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ABSTRACT

A subclass of the
ot v class of all pseudopolynomial problems is defined as a family
ce
P e by some automaton operating with simultaneous time and space

ounds, That th ass is lar h if not
b e clas een 1
ge enough can be s in that it contains many (i

all) of the i

- presminjjisi:i:iinomfal'prob%ems described in the literature. We study structu-

ot —— szc\:.zh.m this class and give intuitive reasons (borrowed from

bt pace ounded automata) that there exist at least four well know
palrwise not equivalent under these reductions.

1. INTRODUCTION

In this paper we .
depends polymontaly consider problems which are NP-complete but whose complexity
omia "
is familiar with thy on some number defined by the input. We assume that the reader
1 e noti
otions P ,and NP-complete. Let our reductions " <" be those de~

fined by 4 inisti -
Y deterministic log-space bounded Turing machines
Though all NP - v w ,
[of
I I omplete problems have the same worst case behavio P
nomial transformations, there exist NP - complete problems which behe
well in most applications.

We consi
nsider as an example the subset sum problem

suB = {a ¢ ¢
1 a b .
31c{1,n¢ In'b'aiEN’lslsn,and

o s I a=b)
where we assume th il Ti
at th
tion. SUB is MP-compy te numbers a., b, 1 £ i < n, are encoded by their binary nota-
solved also by a d i ete ([6]), but on the other hand it is well known that SUB is
e inisti .
erministic algorithm working within the time-bound O(n-b). Note

that this dees not imply a 5 P since b gro
that suB belong to ’ E
18119th of its blnaxy notation

There have be
en two
approaches to formalize this behaviour: (1) M.R. Garey and

D.S. Johnson ([5]) i
) intro s
to the encoding of duce a function Max: {correct encodings} + N that associates
a probl )
12 em the largest number occuring in this encoding. They call

a problem pseudo ;
polynom i :
with the time bol 1641 if there exists an algorithm which works for any input ™
und 0 (fw] + Max (w))2
(2) Paz, Moran ([1o] 1)) for some q € N.
' an ({1o]) ;
They define the notions " Aand Ausiello et al. ([1]) consider optimization problems:
" n :
here. If a psimple opus simple™ and 'p_smnp]_e'-- We will not give their definitions
imi :
Ptimization problem is replaced by an encoding as & 1anguage

]
Some of this wo:
rk ;
tnt . was done while the author visited th thematicss
versity of California at Santa Barb. * e department of M
ara,

tional Science Foundation under grant where it was supported in part bY the Na~
MCS

77 ~ 11360.

415

(in the usual way f(x) = Max is replaced by Ix:f(x) 2 D), then this language is pseu~

dopolynomial with the additional property that the corresponding algorithm is also

polynomial in D.

We use in this paper a formalization which generalizes the notion "pseudopolyno-

mial® in the following way: We associate to a problem a function

g: {correct encodinqs} + N and we call the problem pseudopolynomidl if it can be sol-
ved for any input w with the time bound o(({w} + g(w))q) for some q € N. Of course,

th this function g. We get the old

now a problem is pseudopolynomial only in connection wi
pbe still

notion of "pseudopolynomial’ if we take g= Max. (Actually our definition will

more general by allowing relations instead of functions.)
: * * -
In order to state this definition formally we consider sets R & x* x X* for so

me alphabet X.

x N -+ N Dbe some function. We say

Let R < X* x X* be some set and let f: N
that R is accepted by a Turing machine (this machine may be deterministic or nonde-

respectively, f(n,m), if M accepts

terministic) within the time bound or space bound,
(a,v) € X* x X* iff (u,v) € R and if for any (u,v) € R there exists an accepting com=
putation which needs not more than f(lui . lv‘ ) steps lor cells, respectively).
Definition: R © x* x ¥kis called pseudopolymmiahiff there exists some polynomial P.
some d ¢ N and some deterministic Turing machine accepting R within the time-bound

p(n+m) -,

Note that the complexity of accepting @ pair (u,v) Qrows polynomial with the
number which is encoded by v. We denote py PP the family of all pseudopolynomial sets.
We define now reductions between sets of pairs in such a way that the number gi-

i th
ven by the second component grows at most polynomlally (that means that the leng
of the second component grows at most linearly) -

Definition: For Ry » Ry ¢ PP we say Ry S R. if there exist functions
B £, €DSPACE(log n) such that
(1) (u,v) € R, s (£ (wv) , E,(uV] €Ry

i ! ! g < ¢ vl v ou,v i %*
@ £ vz |u| and Jc € V: {f2<u,v>1 < c Vi

We use this more general notion of "pseudopolynomial since:

: < ductions and
- under this definition the class PP is closed under £ r€ 1

this allows us to speak about “complete” problems ‘
“pseudopolynomial" in terms

x-1like problems are

- there were very good practical reasons to define

of magimum numbers as in [5] , since many scheduling and knapsac sor i
i sider 1n

pseudopolynomial in this sense (and in fact all the applied problenms we col

ther
polynomial under th on the ©

e old definition) -

the next section are also pseudo
we may ask whe-~

lete problems.
maximal number which make
for graph theory Pro”

hand, if we are interested in the structure of INpP-comp
res than just the
s shown in {9] that
ame role as the leng

graph theory prob

ther there are other structural propert
a problem behave pseudopolynomially. 1 i
blems the bandwidth of the graph plays the S
number does for scheduling problems, i.e- for many

th of the maximal

jems the set
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{tu,v) ’u is an encoding of a graph G with the given property and v = O'f(u), where

£(u) = bandwith of the graph encoded by u} is pseudopolyncmial in our sense.

we will show that there exists a problem which is complete for RPP, the class

of restricted pseudopolynomial problems ( defined below) ,and which is pseudopoly-

nomial in the sense of [ 5], This means that RPP is just the <_-closure of a problém
which is pseudopolynomial in the old sense.

Definition: R < X* x x* is called a restricted pseudopolynomial problem (and

the class of all such problems is denoted by RPP) iff there exists some nondetermi-

nistic Turing machine accepting R with the space bound max{log n,m} and the simal-
taneous time bound () ? gor some q € N.

This definition implies that for any R € RPP the language LR = {u 4; V] (u,v) €R}
belongs to NP

Furthermore the nondeterministic Turing machine accepting R within

the space bound max {109 n, m} can be simulated by some deterministic Turing machine

accepting R within the time bound nq-dm for some ¢, d ¢ N.

This implies that RPP PP.Furthermorewe note that the deterministic algorithm
which simulates the nondeterminjstie tape bounded Turing machine is a so called "dy-
namic programming” algorithm. We will see in the next section that RPP contains many
of the pseudopolyncmial problems studied in the literature. The algorithms which are
given in the literature for solving these problems are also
gorithms reflecting just the behaviour of th
bounded Turing machine.

"dynamic programming” al-
s e
e corresponding nondeterministic spac

We feel this observation simplifies the search for pseudopo”

lynomial-time algorithms since it is generally easier to define a space bounded

automaton than to construct the corresponding “dynamic programming" algorithm.

It is clear that there exists a close relationship between RPP and the classes

of languages defined by nondeterministic Turing machines operating with sublinear

£}
SPace bounds and polynomial time bounds similtaneously. Let us denote by NPTIME SPACE (

the class of all languages accepted by some nondeterministic Turing machine within

; . ) .
polynomial time ang simultaneous space bound f. Let us further associate to each REP.

and to each function f: N - N the lanquage
Lp® = {u¢v | (u,v) ¢ R ang vl < 2¢july.

Then the following thecrem holds.
Theorem 1:
—==0m

a
Let f be any monotonic increasing function which is computable by
deterministic log- vne .

Space bounded Turing machine and which fulfills f(n) 2 log n
48]

PP and RPP are closed under Sn reductions

LSt 6 51

R € RPP = LR(f) € NP‘I'IMESPACE(f)

R is complete for RPP with respect to £

* Lp(f) is complete for HNPTIHESPACE(f(nd)) with respect to <.

(1) We have to show that R, <

1 ~n
s . vl
uppose Rl S“ R2. Then there exist 91' 9, € DSPACE(log n) such that ]gz(u,v) lsc ’

for some ¢ ¢ N and (u,v) ¢ Rl - (91(“"’)r gz(u,v)) e Rz' Therefore if “2 ¢ PP then
there exists a deterministjc Turing machine accepting 31 with the time pound

2) R, R, € PP, R

(3)
(4)

Zxoots R, and R, € PP(RPP) implies R, € PP(RPF)-
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92(u,v) aglvl a,9,d¢ N. If
(igl(u:V)|+I92(u,v)|)q' dI 2 < (|u|+|V|) d for some q,d,q

ini i i i i R, with the
R2 € RPP then there exists a nondeterministic Turing machine accepting 1

time bound (lgl (u,v) }+[g2(u,v) I)q < (]u|+|v[)q and the space bound _—
max {log [g, (u,v}] da, v |} 2 T'max {loglul, |v|}. Therefore R, £ PP (R, € RPP,

spectively).
Then there exist q,, g, E DSPACE (log n)
1 2

R, & (gl(u,V)r

< R, .
(2) Suppose R,, R, € PP and R1 R
| c-lv| for some ¢ € N and (u,v} E R

2
<
such that {u,v)| 2 u\, lg (u,v)| < ' ) .
Igl : I | i 1so R, = X* x X* and obviously R1 = R2 implie
2.If112=){=t=xx then a 1 e e LR befine o
* x X* and take (u_,v ) € X 2

LR (f) = Ly (f). Now suppose R, + X Vo
1 2

by g (u¢ v) = (u,v) if |v] >£(lul) and glu ¢

9,(u,v)) € R

v) = gl(u'V) ¢ g2 (u,v) otherwise.
and [v| = £(ju]) (g (0, V),

v) € R
Then g £ DSPACE(log n) and u ¢ v € Le, (£) & (u, 1 o on
2

L
c+|v| gc f(|u])se-£igy (uv)) “olud v €l

9,(u,v)) € R, and Igz(u.V)| <

2
u,v), g, U,

fhe other hand, if g(u ¢ v) € Ly (f) then (g, (w,¥):d,
2 tnis implies u $¢ve Ly
definition of g) | v | £ £(jul). 1 1

of the
v}i} € RZ and (because

(£). So we have shown

that u ¢ v ¢ L, (B wg(ud v €LR2 ().
1

isti i i epting R witl
inistic Turing machine acc
¥ et e e s Wwe define a nondeter-

h the time bound

log n,m}.
(nﬂn)q for some q € N and with the space pbound max {log n,

. . ay: (i) M' tests whe-
ministi i ine M', accepting Lp(f), in the following way
aistic Turing machine ’ R c fu[)' (ii) M' simulates
ther its input has the form u ¢ v with u,v e x*% and |v| < f( i -
. i ime and wi
the behaviour of M on (u,v). Clearly M' operates in polynomial ti
Space bound f.

d
MESPACE (f(n }}. We can
(4}  Let L be a language which is complete for Y NPTIMESP
~ f(“ | € L}.
assume that L € NPTIMESPACE (f). Set R = {(u,0 )i wu

inisti i chine accepting L
We want to show that R € RPP. Let M be a nondeterministic Turing ma
i ministic Turing ma-
within polynomial time and the space bound f. wedefine a nondeter

(i) M' checks whether the input has the
chine m' ing R in the following way: ‘ .
e f(lu ) (ii) M' simulates the bekaviour of M on

form (u,v) with u e x* and v = O ‘. There-

bound v
i i the space ;
i i ithi nomial time and
String u. Obviously M operates within poly «_ since £ is computable by

® : e get R < .
fore R ¢ RPP and since R is complete for RPP we g " fwd of ! ul) e}

i hine, L € Iy (f) =
Some deterministic log-space bounded Turing mac R (£ NPTIMESPACE (£)
R

. Because of (3)L.
and because of (2) this implies L < y(f) < L (D)
and therefore L (f) is complete for this class. D

2. REDUCTIONS BETWEEN CONCRETE PROBLEMS

i re
language-encodings &

We consider in this section the following problems whose Langua

211 xnown to be complete for NF.

1) subset sum

}
RSUB = {(alk...é;an,b) |31¢,..¢an$b€SUB



(2)

(3)

(4)

(5)

(6)

(7}

(8)

(9)
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partition into k subsets

' n i

RPAR(K) = {(a; ¢ ... § &, Ly e 31, ., 1, e {t, 0l

k

\)=Ul I\) ={1,...,n}, I\)ﬂIu= @ for vy and

z -

ielvai = i{:I a, for all v, re{t,... .k} }
multi~processor scheduling on k processors
RPS(K) = {(a, ¢ ... ¢a,D) |3 I, e 1, {1, )

k
\,lA—Jx I\)= {1,...,n} and iEI a; <D for allv=1, ...,k}
v
sequencing to minimize tardy task weight
RTTW = t z
feey dw da ¢ cedt v da bW omax Tt
3 permutation o: {i,...,n} » {1,...,n} such that

vV
W < Wwhere I = {v| .
seheduli \){'I \)‘._ |i=1tc(i)>dc(\))}}
cheduling to minimize weighted mean flow time on k processors
RWMFT (k) =
Ry = {e, dw ¢ ... ¢ e ¢ w.w| 3 s {1,....m}
and permutations ¢, : {1,..., \IVI} > I, 1svsk such that
U 1, c (e s 0 :
u = «e.,nt ang W
vt Ty ’ VEiE Yo, 1) =5 =0 (D) ONED
selecting numbers from blocks of length k v o
RSEL(K) = {(a ¢ ... :#ak'n p)| 31 < {1,...,n} Fra;=b
. i
and I N = i }
lecti | @, el =0 V=0, .. ol
selecting numbers from blocks of arbitrary length
RSEL = {(a
0 ¢ ¢ au#...#an1¢...¢al.b)l
3 ; T
Joveensd 1 <5, < i 2 =
173y Jp <1y Viand F a, =}
solving a lin i i .
ear equation with lower bounds on the subsums
RLBS = {(a a ¢
1 ¢ 1 ¢ ¢ a, ¢ d b)| 3 Xps weer % € {o,1}:
n .
3
Looa, x, =
iZ1 2 % = band I oa x; > ¥ =1,...,n}
solving a system of linear equations where the associated
matrix A = i
X (aij),1$1Sn,15j5m,hasthefozm
[¢] i.e. there exist d; €N, ! <3 sn
a = d = I
A= L £ay S e S, 00d07 T2
. R =0
o _— s such that foralli=l,...,n: a1'.j

for j < d; and for j 2 449

RLSE = {
@ da,¢... $a ¢ b, ¢ ... ¢b, max b)) | A= (a5
fulfills the above condition, a a .
e .
such that |} =
351 %43 %5 S By

locking for a path with nonnegative weights

15 € N, and 3x1, ceen X 6{0:1}
Vi: 11-0-;“}

419

i=1,...,0:
RGAP:{(E¢214:...¢ZH, max |Zi| )|Zi eZ Vi ‘
E c {1,...,n}x{1,...,n} and ({1,...,n},E y formsan acylic graph;

there exist r € N and k., ...,kra{l,..‘,n} such
i = cewlx-1 d
that k1 =1, kr =n, (ki, ki+1)€ E Vi 1, I an:
i r }
i=1,...,r-1 and I. 2 =0
\)gl Zk\)Z o} Vi . . vE1 k\)

(lo) solving a set of quadratic diophantine equations
RQDE = {(a; ¢ ... ¢an¢b, @ | a;,brdeN;
We show first that all these problems pelong to RPP., Because of
en in theorem 3 we have only to show:

2
i : by, =d}
‘v’liixi,yiel\l.aixi+y1
theorem 1, (1)

and the reductions which will be giv

Theorem 2: RLBS, RLSE, RWMFT (k) € RPP

rministic Turing machine M which scans

Proof: (1) RLBS is accepted by a nondete

i n its work
with its input head the string a, ¢ d1 ¢ ¢ a, ¢ dn and which stores o :
i i es
tape the sum S of all the a, which have been chosen up to this point. When M reac
: i := if it
= = ¢t gsets S:= S+a, 11 1
the number a, it decides whether to set x; = 0 o X; 1 and i L
i < s £ b holds. Having
has decided to set xi = 1. Afterwards it checks whether d;. <SS -
i < b holds
scanned the whole encoding it decides whether § = b holds. Obviously S

during the whole computation. Therefore RLBS € RPP.
e has to guess xl,
e it has to decide whether to set

i x ¢ {o,1} .
(2) In order to solve RLSE a Turing machin . Xy

Suppose now our machine M is in a configuration wher -
i ich would need too much space) 1
xk =0 or x, = 1, Instead of storing xl,...,xk_1 (w)}:itlz .

; ¥, a,:. X ,ISLSn.Letqbe
stores all the information it needs about the sums 1E1 i3 %3 - e
ause of the structure of A j}=:1 aiJ xj

determined by d < k <d_,,. Then bec o
! h e d) and L, a,. ¥. % 2 a . x
12 dq+1 (and therefore these sums need not be store . I35 %y 321 %13 73
i £ k¢t a, . x, = b, for
for i £4 2 and therefore A can only have a solution if jzl i3 %5 i T e
3 i i e
lsi qu M has checked this before it reached our configuration and ther
T kgl
kgl z = E, a, . X.»
has only to store the numbers y = jél a3 5 L 351 dqj 3
a1 umbers unchanged

= - 1 M leaves these D

Having decided whether to set X, = 0 or X

i of these num-
.= Z + . M stops if one of
Z: Z +agy

Or it changes them toy : =y + a4 lk'

i ace bound max b
bers is larger than max b, . It is obvious that M works with the sp S i
i 1

and therefore RLSE € RPP.
(3) It is wellknown (see [ 3]) that if anan
<t :
then there exists also a sotution such that to 1) G\J(lﬂ) .
AV NEN /cv(ul)
v

¢ b 4:tn¢wﬂ' W)!

vlgi_<_nv1). it

stance of RWMET (k) has a solution
tolds far

Al 1vSk amd for all 1<i5] 1 1. Set By (W) = (e, ¢ vy
(t raMET(k) and t,, £ Fiuyy
1 ¢w1 ¢ bt Gw . We l/wi ey

fs obvious that RWMTF(k) < R, (k).

We define a nondetermimistic Turing machin
i8 divided into k1 tracks and when it has to deci

e tape
e M accepting Rl (k) . Its storag

de on which of the k processors the
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RLSE

j-th task has to be performed, then it has already put all the tasks 1,...,j-1 into
one of the set I , 1 € v < k, and it stores on its k+1 tracks the numbers

v
Y ti.lsvskandZ=): == w. ==__ t_. VWhen it de-

= =
Y] iely;, igj-1 V=l isIv,iSj—l i pely,pSi P
cides that the j-th task has to be performed on processor 4. {1 € q < k, then it chan-
ges these numbers into yq: = yq + tj' Z: =7 + wj y_. At the end M has to decide whe-
ther Z < W holds and it is clear that M can be constructedinsuch a way that all the

numbers stored on its k+1 tracks are bounded by W during its whole computation. There-

fore R, (k) belongs to RPP and because of theorem 1, (1) RWMFT (k) SnRi(k) implies that
RWMET (k) belongs to RPP. D

In the next theorem we state those reductions between these problems which we

are able to find. In the next section we will give some intuitive reasons that at

least four of these problems are not reducible to eachocther. This indicates that < RSEL (k)

reductions define a rich structure among the problems belonging to our class RPP. RAET (k) //
Theorem 3: RLSE is complete for RPP and there are reductions between the pro” \\

blems (1), ..., (lo) as shown in diagramm 1. . RPAR (k) ’rl RS (k)

Proof: (1) It was shown in [7] that RLSE is complete for RPP (though a different

notation was used in [7]).

(2) It is clear that R a(k) < R a(k+l) for o = PAR, MPS, WMFT, SEL and for all l .

E
k € N and that RSEL(k) < RSEL for all k £ N. Furthermore RLBS, RQDE, RWMFT (k) £ RLS EL(3)
V¥keN , since all these sets belong to RPP and RLSE is complete for RPP. RWMET (3)

(3) We want to show RSUB = RPAR(2). RPAR(2) < RSUB holds since (2, § . B3y
. o 1 der
max a,) € RPAR(2) iff = = SUB, In OX
2x a, (2) ;L 2 SOmod 2 and (a $...¢ a3 igl ai) £ R

to show RSUB < RPAR(2) we have to consider two cases. Suppose an instance

RPAR(3) = RMPS(3)
(a, ¢ ... ¢ a_, b} is gi a g - < 7b then n EL(2)
i ¢ ¢ n s given and /3, a 2 b. Set A igl a;. IEAS 2 R @

(@ ¢ ... ¢a, b cRSUBiff (a & ...4¢a 2b-a ,2b)e RPAR(2). If A 2 2b &7 \ cope
@ ¢ ... $a, b) cRSUB iff (a, ¢ ... ¢ a_ & A-2b,2A-2D)ERPAR(2).
(4) We have to show RPAR(k) = RMPS(K) VkeN . RPAR(k) < RMPS(k) sinc , RsUB = RPAR(2) B RMPS (2)
taj & .o da, max a;) © RPAR(K) iff igl a = 0modkand (a, ¢ - ¢ a i ikt a;)
€ RMPS(k). In crder to show RMPS(k) < Rpmtk) let (al ¢ 3; a. D) be an instance
n ofined by

Diagram 1

of the multiprocessor scheduling. Set E = k-D - ,21 a. Let p, § € N be a
i=

P is the maximal number such that k(2®*! - 1) < E and q is the maximal number such
that q-2P"! g B - k. (2P*!

n 2
ba ta Loa 2,13 2)% crmer(2
i mozaE s .op that RSEL $_ R, where
(M1 der to show RSEL £ RGAP let us first mention tna LT
- 1). (Note that p < log, E and that q & ki) Then n order -

ocks have the same length.
® i £ selection
(a a, D) e 4 consists © all those
N b o D) e mwsw it @ ¢ ... ¢a &b $...4 bk.(p+1)¢ o ¢ p+l

problems where all bl

. . le-
ock up to 2 given length with one of its e e

= (RSEL: i £ill a bl
¢ q ¢ d, D) € RPAR(k), where b'-k+\) ol foro<igp, 1SVSK and ey = 2 <p R, holds since we can fi © whis is trus since
for 1S j<qandd=E - k-(2P*7 - 1)_q_zpﬂ. ments). Now we have to show Ry Sp R:AP an b e R iff ® tod ay PO &all boéd...
n - (a .. ¢ ¢ ... ¢35, 1 -
5) RPAR(kK) < i . =0 e fa .o § @ 2 ., m}, m=
®) e SpRSEL(K) since (al ¢ .o Ay max ai) € REAR(K) LEF ik ;1 and ilo ¢a 4:¢ " é¢ ¢¢ x.‘lb ) € :GAP, where E € fo,...m} * to, -- =}
Alx - 1l e anSL - Dy wv-

mod k and (b, ¢'.i' o, o L ab) ¢ sEL®), whore A = igl a and D= - A, p/i\x k.u;;c),des g
A7 for0<i<net, 159 <k, n-(841) 15 Gefined by (i.3) € S

1S3-4x52and[i=k (D), \\I/
OSk<nord=ke(i#), 1 SkSnl .

bk-i+1 =34
(6) RPAR(K) <, FRWMFT(k) was shown in [11] . §.K. Sahni showed that k- (442)

| n
@ ¢ . ¢, maxa) € REAR() iff By 2, ~Omod 2and (a, ¢ 3 ¢ .-
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(8) Now it remains to prove =
e < o e RGAE ’ that RTTW = RLBS Eﬂ RGAP. We will show that
- .n - - olds. In [7] the author showed that GAP < L (log 0}
with the same method it is shown in [8] that RGAP <_ RLB e
- S holds.

In order to show RLBS <
S RTTW let us consider more closely an instance of RTTW.

If we have given (t ;
pbw da b bt dw A bW, omax Bt
can assume that all jobs th . . b ' L i)), o
at cannot be processed by their deadline are processed at

e end o e sched i arbitrary order erefore = W = -
th f th ule inanarbit d
ry . Thi =
r re RTTW Rl, here Rl {(..-r --)I

fZclt s} : %
e : w < W and .
techniques we Gan \;:;13\) o \)Fe T t, €4, for all i =1,... ,n}. Using standamd
ce e condition
ly I by {1,...,n} -1 we get RTTW vEI v = Wby vgl Yy W and replacing final-
= R, where R, =
2 3 {(t1¢w1&;d1¢...¢cn¢wn¢

dn¢w,max (W, .glt)falc{l 1 W =
is 37 IRNAL : =
It is obvious that RLBS <_ R i ; i \%va - v
n since RLBS is just the special case of R2 where

_ 2
wv = tv Yo =1, we., n.

We now have to show
to verify that R R RTTW < RGAP. By using standard techniques it is not difficult
= where R, =
2 3 3 {(t1¢wl¢d1¢...¢tn¢wn¢dn¢w¢r,

e, >d; Vi=l,...,n}-

max (W,T) RGAP
R<, |31c{1,...,n}:\%1w\)=w, I, t,=Tand =t >d vi =1 n}
3 S RGAP, since (t, ¢ ... ¢ 4 ¢w¢Tv€I ST e
where E = {(41, 4i+1), (41, 4i+ wee) € RGAEE (B da, oy boord oy
and a, . =0 . (41, 4i+2), (4141, 41+3), (4i+2, 4i+3), (4i+3, 4itar[osisnl)
. = s a,. = - W
4i+t ai+2 T et W W ‘/.\41
for all 0 < i < n-1 (where W = E w,) e P
and A543 = " (a + 1) w B \Eg k{/
i+ i = W |
i+1 ©O5eg T G4 D W i =
for all0£i<n-2anda =a =ol+1 W
. ntd and an+3 = - W-W-T. . 4ivd
[

We don't in .
Let us mention a:e:zxz::l:i anle’(haustive list of all the problems belonging to RFE-
k linear equations” (eQuival:mi es only the following problems: "solving & systen of
deadlines" (see [5] , reduc'bn to RSUB), "sequencing with klrelease times and k,
deadlines" (see [5] , red T le to RSEL) and “"sequencing with set-up times and k
are complete for RPP,bY m:::;eoto RSEL) .We can construct additional problems which
ur prol ; . AP
a solution x, € {0,1} of E a x p: :lemi slightly more difficult, e.g. "£indind
=i ' vE1 g

>a = { <" is
complete for RPP. In [9] a great ; for 3 =1,2,3 ang 1 £ 57
number of problems are shown to be complete for RPP

just by taking vari
ous
as the structural inf graph theory problems where the bandwidth of the graph 1S used
nformati
tion, e.g. the problem of finding a 3-colouring for a graph

is complete for RPP (reme
( mber that we consider as input i :
' ) puts pairs (G,0) W

3.
CONNECTIONS TO SPACE BOUNDED COMPUTATIONS
In this section i
we i i iti
ccme of oue s will give intuitive reasons to support the conjecture that
to p n ems are not reducible to eachother. At the moment thod is ko™
rove that such red . wion wne
o e uctions do not exist. It is an open question whether OF not ¥
equa. ACE(log n). We prove the following lemma:
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Lemma 1: Let a be any symbol. If NP =DSPACE {log n) then R S"{(V,E)|v£{a}*}
holds for any RE RPP.

Proof: Suppose NP=DSPACE (log n). Then for any R € RPP the set LR = {u ¢ v

(u,v) & R} belongs to DSPACE(log n) and R 5 ¥, where ® = {(u ¢ v,e)i(u,v) € R}.

There exists a function f which is computable by a deterministic log space bounded
|w| and w € Ly iff £(w) € {al*. This implies

]

Turing machine such that ]f(W)‘ 2

R s lwe) | ve fa bxh

The next lemma gives the basis for our intuitive reasons.

{log n) € DSPACE (log n)

Lemma 2: (1) L
hich is acceptable by some nond

RQDE
(2) There exists a language L, W

eterministic

or a definition see (2], [8] ) such that

one-way reversal-bounded counter automaton (f
Lpepp (tog m) = Ly«
{3) LR (log n) is compl 5
Proof: (1) In order to solve aix +by =

ete for NSPACE(log n).

¢ we have only to consider X,Y with

jc Turing machine with the space bound

X,y < c. This can be done by some determinist

!Ci. a a a, a a %
1 n b
2 SetLl={o11 W12y ettt to nly 1 "Mool
3 j1""'j .1 <3, €4, such that .% a . =b}. Note that the mapping Cj- associa-
n A & iE1 Tij,
5 is computable by a deter-

r its unay encoding,

. -1
ocund and that its inverse mapping ¢,
There-

ting to the binary encoding of a numbe

ministic Turing machine with a lineax space b
is computable by a deterministic Turing machine with the space pound log n.
fore Rl = LRS thermore we can easily construct 2 nondeterministic

EL

one-way counter automaton M which change

(log n) holds. Fur
s the direction of its counter exactly once

m left to right

and which accepts L. M scans with its input head the input string £ro
and it takes from each block i exactly one nupber &, and adds it to its counter
i

r by 1 in each step). After it has

a.
iry .. .
i it increases the counte

(i.e. while scanning O
tored

reached 111 it starts to decrease the counter and checks whether the number $

by the counter is equal to b.
ACE (log n} and we

(3) It was shown in [7] that LRLBS(lOg n) is complete for NSP

= RTTW holds.
m

showed in theorem 2 that RLBS =
o not

We are now ready to state as conjectures that the following reducticns d
exist:

Conjecture (1) RSEL is not reducible to RQDE

+t reducible to RSEL

jible to RTTW

ons given in theore

Conjecture (2) RTIW is no

Conjecture (3) RSLE is not reduc
ible to

m 1 "RSEL is not reduc

pE and that "RTTW is

not reducible to RQ!
is not reducible tO RSEL and that RTTW

Note that because of the reducti
RQDE” implies that also RTTW and RLSE are
not reducible to RSEL" implies that alse RLSE

is not reducible to RMPS(k) for any k € N. .
(log n) belongs to DSPACE(log n). Quite a

Reasons: (1) Because of lemma 2 LRQDE
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lot of work has been done to show LRSUB(log n) € DSPACE(logkn) for some k < 2. Since

these efforts have failed we conjecture that LRSEL

{leg n}. If this is correct then RSEL <" RQDE cannot hold.

(log n) does not belong to DSPACE
(2) Because of lemma 2 RTTW is complete for NSPACE(log n) and there exists a
set L, which is acceptable by some nondeterministic one-way reversal-bounded counter
automaten such that L, = L .. (log n). We conjecture that no language acceptable by
a reversal bounded counter automaton can be complete for NSPACE(log n). (Note that
such an automaton cannot get any information from its storage tape during its compu-
tation. It changes its storage tape only by means of its finite memory and only at

the end of its computation it askswhether it was able to generate the number O in

this way). If L1 is not complete for NSPACE (log n) then RTTW S“ RSEL cannot hold.

(3) LRTTw(f) is accepted by an automaton which gets from its storage tape on-
ly the information whether it is empty or not empty. In the case £(n) = log n such

automata accept languages which are complete for NSPACE(log n). This is true since

the number of different storage inscriptions is bounded polynomially in n and we

can store the whole flow of information in one string which is bounded polyncmially
in n (this is just the proof that the graph accessibility problem is complete for
NSPACE (log n), [12]). But if lim £(n) /log n = then the number of possible storage
inscription grows faster than any polynomial in n and therefore this method is not
applicable. We believ

e that for %iﬂ,f(“)/log n

plete for NPTIMESPACE (f) and this implies that

=« the language L w(f) is not com-

RTT!
RLSE is not reducible to RTTW.

Finally we want to mention that there is annother natural class (let us call

this class SPP) such that RFP < SppP PP and R € SPP=» L_ = {u ¢ v I (u,v) € R}JENP.

i R
R belongs to SPP iff R is accepted by a nondeterministic auxiliary pushdown automaton

{see [ 4 ])within polynomial time and the simultaneous space bound max {log n,m}. All
the problems we locked at belonged to RPP. It would be interesting to find a natural
problem which seems not to belong to RPP but which belongs to SPP. It would be even
more interesting to find a natural problem which is complete for SPP.

Acknowledgement: We want to thank Hal Sudborough and Oliver Vornberger for many

helpful discussions and for the careful reading of this manuscript.
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