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Abstract

We investigate systems where it is possible to access several shared registers in one
atomic step. We characterize those systems in which the consensus problem can be
solved in the presence of faults and give bounds on the space required. We also describe
a fast solution to the mutual exclusion problem using atomic m-register operations.

Key words: Fault-tolerance, shared memory, impossibility, lower bounds, agreement, con-
sensus, mutual exclusion.

1 Introduction

Shared memory systems which support only atomic read and write operations have been
extensively investigated, e.g. [1, 4, 12, 13, 14, 15, 18, 19]. This paper focuses attention on
somewhat stronger systems in which it is possible to read or write several shared registers
in one atomic step.

We say that a system supports atomic m-register operations if it is possible for a process
to read or write m registers in one atomic step. Previous work shows that the ability to read
multiple registers in a single operation does not by itself add computational power [2, 3, 1],
while in some contexts, the ability to write several registers is more powerful than single-
register primitives [11]. We explore these questions in more detail, examining complexity
bounds as well as computability.

Powerful synchronization mechanisms such as semaphores, register-to-register swap,
read-modify-write, and test-and-set have long been a part of operating system design. Her-
lihy’s seminal paper demonstrated these primitives may be classified hierarchically, accord-
ing to their computational power in the fail-stop fault model [11]. This has awakened a
great deal of interest in the relative strengths of various synchronization primitives. The
m-register primitive is of particular theoretical interest: as Herlihy showed, each succes-
sive value of m provides a quantum increase in the synchronization power of the primitive.
Atomic m-registers can solve wait-free consensus for up to 2m− 2 processors, but no more.
Hence, these primitives populate an infinite hierarchy between test-and-sets (which can be
used to solve wait-free consensus for exactly 2 processors), and register-to-register swap or
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read-modify-write (either of which can be used to solve wait-free consensus for any number
of processors).

A still stronger model is one in which processors perform read-modify-write operations
on multiple registers in a single atomic step. For example, this is the computational model
underlying Unity [6]. An algorithm for computing graph connectivity in this model was
presented in [9]. Because this model includes read-modify-write on a single register, it is
much more powerful than reading or writing a bounded number of registers.

Wait-freedom corresponds to a model in which any number of processors may crash.
Our first result explores the general case in which there is some bound, t, on the number of
processors that may crash. (For n processors, the wait-free model corresponds to t = n−1.)
The result was inspired by proofs in Fischer, Lynch and Paterson [10], Herlihy [11] and
Loui and Abu-Amara [14], and shows that the consensus problem can be solved using n
processes in systems which support atomic m-register operations if and only if t ≤ 2m− 3.
The theorem holds also when a process can atomically read only a single register (but can
atomically write m registers).

Two known results are special cases of this. Loui and Abu-Amara [14] proved the result
for the case m = 1 (for any n and t), and Herlihy [11] proved it for the case t = n− 1 (for
any m).1 The case where m = 1 and t = n− 1, which itself is a special case of the Loui and
Abu-Amara result, is proved also in [8, 11].

Next, we prove a lower bound on the number of shared registers necessary to solve the
consensus problem. We show that for any n, m, and t < n, in a system that supports atomic
m-register operations, every t-resilient consensus protocol for n processes must use at least
(t + 3)min(t + 1,m) −min(t + 1,m)2 − 1 shared registers. That is, if t + 1 ≤ m, at least
2t + 1 registers are needed, and when t + 1 ≥ m, (t + 3)m−m2 − 1 are required. We also
design a consensus protocol that uses (t2 + 3t + 2)/2 shared registers. The results depend
on generalizations of Herlihy’s arguments for the case n = t− 1. This result indicates that
the power of a synchronization primitive (in terms of the number of processes which can
use it to reach consensus) can depend on how many instances of the primitive are available.

Finally, we use atomic m-register operations to design a solution to the mutual exclusion
problem. Assuming a fault-free environment, and using the tree-based mutual exclusion
algorithm of [16], we show that there is a starvation-free solution to the mutual exclusion
problem with time complexity 3dlogm ne. The time complexity is defined as the number
of accesses to the shared memory in order to enter the critical section in the absence of
contention [13].

Sections 2 through 4 assume that a process can either read m registers or write to m
registers in one atomic step. Section 5 discusses the case of mixed m-register operations,
where a process can “mix” reads and writes, accessing up to m registers atomically, choosing
some to write and others to read. It turns out that mixing operations buys no additional
computational power, except in the odd case where t = 1. (Theorem 5 shows that mixed
2-registers, with operations containing only single writes, suffice to solve consensus for t = 1
and any number of processors.)

1Although Herlihy assumes that a process may atomically read only a single register, the proof applies
unchanged to the case considered here, in which multiple registers may be read atomically.
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2 Asynchronous Shared Memory Systems

This section characterizes asynchronous shared memory systems which support atomic ac-
cess to m registers, by stating axioms that any protocol operating in such systems satisfies.
The axioms do not give a complete characterization of these systems; only those axioms are
stated that are needed to prove the lower bounds. (This and the next two sections do not
discuss mixed m-register operations, which are discussed in Section 5.)

We start with a formal description of the notion of a protocol. We assume a set of
register names {r0, r1, . . .}, a set of process names {p0, p1, . . .}, and a set of values. An event
corresponds to an atomic step performed by a process. We consider here only the following
types of events.

1. readp(r1, ..., rm, v1, ..., vm) – process p reads the values v1, ..., vm from registers r1, ..., rm

respectively;

2. writep(r1, ..., rm, v1, ..., vm) – process p writes the values v1, ..., vm into registers r1, ..., rm

respectively.

We use the notation ep to denote an instance of an arbitrary event at a process p, which
may be an instance of either of the above types of events.

A run is a pair (f, S) where f is a function which assigns initial values to the registers
and S is a finite or infinite sequence of events. When S is finite, we also say that the run
is finite.

A protocol Pr = (C, N, R) consists of a nonempty set C of runs, a set N of processes,
and a set of registers R. For any event ep at a process p in any run in C, the registers read
from or written to in ep must all be in R.

The value of a register at a finite run is the last value that was written into that register,
or its initial value (determined by f) if no process wrote into the register. We use value(r, x)
to denote the value of register r at a finite run x.

Let x = (f, S) and x′ = (f ′, S′) be runs. Run x′ is a prefix of x (and x is an extension
of x′), denoted x′ ≤ x, if S′ is a prefix of S and f = f ′. When x ≥ x′, (x− x′) denotes the
suffix of S obtained by removing S′ from S.

Let 〈S; S′〉 be the sequence obtained by concatenating the finite sequence S and the
sequence S′. Then 〈x; S′〉 is an abbreviation for (f, 〈S; S′〉).

For any sequence S, let Sp be the subsequence of S containing all events in S which
involve p. Run (f, S) includes (f ′, S′) if f = f ′ and S′p is a prefix of Sp for all p ∈ N . Runs
(f, S) and (f ′, S′) are indistinguishable for a set of processes P , denoted by (f, S)[P ](f ′, S′),
iff for all p ∈ P , Sp = S′p and f(r) = f ′(r) for every local register r of p. When P = {p}
we write [p] instead of [P ]. We assume throughout this paper that x is a run of a protocol
if and only if all finite prefixes of x are runs. Notice that, by this assumption, if (f, S) is a
run then also (f,null) is a run, where null is the empty sequence.

Without loss of generality, we also assume that the processes are deterministic. That
is, if 〈x; ep〉 and 〈x; e′p〉 are runs then ep = e′p.

Definition 1 An asynchronous protocol that supports atomic m-register operations is a
protocol whose runs satisfy axioms A1 – A3.
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Axioms for atomic m-register operations

A1 Let 〈x;writep(r1, ..., rm, v1, ..., vm)〉 and y be finite runs where x[p]y.
Then 〈y;writep(r1, ..., rm, v1, ..., vm)〉 is a run.

A2 Let 〈x; readp(r1, ..., rm, v1, ..., vm)〉 and y be finite runs where x[p]y.
Then 〈y; readp(r1, ..., rm, u1, ..., um)〉 is a run for some values u1, ..., um.

A3 Let 〈x; readp(r1, ..., rm, v1, ..., vm)〉 be a finite run.
Then vi = value(ri, x) for all 1 ≤ i ≤ m.

Axiom A1 means that if a write event which involves p can happen at a run, then the same
event can happen at any run that is indistinguishable to p from it. Axiom A2 means that if
a process is “ready to read” some values from some registers then an event on some other
process cannot prevent it from reading from those registers although it may read a different
set of values than it would otherwise. Axiom A3 means that it is possible to read only the
last value that is written into a register.

We say that process p is enabled at run x if there exists an event ep such that 〈x; ep〉 is a
run. For simplicity, we write xp to denote either 〈x; ep〉 (when p is enabled in x), or x (when p
is not enabled in x). For a set of processes P = {p1, ..., pk} we write xP instead of 〈xp1...pk〉.2
Hence, xP 2 = xPP = 〈xp1...pkp1...pk〉, and xP∞ = xPP... = 〈xp1...pkp1...pk...〉.

For a write event ep and run 〈x; ep〉, we denote by write set(x, p) the set of all the regis-
ters process p is writing to in the event ep. If p is not enabled after x, or ep is a read event,
write set(x, p) is empty. For a set of processes P , write set(x, P ) =

⋃
p∈P write set(x, p).

We also write P −p instead of P −{p}, P +p instead of P ∪{p}, and by p we denote the
set N − p (i.e., the set of all processes excluding p). For v ∈ {0, 1}, let v = v + 1 (mod 2).

In order to discuss important properties of asynchronous protocols, we need the concept
of a fair run. Process p is correct in a run y if for each run x ≤ y, if p is enabled at x then
some event in (y − x) involves p. (As a consequence, p can be correct in a finite run y only
if p is not enabled in y.) A run is `-fair if at least ` processes are correct in it, and a run is
P -fair, for P a set of processes, if all processes in P are correct in it.

The following lemmas, easy consequences of the axioms and definitions, are used in the
proofs that follow.

Lemma 1 Let w = 〈f, S1〉, x = 〈f, S1; S2〉, and y = 〈f ′, S′〉 be runs of a protocol and P a
set of processes such that

• w and y are finite,

• w[P ]y,

• the values of all shared registers are the same in w and y,

• and S2 contains only events of processes in P .
2The definition of xP implicitly assumes an order on the process names in P that is respected in the

order of events in 〈xp1...pk〉.

4



Then z = 〈f ′, S′; S2〉 is a run of the protocol and x[P ]z.

Proof: By induction on the length of S2. 2

Note that it is immediate from the axioms for atomic m-register operations that enabled
processes cannot become disabled as a result of an event which involves some other process.
That is, if p is enabled in x and x[p]y, then p is enabled in y.

Lemma 2 Let x = 〈f, S〉 be a P -fair run of a protocol and y = 〈f, S′〉 be a run such that
x[P ]y. Then y is P -fair.

Proof: Suppose p ∈ P and let y′ be a finite run such that y′ ≤ y. If y′ contains no events at
p, let x′ be null. Otherwise, let e′p be the last event at p in y′. Then there is a corresponding
event ep in x. Let x′ be the prefix of x ending in ep. In either case, since x[P ]y, it follows
that x′[p]y′. If p is enabled in y′ then (by the observation above) p is enabled in x′. It
follows that (x−x′) and hence (y− y′) contain an event involving p. The lemma follows.2

Lemma 3 For every finite run x of a protocol and every set of processes P there is a P -fair
extension y of x such that x[P ]y. (That is, y = 〈x;S〉, where S contains only events of
processes in P .)

Proof: From Axioms A1 – A3, xP∞ is a run and is a P -fair extension of x. 2

3 Consensus

In this section we characterize those systems in which the consensus problem can be solved
in the presence of faults and give bounds on the space required.

A t-resilient consensus protocol Pr = (C,N, R) is a protocol for n processes, where each
process has a local, binary, read-only input register and a local, binary, write-once output
register.3 The protocol Pr must satisfy the following conditions:

• The set of runs C includes 2n empty runs, each with a different boolean combination
as initial values in the input registers, and with identical initial values in the remaining
registers.

• For every finite run x in C, and every process p, xp is in C.

• The set C is limit-closed: if every finite prefix of a run x is in C, then x is in C.

• Every (n − t)-fair run has a finite prefix in which all the correct processes decide on
either 0 or 1 (i.e., each correct process writes 0 or 1 into its local output register), the
decisions of all processes are the same, and this decision value is equal to the input
value of some process.

3Formally, the runs in C include only read events, by the associated process, for each input register, and
at most one write event, again by the associated process, for each output register. The input and output
registers are not counted in our discussions of space.
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3.1 Fault-tolerance

In Theorem 1, we characterize the cases in which the consensus problem can be solved in a
system which support atomic m-register operations.

Theorem 1 For any n, 1 ≤ m, and 1 ≤ t < n, in a system that supports atomic m-register
operations, there is a t-resilient consensus protocol for n processes if and only if t ≤ 2m−3.

Upper bound proof: The upper bound is an easy corollary of Herlihy’s wait-free consen-
sus protocol [11]:

Proposition 1 (Herlihy) If n ≤ 2m − 2, in a system that supports atomic m-register
operations, there is a wait-free consensus protocol using n(n + 1)/2 m-registers. Moreover,
this protocol has the property that for each processor pi, there is a register ri to which only
pi writes.

If t ≤ 2m − 3, a t-resilient consensus protocol can be derived as follows: The t + 1
processes p0, ..., pt run Herlihy’s protocol (letting n = t + 1). Because that protocol is wait-
free, in any n − t-fair run, at least one of these t + 1 processes will decide, and all such
decisions in a given run are the same. Before halting, each deciding processor pi writes its
decision value v ∈ {0, 1} to a an additional subfield of ri that is initially ⊥. (This requires
pi to keep in it’s local state the last value written in other fields of ri, so that v can be
written without changing the fields used in the embedded consensus protocol.)

Each remaining process pj reads each of the registers r0, . . . , rt over and over, until one
of the new subfields is observed to be different from ⊥. The value read is written to pj ’s
output register as its decision value.

It is easy to see that the resulting protocol is a t-resilient consensus protocol. Moreover,
it uses no more registers than are needed by the embedded version of Herlihy’s protocol run
by t + 1 processes, or (t2 + 3t + 2)/2 m-registers.
Proof of lower bound: The proof of the lower bound uses the following notions, ab-
breviations, and lemmas. The underlying ideas and much of the terminology are adapted
from [10] (see also [17]).

A finite run x is v-valent if in all extensions of x where a decision is made, the decision
value is v (v ∈ {0, 1}). A run is univalent if it is either 0-valent or 1-valent, otherwise it is
bivalent. Using Lemmas 1 and 2, we can prove the following simple observation.

Lemma 4 In any t-resilient, m-register consensus protocol, if two univalent runs are in-
distinguishable for n − t processes, and the values of the shared registers are the same at
these runs, then the runs must have the same valency.

Proof: Let w and x be univalent runs and P a set of n− t processes, such that w[P ]x and
the values of the shared registers are the same at w and x. By Lemma 2, w has a P -fair
extension, y, in which y − w contains only events of processes in P . Let w be v-valent,
for v ∈ {0, 1}. Then by the definition of t-resilient consensus protocol, the processes in P
decide v in y. By Lemma 1, z = 〈x; (y − w)〉 is a run of the protocol such that z[P ]y, and
by Lemma 2, z is P -fair. Since the members of P write v to their output registers in z, the
definition of t-resilient consensus protocol implies that x is v-valent. 2
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Lemma 5 Let xp be a run of a 1-resilient, m-register consensus protocol and let Q be a set
of processes where p 6∈ Q. Assume that for every q ∈ Q, run xq is v-valent and run xpq is
v-valent. Then m ≥ |Q|+ 1, and the number of registers used is at least 2|Q|+ 1.

Proof: Case 1: Suppose first that write set(x, p) ⊆ write set(x,Q). Let Qw be the
subset of those processes in Q for which write events are enabled after x, and Qr be the
subset of Q for which read events are enabled after x. Then,

xQwQr[p]xpQwQr.

Since xQwQr is v-valent, xpQwQr is v-valent, and the values of all registers in these two
runs are the same, by applying Lemma 4 we arrive at a contradiction. Thus, write set(x, p),
contains at least one register that is not written next by any process in Q. (This case also
implies that the next step by p is a write.)
Case 2: Suppose now that there exists q ∈ Q such that write set(x, p) ∩write set(x, q) ⊆
write set(Q− q). Then,

xqp(Qw − q)(Qr − q)[N ]xpq(Qw − q)(Qr − q).

But xqp(Qw − q)(Qr − q) is v-valent, xpq(Qw − q)(Qr − q) is v-valent, and the values of all
registers in these two runs are the same, again Lemma 4 leads to a contradiction. Thus,
for every process q ∈ Q, write set(x, p) contains at least one register both p and q write
next that is not written next by any other process in Q. Case 1 and Case 2 imply that
write set(x, p) ≥ |Q| + 1. (Case 2 also implies that the next step by every process in Q is
a write, and hence Qw = Q.)
Case 3: Finally, suppose that there exists q ∈ Q such that write set(x, q)⊆ write set(x,Q− q)
∪ write set(x, p). Then,

xqp(Q− q)[q]xp(Q− q).

But xqp(Q − q) is v-valent, xp(Q − q) is v-valent, and the values of all registers in these
two runs are the same, once again applying Lemma 4 leads to a contradiction. Thus,
write set(x, q), contains at least one register that is not written next by any other process
in Q + p.

The lower bound bound, 2|Q|+1, on the number of shared registers follows: By Case 1,
at least one register is written next by p and by no process in Q, by Case 2, |Q| registers are
each written next by p and a distinct process in Q, and by Case 3, |Q| additional registers
are each written next by a distinct process in Q and no other process in Q + p. 2

To finish the proof of the lower bound, assume Pr is a t-resilient consensus protocol.
We construct a run x and set P of at least (t + 1)/2 processes matching the premises of
Lemma 5.

To construct x, we need to begin with a bivalent run x0. Following the argument in
[10], we show that a bivalent empty run must exist. Suppose every empty run is univalent.
The empty run with all 0 inputs is 0-valent, and similarly the empty run with all 1 inputs
is 1-valent. By changing one input from 0 to 1, we arrive at two empty runs x0 and x1 that
differ only at the value of a single input, for process p, such that x0 is 0-valent and x1 is
1-valent. Then all processes but p decide 0 in the (N −p)-fair extension x′0 of x0, in which p
takes no steps. By induction and limit-closure, there is a corresponding extension x′1 of x1
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such that x′0[p]x′1. But it follows that the processes in x′1 decide 0, and x1 is not 1-valent,
a contradiction. Hence, a empty bivalent run x0 exists.

We begin with x0 and pursue the following round-robin bivalence-preserving scheduling
discipline:

x := x0; P := φ; i := 0;
repeat

if x has a bivalent extension x′pi

then x := x′pi

else P := P + pi

i := i + 1(mod n)
until |P | = t + 1.

If this procedure does not terminate, then there is an (n − t)-fair run with only bivalent
finite prefixes. However, the existence of such a run contradicts the definition of t-resilient
consensus protocols. Hence, the procedure will terminate with some bivalent finite run x,
and a set P of t + 1 processes such that any extension x′p of x, for any process p in P , is
univalent. Suppose that for some p ∈ P , the run xp is v-valent. Since x is bivalent, there is
a (shortest) extension x′ of x which is v-valent.

Consider the runs y between x and x′, x ≤ y ≤ x′, and the valency of yp, for p ∈ P .
One of two cases holds:

1. For some x ≤ y ≤ x′ the set P is partitioned into nonempty sets P0 and P1, such that
for all p ∈ P0, yp is 0-valent, and for all p ∈ P1, yp is 1-valent. Assume without loss
of generality that P1 is the bigger of the two sets. Then applying Lemma 5 to y, P1,
and some q ∈ P0, yields that m ≥ |P1|+ 1 ≥ (t + 1)/2 + 1.

2. For some x ≤ yq ≤ x′, it is the case that q /∈ P , for all p ∈ P the run yp is v-valent
and the run yqp is v-valent. Then, applying Lemma 5 to y, P , and q implies that m
≥ |P |+ 1 = t + 2.

Thus, we conclude that t ≤ 2m− 3. 2

Obviously, the theorem holds also when a process can atomically read only a single
register (but can atomically write to m registers). The same bound holds for such problems
as leader election. Section 5 discusses a variation of this proof that shows that the same
result holds for mixed registers, when t ≥ 2.

3.2 Space

We prove a lower bound of (t + 3) min(t + 1, m) − min(t + 1,m)2 − 1 shared registers on
the number of shared registers necessary to solve the consensus problem. Recall thet the
algorithm we presented after Proposition 1 requires (t2 + 3t + 2)/2 shared registers.

Theorem 2 For any n, m, and 1 ≤ t < n, in a system that supports atomic m-
register operations, every t-resilient consensus protocol for n processes must use at least
(t + 3)min(t + 1,m)−min(t + 1,m)2 − 1 shared registers.
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We first prove the following lemma.

Lemma 6 Let x be a run of a 1-resilient, m-register consensus protocol, let P0 and P1

be nonempty disjoint sets of processes. Assume that for every p0 ∈ P0 and p1 ∈ P1 run
xp0 is 0-valent and run xp1 is 1-valent. Then the number of registers used is at least
|P0|+ |P1|+ |P0||P1|.

Proof: Let pv ∈ Pv where v ∈ {0, 1}, and let P = P0 ∪ P1. We show first that
write set(x, p0) 6= ∅; by a similar argument, write set(x, p1) 6= ∅. Assume that write set(x, p0) =
∅. Then,

xP1[p0]xp0P1.

But xP1 is 1-valent, xp0P1 is 0-valent, and the values of all registers in these two runs are
the same, contradicting Lemma 4. Thus, it follows that the next step by every process in
P is a write.

Suppose that write set(x, p0) ⊂ write set(x, P − p0). Then,

xP1(P0 − p0)[p0]xp0P1(P0 − p0).

But xP1(P0 − p0) is 1-valent, xp0P1(P0 − p0) is 0-valent, and the values of all registers in
these two runs are the same, contradicting Lemma 4. Thus, it follows that write set(x, p0)
contains at least one register not written next by any other process in P . By a similar
argument, write set(x, p1) also contains at least one register not written next by any other
process in P , and hence there are a minimum of |P0|+ |P1| such registers.

Suppose next that there exists p0 ∈ P0 and p1 ∈ P1 such that write set(x, p0) ∩
write set(x, p1) ⊂ write set(P − {p0, p1}). Then,

xp0p1(P − {p0, p1})[N ]xp1p0(P − {p0, p1}).

But xp0p1(P − {p0, p1}) is 0-valent, xp1p0(P − {p0, p1}) is 1-valent, and the values of all
registers in these two runs are the same, again contradicting Lemma 4. Thus, it follows for
every pair of processes p0 ∈ P0 and p1 ∈ P1, that write set(x, p0)∩write set(x, p1) contains
at least one register both p1 and p0 write next but no other process in P writes next. There
are a minimum of |P0||P1| such registers. The result follows. 2

To prove the lower bound of Theorem 2, we inductively construct a run x exactly as in the
proof of the previous theorem. Hence, as in Theorem 1, there is some bivalent finite run
x, and a set P of t + 1 processes such that any extension of x containing a step by any
member of P is univalent. Suppose that for some p ∈ P , the run xp is v-valent. Since x is
bivalent, there is a (shortest) extension x′ of x which is v-valent. As in Theorem 1 one of
two cases holds, and for each one of them we calculate the number of registers necessary.
Let S denote the number of registers used.
Case 1: For some x ≤ y ≤ x′ the set P is partitioned into nonempty sets P0 and P1,
such that for all p0 ∈ P0, yp0 is 0-valent, and for all p1 ∈ P1, yp1 is 1-valent. Let a =
max(|P0|, |P1|) and b = min(|P0|, |P1|).

According to Lemma 6,
S ≥ a + b + ab. (1)
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Since a + b = |P | and by construction |P | = t + 1,

a + b = t + 1. (2)

From (the first part of) Lemma 5, and the fact that b ≥ 1,

a + 1 ≤ m. (3)

Hence, using (2) and (3), and the fact that b ≥ 1,

a ≤ min(t + 1,m)− 1. (4)

From (2), b = t + 1− a and by substituting in (1),

S ≥ (t + 1) + a(t + 1− a) = −a2 + (t + 1)(a + 1). (5)

The strongest possible lower bound on S is obtained when a = (t + 1)/2.
Hence, from (4) and (5),

S ≥ −(min(t + 1,m)− 1)2 + (t + 1)(min(t + 1, m)), (6)

which implies
S ≥ −min(t + 1, m)2 + (t + 3) min(t + 1,m)− 1. (7)

This complete the proof of the first case.
Case 2: For some x ≤ yq ≤ x′, it is the case that q /∈ P , for all p ∈ P the run yp is v-valent
and the run yqp is v-valent.

From the second part of Lemma 5, and the fact that |P | = t + 1,

S ≥ 2|P |+ 1 = 2t + 3, (8)

and from the first part of Lemma 5,

m ≥ |P |+ 1 = t + 2. (9)

But when m ≥ t + 1, the theorem requires a weaker bound than that in (8),

S ≥ (t + 3) min(t + 1,m)−min(t + 1,m)2− 1 = (t + 1)2 + (t + 3)(t + 1)− 1 = 2t + 1. (10)

2

4 Mutual Exclusion

The mutual exclusion problem, which is one of the most studied problems in concurrent
computing, is to design a protocol that guarantees mutually exclusive access to a critical
section among a number of competing processes. Such a protocol is starvation-free if any
correct process that attempts to enter the critical section eventually succeeds. In this
section we use atomic m-register operations to design a fast solution to the mutual exclusion
problem. The time complexity is defined as the number of accesses to the shared memory in
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order to enter the critical section in the absence of contention [13]. For us, as for Lamport,
this time dominates the time in the exit region.

Lamport notes that all the previously published starvation-free mutual exclusion algo-
rithms (for m = 1) require a process to execute at least O(n) operations to shared memory
in the absence of contention [13]. By slightly modifying the solution in [16], it is possible
to design, for m = 1, a starvation-free solution to the mutual exclusion problem with time
complexity O(log2 n). By designing a solution for m processes, replacing the binary tree
in [16] with an m-ary tree, and assuming a fault-free environment, we obtain the following
theorem.

Theorem 3 For any n and m ≥ 1, in a system with n processes that supports atomic m-
register operations, there is a starvation-free solution to the mutual exclusion problem with
time complexity 3dlogm ne.

Proof: We first describe a simple starvation-free solution to the mutual exclusion problem
for m processes, with a time complexity of 3 m-register operations. In this solution every
process pi has a unique register rii, and every two processes pi and pj have a single register,
denoted by both rij and rji, that is shared only by them. All m + m(m − 1)/2 registers
are initially set to zero. We say that process pi is a winner at some point if rii = i and for
every j 6= i either rjj = 0 or rij = j. To enter its critical section, process pi first writes i
into all the registers rik where 1 ≤ k ≤ m. Then, pi reads all the 2m − 1 registers rik and
rkk where 1 ≤ k ≤ m. If the values read indicate pi is the winner, then pi enters its critical
section; otherwise pi busy-waits on these 2m − 1 registers until it observes that pi is the
winner. To exit its critical section process pi simply sets rii to zero. The protocol actually
implements a queue and it is not difficult to see that it is a starvation-free solution to the
mutual exclusion problem.

The above solution can be easily generalized to n processes by constructing an m-ary
tree where each node is a copy of the solution for m processes, using a separate set of
registers. To enter its critical section a process i starts participating in the protocol at leaf
di/me (level 1) and advances towards the root of the tree. A process advances to level i if
it is a winner at level i− 1. A process can enter its critical section when it is the winner at
the root.

To exit its critical section process pi simply sets all the rii’s in its path from the leaf to
the root to zero. Since the depth of the tree is dlogm ne, this can be done in d(dlogm ne/m)e
m-register operation. 2

We notice that in the above solution the register rii used at level i − 2 can be reset
as soon as a process advances from level i − 1 to level i. This allows competing processes
to advance up the tree behind the winner. However, this increases the worst-case time
complexity to 4dlogm ne − 1, with a single assignment in the exit region. Resetting these
dlogm ne − 1 registers could also be done in parallel with the critical section execution.

Finally, for systems that support only atomic read and write operations (i.e., m = 1)
Burns and Lynch proved that any deadlock-free solution to the mutual exclusion problem
must use at least as many shared registers as processes [5]. They also showed that this
lower bound is tight. Their lower bound proof generalizes trivially to the case m > 1. That
is, for every integer m ≥ 1, in a system which supports atomic m-register operations, a
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deadlock-free solution to the mutual exclusion problem must use at least as many shared
registers as processes.

5 Mixed m-register operations

A mixed m-register operation allows a mixture of reads and writes of m (distinct) registers
in a single atomic operation. The results below explore the minimum number of writes that
must occur in mixed m-register operations to solve the consensus and mutual exclusion
problems. We denote a mixed m-register operation by

(writep(r1, ..., rW , v1, ..., vW ), readp(r
′
1, ..., r

′
R, v

′
1, ..., v

′
R))

and require that {r1, ..., rW } and {r′1, ..., r
′
R} be disjoint sets, containing together at most

m elements. (That is, W + R ≤ m.)

Definition 2 An asynchronous protocol that supports atomic mixed m-register operations
is a protocol whose runs satisfy axioms MA1 – MA2.

Axioms for atomic mixed m-register operations

MA1 Let 〈x; (writep(r1, ..., rW , v1, ..., vW ), readp(r
′
1, ..., r

′
R, v

′
1, ..., v

′
R))〉

and y be finite runs where x[p]y.
Then 〈y; (writep(r1, ..., rW , v1, ..., vW ), readp(r

′
1, ..., r

′
R, u1, ..., uR))〉

is a run for some values u1, ..., uR.

MA2 Let 〈x; (writep(r1, ..., rW , v1, ..., vW ), readp(r
′
1, ..., r

′
R, v

′
1, ..., v

′
R))〉 be a run.

Then v
′
i = value(r

′
i, x) for all 1 ≤ i ≤ R.

Similar proofs as those given for m-register operations suffice to show that Lemmas 1, 2, 3
and 4, hold also for protocols that support atomic mixed m-register operations.

5.1 Fault-tolerance

Except for the case t = 1, a variant of Theorem 1 holds for mixed m-registers, restricting
the number of registers which are written simultaneously. Hence, solving consensus is not
affected by adding any number of reads to a fixed number of writes, except for the case
t = 1. (Theorem 5 shows that mixed 2-registers, with operations containing only single
writes, suffice to solve consensus for t = 1.)

Theorem 4 For any n, 1 ≤ m, and 2 ≤ t < n, in a system that supports atomic mixed m-
register operations, any t-resilient consensus protocol for n processes must contain operations
which write a value into at least (t + 3)/2 registers in a single step, no matter how many
other registers are read.

By Theorem 1, this bound is tight. The proof of the theorem is the same as that of Theorem
1, substituting the following variant of Lemma 5.
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Lemma 7 Let xp be a run of a t-resilient, mixed m-register consensus protocol and let Q
be a set of processes, where p 6∈ Q and 2 ≤ |Q| ≤ t. Assume that for every q ∈ Q, run xq is
v-valent and run xpq is v-valent. Then the protocol must contain operations that atomically
write to at least |Q|+1 registers (regardless of the number of registers read simultaneously),
and the number of registers used is at least 2|Q|+ 1.

Proof: Case 1: Suppose first that write set(x, p) ⊂ write set(x,Q). Let q ∈ Q. Then,

x(Q− q)q[Q− q + p]xp(Q− q)q.

(Because they may be simultaneously reading and writing, the processes in Q − q + p
may observe a difference between x(Q − q)q and xp(Q − q)q. But since write set(x, p)
⊂ write set(x,Q) = write set(x,Q− q) ∪ write set(x, q), it follows that write set(x, p)−
write set(x,Q− q) ⊂ write set(x, q). Hence, q overwrites any remaining distinct registers
that distinguish x(Q − q) from xp(Q − q), and so q will not observe any difference.) We
have that x(Q − q)q is v-valent, xp(Q − q)q is v-valent, |Q − q + p| ≤ t, and the values of
all registers in these two runs are the same, contradicting Lemma 4. Thus, write set(x, p)
contains at least one register not written next by any process in Q.
Case 2: Suppose next that there exists q ∈ Q such that write set(x, p)∩write set(x, q) ⊂
write set(Q− q). Let q′ ∈ Q where q′ 6= q, and note that Q− q′ + p contains at least the
process q′. Then,

xqp(Q− {q, q′})q′[Q− q′ + p]xpq(Q− {q, q′})q′.

But xqp(Q − {q, q′})q′ is v-valent, xpq(Q − {q, q′})q′ is v-valent, |Q − q′ + p| ≤ t, and the
values of all registers in these two runs are the same, again contradicting Lemma 4. Thus,
write set(x, q), contains for every process q ∈ Q, at least one register both p and q write
to but no other process in Q writes to. Cases 1 and 2 imply that write set(x, q) ≥ |Q|+ 1,
and hence the first part of the lemma is proven.
Case 3: Finally, suppose that there exists q ∈ Q such that write set(x, q) ⊂ write set(x,Q− q)
∪ write set(x, p). Let q′ ∈ Q where q′ 6= q, and note again that Q− q′ + p contains at least
the process q′. Then,

xqp(Q− {q, q′})q′[Q− q′ + p]xp(Q− {q, q′})q′.

Then xqp(Q − {q, q′})q′ is v-valent, xp(Q − {q, q′})q′ is v-valent, |Q − q′ + p| ≤ t, and the
values of all registers in these two runs are the same, once again contradicting Lemma 4.
Thus, write set(x, q) contains at least one register not written next by any other process in
Q + p.

The bound, 2|Q| + 1, on the number of shared registers follows: By Case 1, at least
one register is written next by p and by no process in Q, by Case 2, |Q| registers are each
written next by p and a distinct process in Q, and by Case 3, |Q| additional registers are
each written next by a distinct process in Q and no other process in Q + p. 2

Note that a mixed 1-register operation is simply a write or a read of a single register, hence
the lower bound of Theorem 1 holds in this case. That is, there is no 1-resilient consensus
protocol for this case. But what happens when t = 1 and in addition to writing a single
register it is also possible to read other registers?
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Theorem 5 There is a 1-resilient consensus protocol for any number of processes using
atomic mixed 2-registers operations, with a single write and a single read.

Proof: Pick processes p0 and p1 and three three-valued registers r0, r1 and rdecide which
are initially ⊥. Processor p0 writes its initial value to r0 and simultaneously reads r1, while
process p1 writes its initial value to r1 and simultaneously reads r0. If either reads ⊥, it
chooses its own initial value, otherwise choosing the other’s initial value. Upon reaching a
decision, each writes the decision to rdecide. The other processes each read rdecide repeatedly,
until the first non-⊥ is returned. This value is decided upon. 2

5.2 Space

Next we prove a variant of Theorem 2.

Theorem 6 Let w be the maximum number of registers a process may write in one atomic
operation in a system that supports atomic mixed m-register operations (it may read other
registers in that same operation). In such a system, for every n, m, and 2 ≤ t < n, every
t-resilient consensus protocol for n processes must use at least (t+3) min(t+1, w)−min(t+
1, w)2 − 1 shared registers,

The proof of this theorem is again similar to that of Theorem 2, substituting Lemma 7 for
Lemma 5, and using the following variant of Lemma 6.

Lemma 8 Let x be a run of a t-resilient, mixed m-register consensus protocol, let P0 and
P1 be nonempty disjoint sets of processes, where 2 ≤ |P0 ∪ P1| ≤ t + 1. Assume that for
every p0 ∈ P0 and p1 ∈ P1 run xp0 is 0-valent and run xp1 is 1-valent. Then the number
of registers used is at least |P0|+ |P1|+ |P0||P1|.

Proof: Let pv ∈ Pv where v ∈ {0, 1}, and let P = P0 ∪ P1.
Suppose that write set(x, p0) ⊂ write set(x, P − p0). Let p′ be the last process sched-

uled in the run xp0P1(P0 − p0). (Note that P − p′ contains at least p′.) Then,

xp0P1(P0 − p0)[P − p′]xP1(P0 − p0).

That is, the other processes in P overwrite all registers written by p0, and p′ which is in
P − p′, is unable to distinguish whether p0 took a step. (Note that p′ is also the last process
which is scheduled in the run xP1(P0 − p0).) We have that xp0P1(P0 − p0) is 0-valent,
xP1(P0−p0) is 1-valent, |P −p′| ≤ t, and the values of all registers in these two runs are the
same, contradicting Lemma 4. Thus, write set(x, p0) contains at least one register that is
not written next by any other process in P . By a similar argument, write set(x, p1) satisfies
the same property, and there are a minimum of |P0|+ |P1| such registers.

Suppose next that there exists p0 ∈ P0 and p1 ∈ P1 such that write set(x, p0) ∩
write set(x, p1) ⊂ write set(P − {p0, p1}). Let p′ be the last process scheduled in the
run xp0p1(P − {p0, p1}). (Once again, note that P − p′ contains at least p′.) Then,

xp0p1(P − {p0, p1})[P − p′]xp1p0(P − {p0, p1}).
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Here, the processes in P overwrite all registers written by both p0 and p1, and p′ which
is in P − p′, is unable to distinguish which of p0 or p1 took a step first. (As above, p′ is
also scheduled last in xp1p0(P − {p0, p1}).) We have that xp0p1(P − {p0, p1}) is 0-valent,
xp1p0(P −{p0, p1}) is 1-valent, |P − p′| ≤ t, and the values of all registers in these two runs
are the same, again contradicting Lemma 4. Thus, it follows for every pair of processes
p0 ∈ P0 and p1 ∈ P1 that write set(x, p0) ∩ write set(x, p1) contains at least one register
both p1 and p0 write next but no other process in P writes next. There are a minimum of
|P0||P1| such registers. The result follows. 2

5.3 Mutual Exclusion

We show that for systems that support mixed m-register operations there is a solution to
the mutual exclusion which is more efficient in time and space than the solution presented
in Theorem 3.

Theorem 7 For any n and m ≥ 1, in a system with n processes that supports atomic mixed
m-register operations with a single write and m−1 reads, there is a starvation-free solution
to the mutual exclusion problem with time complexity dlogm ne.

Proof: We start with a simple starvation-free solution for m processes. There are m
registers r1, ..., rm taking on values from {0, 1, 2}, with values initially 0. On entering the
trying region, each process pi writes a 1 to ri and reads the other m−1 registers. If all other
registers are 0, then pi enters the critical section. Otherwise, pi reads ri repeatedly until it
reads the value 2, and then pi enters the critical section. In the absence of contention, the
cost is a single mixed m-register operation.

In the exit region, pi writes a 0 to ri and reads the other registers. If all other registers
are 0, pi is done. Otherwise, it picks a process pj whose register is set to 1 and writes 2 to it.
Each process keeps enough local information (outside the shared memory) to ensure that
it will schedule its successors fairly, ensuring starvation-freedom. (A counter mod m will
do—pi need only pick pj , where j is the smallest index greater than the counter such that rj

is 1, and pi increments the counter each time through the critical section.) In the absence
of contention, the cost is again a single mixed m-register operation. (In the presence of
contention, the cost is 2 such operations.)

The m-process solution generalizes as in the proof of Theorem 3. Since only a single
register assignment can be done in each operation, the exit region requires dlogm ne opera-
tions in the absence of contention (and 2dlogm ne operations in the presence of contention).
As before, all but one of these assignments (at the root) can be done in the trying region,
the critical section, or the exit region. 2

6 Discussion

We have presented several results for the consensus and the mutual exclusion problems in
systems where it is possible to atomically access m shared registers. For mutual exclusion,
we presented a speed-up of only log2 m, in a model which groups m register operations
together into a single step. Is it possible to find a speed-up linear in m? It would also
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be interesting to know whether these results generalize to related problems, such as set
consensus [7] and `-exclusion.

In [12], Lamport defined three general classes of shared read/write registers—safe, reg-
ular, and atomic—depending on their properties when several reads and/or writes are ex-
ecuted concurrently. The weakest possibility is safe register, in which it is assumed only
that a read not concurrent with any writes obtains the correct value. A regular register is
a safe register in which a read that overlaps a write obtains either the old or new value.
An atomic register, is a safe register in which the reads and writes behave as if they occur
in some definite order. Lamport showed that there are wait-free constructions of atomic
registers from safe registers. In this paper we have considered only the atomic m-register
case. It would be interesting to study regular or safe m-registers, to determine, for example,
whether there are wait-free constructions of atomic m-registers from safe m-registers.
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