constraints and aesthetics together, while 
LYCA processes constraints and aesthetics separately. 

About layout quality, our initial experiments showed that  the integrated ap- 
pr0ach works reasonably well. In general, LYCA can return good layouts when 
a few constraints or a lot of constraints are defined on the graph. In the for- 
mer case, the layout algorithm dominates the layout process and the solver 
performs minor adjustment to satisfy constraints. In the latter case, the solver 
dominates the layout process and the layout algorithm "beautifies" the layout 
generated by the solver into a nice-looking one. However, if neither the solver 
nor the layout algorithm can dominate the layout process, poor layout may be 
returned and manual adjustment is needed. Obviously there is no trivial solu- 
tion since the constrained optimization problem is computationally intractable. 
It will be interesting to investigate how to improve the layout quality with some 
known techniques, e.g., local temperature [5] or positioning vertices in certain 
order [14]. More experimental study is also needed to evaluate the performance 
of the integrated approach. 
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