
G O V E
Grammar-Oriented Visual isat ion Environment

Richard Webber and Aaron Scott

Department of Computer Science, University of Newcastle, Callaghan 2308, Australia

1 I n t r o d u c t i o n

Most Information Visualisations have been developed in an ad hoe manner. To
overcome this, we have proposed an architecture that formalises the structure
of Information Visualisations. By using this architecture, software developers
will benefit from the use of tools that support this approach, and from the in-
creased potential to reuse parts of visualisations built under the architecture. We
have embodied this architecture in a software environment, GOVE (Grammar-
Oriented Visualisation Environment) [7], that can be used to develop Relational
Information Visualisations - - visualisations that deal specifically with the enti-
ties and relationships found in the information source (which is currently limited
to static, textual sources), usually presenting them as a graph. This form of In-
formation Visualisation is very common, and accounts for much of the work in
the field [1, 8].

2 A r c h i t e c t u r e

V I S U A L I S A T I O N

i I
Modelling Laymlt

I '1 f 1

1 1 T l t 1
i~nnm~ D ~ n a ~ ^t~ib~e

Fig. 1. Visualisation architecture

The traditional model of information Visualisation consists of two parts [4, 5]:
Modelling (extracting entities and relationships from an information source), and
Layout (converting this into a graphical representation).

We propose an architecture which subdivides these parts into six modules,
as outlined in Fig. 1. Together, these form a dataflow pipeline, which accepts an
information source as input, and produces a visualisation as output. Unlike many

517

systems, GOVE incorporates the process of obtaining relational information from
the (textual) source.

Each module performs a specific task, and is made up of two logical com-
ponents: General Functionality (the underlying engine for that module's part
of the visualisation process), and Application Specific Data (the definitions that
tailor a module to a specific visualisation). The interfaces between neighbouring
modules are defined to allow modules from one visualisation to be inserted into
the same position in another visualisation, greatly increasing the potential for
reuse.

3 M o d u l e s

GOVE presents its user with an explicit visual representation of the Information
Visualisation pipeline they are developing. A simple pipeline to visualise a graph
description file is given in Fig. 2. The user interacts with this pipeline, supplying
the application-specific data through a set of form-based interfaces (see Fig. 3),
then instructing GOVE to build and execute the pipeline of modules to perform
the visualisation.

Fig. 2. Graph description pipeline Fig. 3. Lexical Analysis interface

Lexica l Analys is : divides a stream of characters (the textual source) into
tokens. The application specific data for a Lexical Analysis module is a list
of token names and definitions given as Lex [6] regular expressions.

Pa r s ing : builds a syntax tree from the sequence of tokens it receives. The
application specific data for a Parsing module is a Yacc [6] grammar.

C o m b i n a t o r i a l M o d e l G e n e r a t i o n : analyses the syntax tree, and generates
a Combinatorial Model (an Entity-Relationship Diagram). It does this by
matching patterns in the syntax tree, and generating corresponding compo-
nents in the Combinatorial Model. This process is similar to the construction
of graphs through Graph-Grammars [3], and is shown in Fig. 4.

518

P a t t e r n + T r e e = L i s t F o r e a c h s ub t r ee : F i n d / C r e a t e

_, e n t i t i e s / r e l a t i o n s h i p s

[]
_1

Fig. 4. Combinatorial Model Generation

Local A t t r i b u t e Mapping: assigns graphical attributes to the entities and
relationships of the Combinatorial Model. The application specific data con-
sists of expressions that assign a value to each attribute for each ~ y p e of
entity and relationship, possibly using the data stored in the Combinatorial
Model.

Layou t (Global A t t r i b u t e Mapping) : applies the user's choice of layout
algorithm [1] to assign positions to the nodes. GOVE has support for three-
dimensional graph drawing, with an increasing set of layout Mgorithms.

Render ing : converts the resulting graph to the desired format for storage
or viewing. The two visualisations resulting from the pipeline in Fig. 2 are
shown in Figs. 5 and 6 (two- and three-dimensional spring layout respec-
tively).

/~,,~

�9 . ~ - . ~ ~ .~ "~ . .~ , / ,

Fig. 5. Two-dimensional spring Fig. 6. Three-dimensional spring

A s shown in Fig. 2, GOVE can develop pipelines that branch to produce
multiple layouts of the same Combinatorial Model. The same principle can be
applied to any stage of the pipeline. Fig. 7 shows a pipeline that visualises the
naming scope and procedure calls in a pseudo-pascal source file.

In addition to the spring algorithms shown in Figs. 5 and 6, GOVE currently
supports a three-dimensional DAG algorithm [2] shown in Fig. 8.

519

Fig. 7. Pseudo-pascal pipeline Fig. 8. Three-dimensional DAG

4 Future Improvemen t s

GOVE is currently undergoing redevelopment. Some of the possible improve-
ments include: the use of diagrammatic interfaces; interpreted modules to speed-
up development; more specific/efficient Combinatorial Models; and many useful
layouts algorithms. Allowing interaction with the resulting visualisations is also
desirable - - simply manipulat ing the output is easy, while support ing feedback
to the information source is much more difficult.

R e f e r e n c e s

1. G. Di Battista, P. Eades, R. Tamassia and I.G. Tollis, "Algorithms for Drawing
Graphs: An Annotated Bibliography". Jun, 1994.
f t p : / /wilma. cd. brown, edu/pub/papers/compgeo/gdb • rex. Z

2. R.F. Cohen, D. Fogarty, P. Murphy and D.I. Ostry, "Animated Three-Dimensional
Information Visualizations". Submitted to ACSC '96. Aug, 1995.

3. H. Ehrig, H.-J. Kreowski, G. Rozenberg, Graph Grammars and their Applications
to Computer Science. Lect. Notes in Comp. Sc., vol. 532, Springer-Verlag. 1991.

4. T. Kamada, Visualizing Abstract Objects and Relations: A Constraint Based Ap-
proach. Series in Comp. Sc., vol. 5. 1989.

5. J. Mackinlay, "Automating the Design of Graphical Presentations of Relational In-
formation" in ACM Trans. Graphics, vol. 5, no. 2, pp. 110-141. 1986.

6. T. Mason and D. Brown, Lex and Yacc, A Nutshell Handbook. 1990.
7. A. Scott and R. Webber, "Grammar Oriented Visualisation Environment (GOVE)".

Hons. Proj., Dep. Comp. Sc., Uni. Newcastle, Callaghan 2308, Australia. Nov, 1993.
8. A. Scott, "A Survey of Graph Drawing Systems". Tech. Report 95-1, Dep. Comp.

Sc., Uni. Newcastle, Callaghan 2308, Australia. Dec, 1994.

