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Computable Directory Queries.

(August 1985)

E. Dahlhaus! and J.A. Makowsky?

Department of Computer Science, Technion, Haifa, Israel

Abstract: We generalize relational data bases such as to include also directories of relations and directories of
directories. In this framework we study computable directory transformations which generalize the computable
queries introduced by A. Chandra and D. Harel. We introduce a transformation language DL and show its com-
pleteness. The language DL can serve as a basis for specification and correctness of directory transformations
and also as a basis to study their complexity. The method developed can be seen also in a broader context: It
allows the general manipulation of "objects” (as in SMALLTALK or SETL) and adds to it a construct for paral-
lelism (as in VAL).

! Visiting from Dep of Mathematics, Technical University Berlin, West Berlin sponsored by Minerva Foundation.
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1. Introduction

The relational model for data bases was introduced as a means to describe an appropriate user interface,
It served to give semantics to concepts from data bases without taking into account the way the data basis was
represented in a computer. The relational model was extremely successful (cf. [U82, M83]). When dealing with
a file/directory system as well as a data basis the question arises if one can describe the resulting user interface
in a similar way. Such a description might be particularly interesting for the design and description of integrated
systems such as "Office by example” [ZI82], mail handling software or any directory restructuring programs. It
also can serve to model various approaches to hierarchic data bases, cf [U82], or for specifying file systems, cf.

[MS84].

In the present paper we attempt to extend the relational model for data bases to allow directories. Direc-
tories are sets of (sets of sets of ...) relations, or, in the terminology of logic, higher order relations. The formal
definition of this extension of the relational model is presented in section 2. In [CH80] queries are (partial)
functions mapping finite sequences of relations (the data base state) into a new relation (the answer to the
query). In their framework it is not possible to express what is a restructuring of a data basis or to deal with
hjerarchies of relations. In our model the analogue of a query is a directory transformation which maps direc-
tories into directories. Queries will be special cases of directory transformations. Directory transformations will
be called directory queries. Other special cases are directory manipulation programs such as tar in UNIX, sys-

tem programs reorganizing the division of a disk, or any other restructuring of entire data base systems.

Programming languages which manipulate higher order relations have been considered in various other
contexts before. Mostly, the moﬁvaﬁon behind such set oriented languages stems from the need to implement
readily arbitrary, abstractly defined data structures. The purpose of very high level languages is to " provide high
level abstract objects and operations between them, high level control structures and the ability to select data
representation in an easy and flexible manner” [SSS79]. The most prominent example is SETL introduced by J.
Schwartz [Sch75]. Also "object oriented" programming can be viewed as set oriented. A prominent example of
an object oriented programming language (or better environment) is Smalltalk [GR83] or [Ho83). The latter is
also a good reference for concepts and implementations of programming languages. Our paper can also be

viewed as a contribution to the theoretical foundations of set oriented programming.

In the above sense relational data base query languages are also set oriented languages. It is clear that

relations and operations on relations, as in relational calculus and more powerful query languages [CH82], can



be readily implemented in a programming language like SETL. It will be shown in this paper that the introduc-
tion of the directory concept into relational data bases gives us a framework of equal flexibility, and, with the

appropriate choice of programming primitives, of equal power as SETL.

R. Gandy, in [GaB0), discusses some philosphical aspects of Church’s Thesis which are related to our
work. Gandy postulates four principles concerning frameworks of computability from which, in contrast to
Church’s Thesis, it is provable that functions in these frameworks are partially recursive. He also proves the
minimality of those four principles in the sense that no three of them suffice to prove this result. The universe of
discourse in [Ga8Q] are the hereditary finite sets with urelements, which also form the background of our work
here. The computable queries, introduced in this paper, however, do not satisfy all of Gandy’s principles. This
shows, that not all computable functions satisfy Gandy’s principles. In particular, Gandy tries to capture
mechanistic aspects of Computation machines, rather than to axiomatize the meaning of computability, as was

initiated in [CH80). It might be stimulating to reconcile the two approaches to computability,

The main problem we address in this paper is that of defining precisely the semantic notion of a compus-
able directory query extending naturally the notion of computable queries. This is the content of section 2 and 3.
With such a definition one can now define the semantics of various directory query languages. A directory
query language L is complete if for every computable directory query there is an expression (program) in L
corresponding to it.

In section 4 we define a directory query language DL which is complete. DL is an extension of QL of
[CH80] with various directory handling constructs. They correspond to the set theoretic operations union, com-
plement, powerset, singleton set and the replacement and induction principle. The induction principle also occurs
in QL in the form of the while-construct. The replacement principle leads to a new programming construct

mkdir y; from y; iny; by P.
This construct is very much in the spirit of parallel programming or of data flow languages. It is similar to the
for all construct of VAL (cf. [Ho83]). It replaces the subdirectories of y, simultaneously and puts them into the
directory y,. The construct also allows parallel query processing to be expressible in DL. As mentioned before,
the programming language DL turns out to be an abstract and well defined sublanguage of SETL which is
equivalent to SETL both in computing power and flexibility. The exact relationship with SETL will be dis-

cussed in an appendix.



In section 5 we analyze the constructs of DL and exhibit an independent (non redundant) subset DLy of

DL which is of the same expressive power.

In section 6 we prove the completeness of DL. The main idea is to reduce the completeness proof of DL
to the completeness proof of QL. This is achieved by showing that we can code each directory by a DL program
as one relation. After that we can use the completeness of QL to transform this relation into another relation
which is a coded directory. The main problem is to guarantee that the coded directories can also be decoded by
a program in DL, In other words we show the existence of a computable directory query corresponding to TAR
in UNIX. The difference between TAR in UNIX and TAR here is that our coding function does not depend on the

way relations and directories are implemented,

As in [CH80] we present our main results in a simplified framework in which neither tuples of the rela-
tions nor arbitrary members of directories can be named. It is easy (but tedious) to extend our framework to
handle names and predefined objects similar to [CH80, section 6]. This will lead us to an extended directory

manipulation language EDL which is discussed in section 7.

In section 8 we discuss the relationship between computable directory queries and various set theoretic
definability concepts. This section is more of foundational interest than computational relevance. It relates com-

putability in hereditarily finite sets over urelements to X;-definability in the sense of A, Levy [Le65].

In section 9 we present conclusions and an outlook for further research.

2. The semantic model.

The purpose of this section is to define data bases of higher order. The traditional relational data bases are
then first order data bases containing only relations. Higher order relational data bases also contain finite sets of
finite relations which are called simple directories. More complicated directories can be formed by allowing
directories to contain finite sets of both relations and directories of lower order. Relations are just structured

files.

More formally,we start our definition as in [CH80)]. Let U denote a fixed countable set, called the univer-
sal domain. Let D c U be finite and nonempty, and let Ry,...R; for k>0, be relations such that for, for all i,
R;c D% B=(D,Ry, - - - Ry} is called a relational first order data base of type a, where a=(ay, * - - ,a;). R; is

said to be of rank a;. We shall also call the relations directories of order 1.




Let Vi(D) be the set of all directories of order 1.

Vi(DY=\_ PpD)
ieN
where Pg.(X) denotes the set of all finite subsets of X.

Vin(DX=VAD) U Pri(VAD)) and V(D)=1 ) VAD). V(D) is the set of all directories and V{D) is the set of direc-
jeN

tories of order at most j. The order of a directory 8 € V(D) is the smallest j such that 8 € V{D).

A data base of higher order (dbho) is an ordered tuple B=(D,Ay,....,A) where each A; is a directory in V(D).

Two directories A € V(D) and A* € V,(D*) over domains D and D* are similar if
(@) A and A* are of the same order;
(i) If A € V,(D) then A and A* have the same rank.
(iii) Otherwise, there is a function FAa—A* which is 1-1, onto and such that for each 8 € A, & and f(B) are
similar.
Each directory A € V can be thought of as a labeled directed acyclic graph in the following way: The leaves are
either relations (i.e. in V(D)) or the empty directory, which is in V3(D) and is denoted by D4~ In the first case
their label is the rank of the relation. In the other case the label is —1. Here we have to remark that for each
natural number k we have an empty relation @, of rank k. Two directories are similar if their labeled graphs are
isomorphic.
Let B=(D,A;,...Ap and B'=(D*.a%,..A%) be two dbho’s and let A:D — D* a function between the two
domains. We define an extension h:V(D) — V(D*) in the following way:
(i) For & € V(D) a k-ary relation
RB)={ (hldy) s H(d):((d)s--(d) € 8}
So A(3) is a k-ary relation in Vy(D¥).
(ii) For 8 € V(D) we put
h(®)={h(a):cc € B}.
If k is one-one then A(8) is similar to 8. This is not true in general because we think of directories as sets, not

as multisets.
h is an isomorphisms from B into B* iff h is one-one and onto and for O<i<k iT(A;)=A".

Two dbho's B=(D,Ay,...Ay) and B*=(D,A%,...A%) are similar if each 4, is similar to A%,



Two dbho’s B=(D,A,,...,Ar) and B*=(D,A%,..,A%) are isomorphic if they are similar and there is an iso-
morphism A:B—B¥,
In the case that each 4; is a relation this notion of isomorphisms coincides with the usual notion of iso-

morphim of relational data bases. In general it is a natural extension of this notion.

3. Computable directory queries and relations.

Let D be a finite set and V(D) be the set of directories over D. An k-ary directory transformation is a
function T:V(D)" — V(D) such that for every bijection A:D — D and every §;, . . . ,§; € V(D) we have
T(A(S)),...h(EN=HT Gy, . . . 8)
If we replace V(D) by Rel(D) this is just the isomorphism invariance of queries in [CH80].
Since all the elements of V(D) are finite objects it makes sense to speak of a "standard" coding of V(D) in
the natural numbers N. This allows us to use freely the notion of computable functions over V(D).

An k-ary directory transformation is computable if it is computable using the standard coding.

Examples:
(i) The computable queties are computable directory queries: If B=(D,R),...,R;) is a relational data base state and
¢ is a computable query producing a relation Q we just regard each R; as a directory of order 1 and put T, to be
the obviouds k-ary directory transformation.
(ii) Let & be a directory and let {3} be the directory containing § as its only subdirectory. The transformation
Tiingteron Which maps § into {3} is clearly a computable directory transformation,
(iii) Let 8, 8, be two directories and let 5; U 8, be the directory which contains exactly the subdirectories of
and §; as its subdirectories. The transformation T'U which maps &; and 5, into 8; U &, is clearly a computable
directory transformation.
(iv) Let 8y, &, be two directories and let 8,8, be the directory which contains exactly the subdirectories of &,
which are not in &, as its subdirectories. The transformation Tifierence Which maps &; and 3, into §,~3; is
clearly a computable directory transformation.
(v) Let § be a directory and let P(5) be the directory containing exactly each subset of subdirectories of & as a
subdirectory. The transformation T, which maps & into P(5) is clearly a computable directory transforma-
tion.

(vi) Let 3 be a directory and let U() be the directory containing exactly each subdirectory of a subdirectory of



§ as a subdirectory. The transformation Tu which maps 8 into U(8) is clearly a computable directory transfor-
mation.
(vii) Let R be an n-ary relation of power p. We associate with R a directory & of order 2 containing p n-ary rela-
tions each of which contains exactly one n-tuple of R and such that each n-tuple of R occurs in 8. Clearly, this
defines a computable directory transformation.
(viii) Let § be a directory and let Files(8) be the directory containing exactly the relations of & as its subdirec-
tories. The transformation Tgy.s which maps 8 into Files(3) is clearly a computable directory transformation.
(ix) Let 8 be a directory and let Flat(8) be the directory of order 2 containing exactly the relations which are
leaves of § as its subdirectories. The transformation T, which maps 8 into Flat(3) is clearly a2 computable
directory transformation.
(x) (Kuratowski pair) Set

Pair(3,,8)={{8},{81,8:1}
Clearly Pair is a computable directory transformation.
(xi) Let 8 be a directory and let HTC(S) be the the set of all directories and relations, which are in its transitive
closure under membership (the hereditary transitive closure). Then clearly HT! C is a computable directory query.
(xii) Empty relations and directories: We distinguish between empty relations of arity 0,1,2,.... which are in
V(D) and are denoted by @o,@y, - - - respectively, the empty directory in V(D) which we denote by D4, and
the projection of The unique non empty O-ary relation has exactly one element, the empty sequence, and is
denoted by 1. The projection of 1 and &g is defined to be the empty relation of arity 0.
(xiii) As in QL we can use 1 as truth value frue and @y as truth valve false. This allows us to define computable

predicates as directory queries whose value are true or false.

The examples (i)-(vii) will be among the basic constructs of our directory transformation language DL,
defined in the next section. The reader can easily find more examples. As an exercise for computable predicates

we suggest comparison of relations via file length, arity of relations and testing whether a directcory is in V(D).



4. The directory query language DL.

The directory query language DL we define is essentially a programming language computing finite higher
order objects (directories) over some finite domain. As for QL from [CH80], its access to a directory, however,
is only through a restricted set of operations: the operations from QL augmented by the operations from exam-
ples (i) - (vi) in the previous section. Let us now define DL formally. We include also a definition of QL to
make the paper more selfcontained.

Syntax:
Y15Y2-n... are variables of DL. The set of terms of DL is inductively defined as follows:
(i) E is a term of QL; for £1 y; are terms of QL; if dir; is a directory name then dir; is a term of DL; if rel;is a
relation name then it is a term of QL.
(ii) For any terms 1,,t, of QL
(t1 " 1)), ) ()T and (1)
are terms of QL.
(iii) All terms of QL are also terms of DL.
(iv) For any terms t,,t, of DL

{u}, Utr), P(u) Singl(t), (h— ) (6 U by
are terms of DL.

The set of programs of DL is inductively defined as follows:
(i) If ¢ is a term of DL (QL) then y:=t is a program of DL QL).
(i) If Py,P, is a program of DL (QL) then (P; iP2) and while y; do P; are programs of DL (QL).
(iif) All programs of QL are also programs of DL.
(iv) If P is a program of DL then

mkdir y; from y in y. by POy, ...y,
is a program of DL. The variable y; occurs here as a bounded variable similar to jin Ya;
J

Semantics:
Let B=(D,A,,...,Ap) be a dbho.
(i) Let z be a function from the variables YuY, -+ + into V(D), the set of directories over D. We call such a

function a directory assignment over B or assignment for short. We think of the set of all directory assignments



over B as the set of states for our directory query. We denote this set by States(8).
(ii) The meaning of a program P acting on B is a partial function u(P):States(B) — States(B).
First we define for every term ¢ of DL inductively the meaning function po(2):States(B) — V(D) in the following
way:
For terms ¢ in QL, Wo(f) is defined as in [CH 80]. If ¢ and 1, are terms in QL then:
Ho(E)(2)={(xx):x € D},
Ho(y)(@)=2(),
Ko(r)(2)=R;,
Ho(ty M B)(ER= Pof)(2) O Holt2)(2), f Ho(t1)(2) and po(6,)(2) have the same arity, otherwise Jio(ti N K)(2)=Do.
HoC*(E))2)= * (Ma(r1)(2)), if Bolt1)(2) is a relation, otherwise it is o * stands here for —, d, T or . The mean-
ing * of * is complement, projection of all components except of the first, extension of the relation by one last
component, or cyclic permutation respectively.
For the other terms in DL, |, is defined inductively in the following way:
Let t; and ¢, be terms in DL. Then for each z € States(B):
1) Ho({uD(E)={o(r) @)}
(2) Ho(P(t1))(2)= Powerset of (Ly(t1)(z)
(3) Ho(Ult X(2)= \J(Ho{t1))(2), if all subdirectories of Ho(f1)(2) are relations of the same arity or all subdirectories
of it are not relations, otherwise it is set to be &.
) 1ot U )@= 1o(1)(@) U Re(t)(@), i Ho(t)(2) and po(ty)(2) are both relations of the same arity or both not
relations, otherwise it is set to be Jy.
(5) Holti—t2)(2)= Ho(f1)(2)—Ho(1)(2)
Here X-Y is the set of all elements of X not being in Y. Note that X-Y is a relation of arity k resp. a nonrela-
tional directory iff X is a relation of arity k resp. a nonrelational directory.
(6) Mo(Singh(t))z)= {{x} : x € po(1)(2) }
Next we define for every program P € DL inductively the meaning function p(P) in the following way:
(a) If P is of the form y;=t then we put p(P)(2)(y;=z(y)) if j # i and p(P)2)(yi=Ho(1)(z) otherwise.
(b) If P is P;;P; then p(P)(2)=(P2)(U(P:)(2)). This is the usual composition of functions.
(c) If P is while y; do Py then W(P)(z) is defined in the usual way on a sequence of states z;,;=p(P)(z;) with

zg=z. W(P)(z) is the first z; such that z(y;) is not an empty relation or directory.
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(d) If P is mkdir y; from y; iny by P10y ... ¥m) then

BPY2))= {P)E)O)z o=z for 1#j and z(y) € 2}, if for all z;, st 2:(y)=z(y) for I #j and
(v} € 2(yp) W(P1)(z1)(y)) is defined, otherwise p(P)(z)(y;) is undefined.

In words this says, for the case m=/=1, that the new directory y; is obtained in the following way: one applies in
parallel 1o all the subdirectories y; of y, the program P; and puts in to y; all the results so obtained. If f>m the
new directory contains exactly one subdirectory of the form f(yj,..y,). Otherwise, the directories
PaesYj1sYjs1s- are free parameters. Remember that y; occurs here as a bounded variable. The reader
icquainted with axiomatic set theory will easily recognize in this definition the replacement axiom of Zermelo-

Frankel set theory.
Queries: Let B=(D,R,,...R) be a dbho and z,,., be the assignment whith Zimiiat(Yi)=R; for all i<k and
Zimigar(yi}=@-y for all i>k. Given a program P(y, ...y, € DL and a variable ¥; we look at the function
Tp; V(DY = V(D) Tp iRy - « o RPN Ziniziat) (7))

Theorem 4.1: For every program P € DL and each variable ; the the function T} _,:V(D)" - V(D) is a

computable directory query.

Proof: For programs of the form yz=t this follows from the examples (i)-(iv) of section 3. For P of the
form Py;P, or while y; do P; this follows from the closure properties of partial recursive functions. For the
mkdir-construct this follows from the following closure property of partial recursive functions:

Let f be a partial recursive function from N™ — N. We denote by <{flay,..s8-1,8,8441,...,8,):a<b}> the Godel
number of the set {Ray,..s811,8,81,....a0):a<b}.  Let glan,..a1,b,a,4,...,a,) be defined to be
<{fay. 181,818 ):a<b}>. Then § is a partial recursive function from N™ — N,
Now let P be of the form

mkdir y; from y; in y, by Py, ... -
To complete the proof we note that f corresponds to the program Py, g(b) to y;, b to y, and a to Y-

Theorem 4.2: The directory query language DL is complete, ie. for every computable directory query T
there is a program Pr e DL computing it.

The proof of this theorem will be presented in section $. In the proof of 4.2 we shall use the main result
of [CH80]:
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Theorem 4.3: The query language QL is complete, ie. for every computable query I:V(D)" — V(D)
there is a program Py € QL computing it.

The natural question arises to whether the set of basic constructs is minimal, and if not, what are the exact
interrelationships. It turns out that this is a rather delicate problem. In the following definition we introduce a

sublangnage DLy of DL which has an independent set of constructs. The proof of the independence will be

presented in section 5.

Definition: Let DL, be obtained from DL by restricting its definition to the constructs while and mkdir

together with

@b, @M, @) E U@, Singlt), (tr—t).

Remark:
(1) Generally, we can simulate the conditional statement by the while-construct. Consider

ify; =@ then P else Q.
Let y; and y, be variables not appearing in P or Q. Then the following procedure does the same as the above

conditional statement:

Yii=yin:=9;
while y=@ do (P;y:=E;n:=E);

while y=& do(Q ; y=E).
Here we use only constructs of DLg if P and Q are in DLo. Therefore to be empty is decidable in QLo. Also we

can replace the comparison with empty by any other predicate computable in DL resp. DL, because the nega-
tion can be expressed in DL by the term (E)d L — y.

(2) Using the mkdir-construct we have a comprehension scheme in DL:
Given a predicate P decidable in DL. Then the function G which maps each directory § to the set of its sub-
directories &, s.t. P(8;) is expressible in DL:
(i) Let H be the function which maps each §; to its singleton if P(8;) and to the empty set otherwise. H is obvi-
ously expressible in DL if P is in DL.

(i) \U({H(®,):8; € 8} is the set G(B).

Lemma 4.4: There is a program pair in DLy which computes for two directories 8;,8, the directory which

contains exactly 8; and &, as its subdirectories.
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Proof: We consider the function F: Singl(D¥xV(D) — V(D) defined as follows:

F{(x»)}ab)=a if x=y, b otherwise
By the remark above F is computable in DL, because x=y means {(x,y)} - E=@. Using the mkdir-construct
the function which computes for each a and b the set {F(u,a,b):u € angl(Dz)}={a,b} is computable in DL,
Lemma 4.5: There is a program join in DLy which computes for two directories &,,3, the directory which

contains exactly the subdirectories of & and 3,.

Proof: join(8,,5,) is the program U(pair(8,,5,)).

Lemma 4.6: There is a program Rel in DL,, which decides whether a directory is a relation or not.

Proof: join(8,pair(5,8)) is an empty directory or relation iff delta is a relation. Moreover we get following

Lemma 4.7: There is a function computable in DL, which maps each relation R to D¥, where  is the arity
of R and directories not being relations to &,

Proof: By the remark and lemma 4.6. we have only to consider the case that the input R is a relation.
There we start with Yy:=1 and as long join(R,Y;) is empty we set Y;:=(¥)T. After leaving this loop ¥ is the
wanted DE.

Proposition 4.8: Every program in DL is expressible by a program in DL,.

Proof: We have to show that the missing term operations can expressed in DLy For intersection and com-
plement for relations we use lemma 4.4 - 4.8.
For {t} we use
mkdir y; from y; in y by POy, ...y
in the case j>m.

To write a program for P(f) we first observe that the powerset of a finite set is the smallest set containing all the

ingletons of its and which is closed under join. This can be easily converted into a program using

Singl(r), join,U and the constructs while,mkdir.

From a complexity point of view Sing! is an operation which takes logarithmic space whereas the power-

set takes exponential space.

We conclude this section with some examples which will be used over and over again section 6.
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Proposition 4.9: Let 8=(5,,5,) be the Kuratowski pair of §; and 8,, and let n;(8),7(5) be the projections
(cf. example (x) of section 3). Then there are computable directoriy queries in DL computing the Kuratowski
pair and its projections respectively.

Proof: Recall that 8={{x},{x,y}}. Now singleton directories are in DL and therefore the union of two sin-
gletons, the unordered pair of two directories, is computable in DL. From this we can conclude that also the
Kuratowsky-pair is computable in DL.

The first projection m;(p) is the intersection of the elements of p. That is expressible in DL,
The second projection py(p) is U(p — my(p).
Proposition 4.10: The heriditary transitive closure HTC(3) of a directory § is computable by a program of DL.

Proof: As first step set y:={8} U 3 and z:=3.

As long the set of elements of z not being in V(D) is not empty do P, where
P = z;:=U{x € zxe¢V(D)}; yii=y U 2z; zi=2; yi=yy.

The output y of this procedure is the heriditary transitive closure of 5.

5. Independence of Constructs.

In this section we will prove the independence of the constructs of DLy, as announced in section 4. That

means:

Theorem 5.1: For each construct ¢ of DL, there is a computable directory query T which is not comput-

able in DLy—{c}.

Proof: For each construct ¢ of DLy we will prove a lemma from which it one can easily check, that

DLg—{c} is not complete.

The negation:

Let h be a surjective map from a domain D to a domain D,. For each k-ary relation r we define

h(ry={(h(xy),..h(x)):(xy, - - - %) € r}
and for directories 8 we define A(8)={A(5,):3; € 8}. We prove now the following

Lemma 5.2: For each directory query T of DLy—{—} and each surjective map A:D — Dy : (1)

A(T(S; ... Bm)=T(h(By), * - - ,h(S,)).
Proof: This follows from the fact that each function of the base of DLy except — has this faithfulness property
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(1) and for each directory 8 we have § is empty iff A(8) is empty. By induction on the length of the program the

lemma is easily checked.

An immediate consequence of lemma 5.2, is that the complement of the diagonal {(x,y):x # y} is not com-

putable in DLy—{—}.
The operators T and L:
Lemma 5.3:

(: If P is a program in DL~{T} then each leaf of each directory has at each state of the program an arity not

exceeding the maximal arity of the leaves of the input.

(ii):  Provided that each leaf of any directory of the input has anarity not less than 2, then for each directory

generated by a program P of DLy-{l} its nonempty leaves have an arity not less than 2.
(i) and (ii) can be easily checked by induction on the length of the program,
The equality predicate.
Recall that E is the equality predicate in QL and is also a construct of DL,. We get the following fact:

Lemma 54: All directories generated by a program of DLy-{E} and an input with only empty leaves

have only empty leaves.
Proof: All operations of DLy—{E} preserve emptyness of each leaf.
The cyclic right permutation:
Recall that ~ represents the right permutation in QL and is also a construct in DL;. We consider a program

P in DLy-{"} with an unary relation as its only input. Let (D,R) be the input structure with domain D. Let / be
a bijection from D to D. Define

LS {2l (es),. )2y, -+ * %) € 8}
I, is extended to directories in the canonical way. We apply the bijection here on all k-th components with k>2,
The first and the second component are not changed.

Then the following fact proves that DLy~{"} is incomplete:

Lemma 5.5: For each DLg—{"}-computable function T: V(DY - V(D) and each bijection I'D — D we

have
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(TG, -+ - BTG, - - a80)
This lemma can be proved by induction on the length of the program. We consider here the fact that the
only nonempty relational constant is the 2-ary diagonal and this constant has no influence on components > 2.
The singleton operation:
Recall that Singl represents the function which maps each relation or directory & to the set {{x}:x € 8}. We can

prove now the following

Lemma 5.6: Bach program P of DL—Singl cannot generate nonrelational directories if all inputs are rela-
tions.
Proof: Each directory generated from relations by an operation of DLo-Singl is again a relation.

The union operation:

Recall that U represents the function mapping each set to the union of all its elements. Then the following

fact is true:

Lemma 5.7: Let P be a program of DLy—{U} and all inputs of P not be in V(D). Then each relation gen-
erated by P with this input is describable by a constant term in QL.

Proof: The only operation generating a relation from a nonrelational directory & dependent on 3 is the
union.

The while loop:

By induction on the length of the program we get the following

Lemma 5.8 : For each function T computable in DLy-{while} there is a natural number k, s.t for each n
we have: if xy,....X, € V(D) then T(xy, - - - x,) € V, (D).

The parallel construct mkdir:

Recall that mkdir applies a program on all subdirectories of a directory and constructs in that way 2 new
directory. Let {x}* be the set generated from x by applying k times the singleton. {x}° we define to be x itself.

Let I:D — D a bijection. then a relation r is preserved by [ iff /(r)=r, where [ applied to relations is defined

canonically.

Lemma 5.9 : Let P be a program of DL—{mkdir} and §;, ... .8, be an input. Then for each directory 8

generated by P and the §; :



16

for each subdirectory § of the transitive closure of 8, each natural number m, n;

{xe D™{x}*e &}
is preserved by automorphisms of (D,5y, - - - 8y

Proof: The claimed property of § is preserved by all operations of DL, except the mkdir-construct.

For example the powerset is not computable in DLy-{mkdir}.

6. Coding directories by files and the proof of theorem 4.2.

The proof of Theorem 4.2 consists of three steps. In the first and third step we use a coding and decoding
program TAR and TAR™!. TAR is, inspired by the UNIX program of the same name, a program that takes direc-
tories of arbitrary order and makes one file from which the original directory can be uniquely reconstructed by
TAR™, The difficulty in writing TAR in DL comes from the fact that we may not use names and other informa-
tion of the directory structures. The programs TAR and TAR™ allow us to reduce our completeness proof to the

completeness proof for QL in [CH80]. This is the middle step in our proof.
6.1. Construction of tar,

To construct TAR and TAR™ we define at first a function tar, which maps directory of V,(D) to one rela-
tion and is 1-1, and a function far™! which reconstructs a directory X of V,(D) from tar(X).
At first we define tar:
Given a set directory X in V,(D), let n be the maximal arity and m be the maximal product of arity+1 and power
of the relations. Then tar(X) is the following m+n+3-ary relation:

tar(X)={(@,b,a™* b ba  bayaz bfay, - - ,a} € Xand of arity k}

Each tuple in tar(X) describes a relation in X. The number of equal components at the beginning describes the
arity of the relation. After that appears a component b and its second appearence says that now the sequence of
elements of the relation begins. The sequence of elements is empty iff this tuple codes an empty directory. The
sequence of elements consists of one element iff the whole tuple codes 1. Using this definition of tar we get the

following

Lemma 6.1.1: There is a computable directory query tar € DL such that
(1) The domain Dom(tar of tar consists of the directories having only relations as their subdirectories.

(ii) rar(8) € Vy(D) if it is defined,
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Proof:
(i) We consider the mapping tar as defined before the lemma and will prove that it is DL-computable. For
each relation R € X we can compute by the completeness of QL the relation

{(@b,@™** bay, - - - apR={ay, . .. .4} and a # b}
Using the mkdir-construct and the union-operation we can compute far.

(ii) follows immediatedly from the definition of far.

Lemma 6.1.2: There is a computable directory query tar™ € DL which is the inverse of tar, ie. for

every & € Dom(tar) we have tar™(tar(8))=3.

Proof: We construct tar™'(R) for each relation R as follows:

Consider any v=(v;, * * * ,v,) € R. We want to construct the relation S(v) coded by v. Let k+1 be the number of
equal components at the beginning of v. Then v codes a k-ary relation if it codes a relation, v is now of the form
(a*by"), a#b. If b does not appear in v* then v does mot code a relation an S(v) is set Dur Otherwise
y=(a*",b,v',b,c"). Let m be the length of ¢". For the case that m is not divisible by k+1 it clearly does not code
a relation and S(v) is set again @y, Otherwise if ce=cy, * - - ,¢; and each ¢; is of arity k+1 then set S(v}={x:there
isan y € D,(xy)=c; for some i=1, - - - ,I}. Note that v codes an empty directory iff ¢" is an empty sequence and
that v codes 1 iff k=0 and therefore each c; is of arity 1 and there exists at least ome c;. Set
tar {R)={S(x):x € R}. Then tar™* clearly is an inversion of tar. We have now to prove that tar™! is expressible
in DL, Define for each relation X

S'(X)=@ 4 if X is not a singleton, or if X={v} and v does not code a relation, and §'(X)=S(v) if X={v} and v does
code a relation. To be a singleton and to code a relation is decidable in QL because it is decidable and therefore
decidable in DL. Also § restricted to {v}, 5.t. v codes a relation is computable in QL and therefore in DL. Hence

S’ is computable in DL. Now tar ' (X)={S'(3):y € Singl(X)} and therefore tar! is expressible in DL.
6.2. The construction of TAR.

Using tar we now define TAR recursively on the order of the directory. For a relation § € V(D)
TARGS)={(a,a,a%):a € D and X € 8} 1)
In other words, if § is a relation we add three arguments to it to make sure that in can be recognized as a single
relation. Note that TAR(D)=D . The program in DL expressing this is easily obtained once one has observed

that "being a relation” is a computable directory query (see lemma 4.6.).
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For 8= 4, we set
TARB)={(a,a,a,b):a,b € D and a # b} @

Thus TAR(@ ;) is coded by a relation in D* such that the first three arguments are equal and different from the
forth argument. The program in DL expressing this is easily obtained once one has observed that "being an
empty directory” is a computable directory query (see remark in section 4, number (1) and lemma 4.6).
For arbitrary directories 8 we set

TARQ®)={(a.b,aX).ab € D, a # b and ¥ € tar({TAR(S,):5; € §})} 3)
This is like a recursive procedure call where TAR is applied to the subdirectories of 8. Moreover note that
TAR(D) is not empty for each nonrelational directory 8. Therefore we can distinguish the empty directories also
by TAR.

Lemma 6.2.1: There is a computable directory query TAR & DL such that
(i) The domain Dom(TAR) of TAR consists of all the directories of V(D).

(i) TAR(8) e V(D) for each directoy 8.

Proof: We consider the function TAR as described before the Lemma. We have to prove that this function
is expressible in DL. We compute at first the transitive closure TC(8) of the given directory 8. This is expressi-
ble in DL. The leaves (elements without a subdirectory in TC(8) ) are relations or the empty directory. We can
compute the set of leaves and call it Z,. We compute Pg= {(&TAR(x)):x € Zy}. Here (x,y) means the Kuratowsky
pair of x and y as defined before. We set now Z=Z, and P=Pg and as long TC(8)-Z is not empty we add to Z
the set ¥ of all x, where all its subdirectories are in Z and add to P all (%TAR(x), s.t. x € Y. That procedure is
expressible in DL and computes TAR(S). The properties (i) and (ii) follow from the above definition of TAR.
Remark: The proof of lemma 6.2.1 gives us a general scheme, how to describe a recursive procedure in DL-

constructs.

Lemma 6.2.2: There is a computable directory query TAR™ € DL which is the inverse of TAR, ie. for
every 8 € Dom(TAR) we have TAR™(TAR(5))=5.

Proof: Let P be same DL-program. Then generally it is possible to calculate the set Lp(x) which is
obtained from x by replacing every leaf y of it by P(y), because that can be expressed recursively. Given any
relation r ( of the form TAR(S). (1) If r is of the form {(a,bax):a # b and X ¢ 5} then set T(r)=tar\(s) (2) If r
is of the form {(a,a,a,%):T e s} or {(a,a,a,b):a # b} (r is the code of a leaf) then T(r)=r. To calculate TAR™\(r)

of a relation r we iteratively replace each leaf u (at the beginning r itself) by T(u), until there is not changed
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anything anymore. After this iteration all leaves are codes of relations or the emty directory. They are then

replaced by the empty directory or the relation it codes. That all can be expressed in DL.

7. Extended directory queries.

When directory and data base systems are used in practice, several operations and predicates outside the
formal relational and directory framework are useful, or even necessary, to turn the system into a practical and
efficient model, Concerning the purely relational aspect of data bases, [CH80] addresses this issue and proposes
the extended query language EQL. The main difference in [CL80] between computable and extended comput-
able queries lies in the semantics. In the extended model they look at two sorted structures where an additional

domain F is added, whose elements may be numbers, or any other set of terms, whose interpretations is fixed.

If we want to adapt this approach to our framework we should first examine what we really have in mind.
The new objects to be introduced are really "names”, i.e. interpretations of certain terms whose meaning is never
changed and is part of the user interface. They can be words over some finite alphabet A (including natural
numbers in some b-ary notation). They usually have some standard operations and relations on them, such as
concatenation, arithmetical operations and/or a linear order. This makes the new universe with its functions into
a Herbrand universe. It is easy to modify our framework for this purposes. We take the extended semantic
model of [CHS0] as our starting point, i.e. V(D U F). Here D is a finite set of urelements, as before, and F isa
possibly infinite set disjoint from D. There must be enough functions to make sure that every element of F is the
interpretation of some term. Relations are always finite and their one-dimensional projections are always either
in D or in F. The restrictions of isomorphisms on F are always the identity. The constructions of V(D U F) is

continued naturally. We leave it to the reader to formulate everthing in detail.

In contrast to the case of [CHS0], extending the directory model in this way does not give us increased
expressive power. The universe of the natural numbers, e.g. does exist in V(D), though it is not an element of
any VD). Since we allow higher order relations, every finite set of natural numbers can be thought of being in
some Vi(D), and therefore, relations involving natural numbers can be coded in V(D). The advantage of the
extended approach lies in its inherent economy, both conceptually and computationally. Conceptually, we can
now formulate various aspects of directory systems, which were only expressible before in a rather cumbersome
way. Among these are time stamp labels, listing the names of the subdirectories of a directory (the ls-command

in UNIX) with all its variations, and the introduction of arithmetical and statistical functions. The set of
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urelements D, however, is not assumed to be linearly ordered and cannot be linearly ordered within DL. In con-

trast to this, the directories and relations can be linearly ordered by the lexicographic order of the names.

8. Uniform £;-definability and DL.

In this section we want to relate our results to set theoretic definability theory. Definability theory studies
the structure of first order definable sets in various structures such as arithmetic, the real numbers, models of set
theory, etc. The purpose is to characterize definable sets in terms of recursion theory, topology or game theory.
Classical monographs on the subject are [Ba75 , Mo74, Mo84]. The pioneer paper for models of set theory is
[Le65]. There he introduces the notion of X;-definability in set theory as a generalization of recursive enumera-
bility in the infinite set theoretic context. The analogy of X;-definable and recursive enumerable sets is based on
the following fact (which is folklore among set theorists):

Consider the structure HF(@)=<HF(J), € > with universe the hereditary finite sets without urelements and

membership as its only relation. In HF(@) the Z;-definable sets are exactly the recursive enumerable sets.

The notion of Z;-definability has a natural meaning also in the structures HF(D) where A is a finite set of
urelements. The structure HE(D) is very similar to the structure V(D)=<V(D), € > in which our language DL
operates. So, the question arises whether the computable directory queries are related to an appropriate version
of Z;-definable sets. The purpose of this section is to define Z,-definability appropriately and to establish the

following theorem:

Theorem 8.1: Let A c V(D). Then the following statements are equivalent:
(i) A is recursive enumerable and isomorphism invariant (that means for each natural extension 4 of a bijection
from D to D: x € A iff h(x) € A);
(ii) A is recognizable by a DL-program;
(iif) A is Z;-definable, that means, there is a X;- formula ¢, s.t.
A={B:V(D) [= &(B)}-
Note that (i) just states that the characteristic function of A is a computable directory query, and (ii), that

the characteristic function of A is the meaning of a DL-program. Therefore, their equivalence is just theorem 4.2.

We consider formulas using the function symbols T, , =, ~ and ~ of [CH80] and the 2-ary membership

relation symbol € as its nonlogical symbols.
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We write (Vx € )P for Va(xe y > P) and (Hxe y)P for Sx(xe yAP). (Vxe y)and Hx e y) are

called bounded quantifiers.

A formula ¢ is called ¥, iff all quantifiers in it are bounded and X; iff it is of the form H x;,...,3 xy
where v is Xg.

Sketch of proof (of theorem 8.1): We will prove (i) -> (iii) and (iii) -> (ii). (ii) -> (i) is trivial.

(i) -> (iii): Assume A is recognized by a Turing machine P. Then 3 € A iff
there is a correct coding of 8 and there is a P- computation on the coding giving a positive answer. Codings on
Turing machines and computations can be coded as sets in V(D), provided that A is isomorphism invariant.

Hence we get a Z;-formula expressing A.

(iii) -> (ii): We want to prove that each Z;-expressible subset of V(D) is recognizable by a program in DL.
First we can prove that e is decidable by a DL-program using the fact that x € y iff {x} Uy # @.
Claim: if P is a predicate, decidable by a DL-program then also (5 x € y)P.
This claim can be proved by the comprehension scheme, presented in the remark of the chapter 4. From this

follows that each Xy-predicate is decidable by a DL-program.

Now we have to consider a £, formula H xy. Let Z(D) be the (finite) set of all x € Vy(D), whose leaves
have arity not greater than k. Clearly the union of all Zy(D) is V(D). Moreover we get a computable directory
query which computes for each M* the set Zy(D). We only have to write a DL-program which computes the

smallest Z,(D), which has an x satisfying .

9. Conclusions and further research.

We see the main merits of this paper in the precise definition of the semantics of set oriented program-
ming languages and also as a contribution to generalized compusation theory. In contrast to generalized recur-
sion theory [Fe78, Mo74, Mo80, M084, No78] , which attempts to extend recursion theory to arbitrary infinite
structures, we are more concerned here in computations using finite structures. One of the earliest papers in this
direction which uses hereditary finite sets as its framework seems to be [En78]. But, as the reader must have
realized, we were mostly influenced by the fundamental paper [CH80]. We tried to show, and we hope that we
have succeded, that the approach in [CH80] does not only work for relational data bases, but also for more gen-

eral situations. In this paper we have extended relational data bases by the directory concept. In [DM85b] we
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show how to apply this approach for SETL-like programming languages, and how to draw from this approach
also results on languages capturing complexity clases similar to those obtained in [Fa74, CH82, HP84, Im82,
Im83]. The study of the relationsship between complexity classes and various sublanguages of DL will be
delayed to future research. It seems clear that various results of [CH82, Im82, Im83, HP84, DM85b] have their
analogues.

Traditionally, in set theory, all mathematical objects are built from the empty set alone, though the use of
urelements (elements which are not sets, ie. which do not have elements themselfs) was never completely
rejected. In [Ba75] it was actually argued that avoiding urelements results in a conceptual loss. Our semantics is
based on a set theory of hereditarily finite sets with urelements, which allow us to make the concept of user
interface invariance (isomorphism invariance) precise. Our two main theorems (the completeness of DL and the

independence of the constructs of DLo) just illustrate that the chosen framework for our semantics is correct.

We also think that our paper may clarify what is really needed to build a satisfactory very high level
language and may lead to a formal definition, and, ultimately, to more economical implementations of such
languages. Projects in this direction are being pursued at the Computer Science Department of the TECHNION -

Israel Institute of Technology.
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Abstract: We discuss the choice of programming primitives for set oriented programming languages
such as SETL. For this purpose we introduce a mathematical model (hereditarily finite sets with
urelements). In this model criteria for the choice of programming primitives are defined. The criteria
are complexity, independence and compuational completeness of the basic constructs. We propose
primitives satisfying our criteria and also discuss briefly the possibility of defining abstract data
types within our mathematical model. We give a characterization of the data types whose objects are
recognizable in NP. Our work is a synthesis of several approaches previously introduced in other

frameworks, such as query languages, generalized recursion theory and high level programming
language design.
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1. Introduction

Programming languages which manipulate higher order objects have been considered for a long time, e.g.
{Sch75] and [Ho83] for a historic survey. Mostly, the motivation behind such set oriented languages stems from
the need to implement readily arbitrary, abstractly defined data structures. The purpose of very high level
languages is to " provide high level abstract objects and operations between them, high level control structures
and the ability to select data representation in an easy and flexible manner" [SSS79]. The most prominent exam-
ple is SETL introduced by J. Schwartz [Sch75]. Also "object oriented” programming can be viewed as set
oriented. A prominent example of an object oriented programming language (or better environment) is
Smalltalk [GR83] or [Ho83]. The latter is also a good reference for concepts and implementations of program-
ming languages. Our paper can also be viewed as a contribution to the theoretical foundations of set oriented
programming.

The question we want to discuss here is the choice of programming primitives for SETL-like programming
languages. To make such a discussion reasonable we have to choose first a mathematical model for the meaning

of our programming languages. Within such a model we then can address the following issues:

(1)  Each program has to compute a "computable” function, In other words we have to relate our model to a
traditional model of computability. There are various attempts in the literature to generalize the notion of
computability (over natural numbers or strings) to arbitrary objects, see [Sh73, Mo74, Mo84, Ga80] amang

others, and especially [Fe80] for a survey.

(2) Once we have identified the computable functions for our objects we can define computational complete-
ness of a programming language by requiring that all computable functions can be represented by a pro-

gram, cf [CH80].

(3) The next criterion in the choice of programming primitives should be the low complexity of the basic
operations and constructs. This will, to a certain extent depend on the exact model of computation (RAM,
Turing Machines, etc) but it is safe to require that the basic programming primitives be polynomial in
time or space. For iterative and parallel constructs the question of complexity is a bit more delicate. The
best one can hope for naturally is some form of additivity: A while-construct has very little overhead and
takes as much time is the sum of its iterations; for a parallel construct one would require the same for the
parallelly executed subprograms. In other words, the overhead of such constructs should be uniformly

small,
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(4)  If one thinks of implementation of higher order languages one has to address the issue of redundancy in
the programming primitives. Though independence of the constructs is not a value in itself, it is still
significant to have an independent basic set of programming primitives availabel. Other primitives can
then be added depending on the particular programming applications or computer architecture features one
has in mind.

(5) Since we are dealing with very high level languages one has also to address their inherent data abstraction
possibilities and their naturalness of expression. It should not be the case that the complement of a finite
set is computable only by a rather awkward program, as is the case in [Mo84] or that simple recursions

can only be expressed by invoking a universal function or machine as in [No78).

R. Gandy, in [Ga80], discusses some philosphical aspects of Church’s Thesis which are related to our
work. Gandy postulates four principles concerning frameworks of computability from which, in contrast to
Church’s Thesis, it is provable that functions in these frameworks are partially recursive. He also proves the
minimality of those four principles in the sense that no three of them suffice to prove this result. The universe of
discourse in [Ga80] are the hereditary finite sets with urelements, which also form the background of our work
here. The computable transformations, introduced in this paper, however, do not satisfy all of Gandy’s princi-
ples. This shows, that not all computable functions satisfy Gandy’s principles. In particular, Gandy tries to cap-
ture mechanistic aspects of Computation machines, rather than to axiomatize the meaning of computability, as

was initiated in [CH80]. It might be stimulating to reconcile the two approaches to computability.

The main problem we address in this paper is that of defining precisely the semantic notion of a comput-
able object transformation. This is the content of section 2 and 3. Our mathematical model are the hereditarily
finite sets with urelements. Finite objects are usually built from some, not further specified, atoms such as ver-
tices in graphs or the components of tuples in relational data bases. These unspecified elements are suitably
modelled by the old (and in times unpopular) urelements of classical set theory (cf. [Ba75]). From these atoms
the objects then are built in a structured way with the only restriction that at every step of a construction only
finitely many objects are involved and that no objects can be infinitely decomposed. Infinite collections of
objects, therefore, are not objects. If they have to be considered they have to be treated like classes in set
theory. The computable classes of objects can be viewed as abstract data types. In this paper we shall discuss
abstract data types as computable classes of objects. Special attention should be given to classes whose objects

are recognizable (deterministically or non-deterministically) in polynomial time or space.
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In this framework programs take as input some objects (from a given data type) and transform them into
other objects (of some other data type). With such a definition one can now define the semantics of various
object transformation languages. A object transformation language L is complete if for every computable object

transformation there is an expression (program) in L corresponding to it.

In section 4 we define a object transformation language OTL which is complete. OTL has a very small
number of basic object handling constructs. They correspond to the set theoretic operations union, complement,
powerset, unordered pair and the replacement and induction principle. The induction principle occurs in the form
of the while-construct. The replacement principle leads to a new programming construct

mkob y; from y; iny, by P.
This construct is very much in the spirit of parallel programming or of data flow languages. It is similar to the
for all construct of VAL (cf. [Ho83]). It replaces the subobjects of ¥ simultaneously and puts them into the
object y;. The construct also allows parallel transformation processing to be expressible in DL. As mentioned
before, the programming language OTL turns out to be an abstract and well defined sublanguage of SETL which
is equivalent to SETL both in computing power and flexibility. We also analyze the constructs of OTL and exhi-
bit an independent (non redundant) subset OTLy of OTL which is of the same expressive power. At the end of

section 4 we state our main mathematical results, which stand here to illustrate the suitability of our approach.

In section 5 we give a sketch of our proofs. For this we have to discuss the relationship between comput-
able object transformations and various set theoretic definability concepts. This section is more of foundational
interest than computational relevance. It relates computability in hereditarily finite sets over urelements to X;-

definability in the sense of A. Levy [Le65].

In section 6 we discuss the definition of abstract data types in our model from a complexity point of view.
We introduce a programming language of while-free programs TROTL, and of while-free programs with transi-
tive closure TROTL(HTC), and associate with it a specification languages ;7 and X,P(HTC) respectively. Our
main results are that all programs in TROTL are polynomial-time computable and that the classes of objects
which are in NP are exactly the Z;"(HTC)-definable classes. Other characterizations are also given. This shows

that our choice of programming and specification constructs satisfies also our complexity requirements.
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2. The semantic model.

The purpose of this section is to define finite objects of higher order. The simplest objects are the urele-
ments (or atoms), which are all isomorphic to each other and have no elements. On the next level we have
finite sets of urelements, which are isomorphic if and only if they have the same cardinality. More complicated

objects can be formed by allowing objects to contain finite sets of both urelements and objects of lower order.

More formally,we start our definition similar as in [DM85]. Let U denote a fixed countable set, catled the
universal domain, which is an infinite set of urelements. Let D U be finite and nonempty.

We now define inductively our objects over D:

The objects of order O are exactly the elements of D (the urelements).
The objects of order 1 are the finite sets of objects of order 0 (including the empty set D).
The objects of order n+1 are exactly the finite sets of objects of order smaller or equal to a.

We denote the collection of objects of order n by V(D). We also write V(D)= ) V(D) for the collection of all

reN
objects. Since V,(D) is an element of V,,,(D) the collection of objects of order n is itself an object (i.e. a heredi-
tarily finite set). V(D) itself is not an object, since it is infinite. We shall call collections of objects which are not
objects classes. (This follows the tradition of axiomatic set theory adapted to finite sets.)

Let A:D —> D* a function between two domains. We define an extension V(D) — V(D) in the following
way:
(i) For urelements d € V(D) we put h(d)=h(d);
(ii) For 8 € V(D) we put

h&)={h(o):0. € 8}.
Two objects A over a domain D and A* over a domain D* are isomorphic if there is a one-one and and

onto map k:D—D* such that h(Ay=A*.

In traditional set theory without urelements two sets are isomorphic iff they are equal (by their exten-
sions). Once we introduce urelements, this is no longer true.

For the complexity considerations in section 6 we need still a stronger definition:

Definition:
(i) Let Ob be an object. We define inductively the subobjects of depth n for >0 a natural number. The subob-

jects of depth 1 are the subobjects Ob; € Ob. The subobjects of depth n+1 are the subobjects Ob, which are



30

elements of the subobjects of depth n but which are not subobjects of depth n by themselves.
(ii) Let Ob be an object and n>0 a natural number. We define a modified object Ob | n by replacing distinct
subobjects of depth n of Ob by distinct new urelements.

(iii) Let >0 be a natural number. We say that two objects Oby,0b, are n-isomorphic if Ob; | n=0b, | n.

3. Computable object transformations.
Let D be a finite set and V(D) be the set of objects over D. An k-ary object transformation is a function
T:V(DY* — V(D) such that for every bijection 12D — D and every &y, . . . .5, € V(D) we have

T(A(8),-AB)=AT By, . . . 89)
This definition is analogous to the isomorphism invariance of queries in [CH80).

Since all the elements of V(D) are finite objects it makes sense to speak of a "standard" coding of V(D) in
the natral numbers N. This allows us to use freely the notion of computable functions over V(D).

An k-ary object transformation is computable if it is computable using the standard coding.

Examples:
(i) Let & be an object and let {8} be the object containing & as its only subobject. The transformation T singieron
which maps & into {8} is clearly a computable object transformation.
(iiy Let 8, 8, be two objects and let 8; U §, be the object which contains exactly the subobjects of §; and &, as
its subobjects. The transformation TU which maps §; and 8, into &, U 5, is clearly a computable object
transformation.
(iii) Let §;, 8, be two objects and let §;—8, be the object which contains exactly the subobjects of §; which are
not in &, as its subobjects. The transformation Tifarence Which maps 8, and 8, into 8,—8, is clearly a comput-
able object transformation.
(iv) Let & be an object and let P(5) be the object containing exactly each subset of subobjects of & as a subob-
ject. The transformation T, which maps § into P(5) is clearly a computable object transformation.
(v) Let & be an object and let U(3) be the object containing exactly each subobject of a subobject of & as a

subobject. The transformation Tu which maps § into U(3) is clearly a computable object transformation.

(vi) Let 8 be an object and let Ur(5) be the object of order 1 containing exactly the urelements which are leaves

of 8 as its subobjects. The transformation Ty, which maps 8 into Ur(8) is clearly a computable object transfor-

mation,
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(vii) (Kuratowski pair) Set

Pair(8,,5)={{8},{8:,8,}}
Clearly Pair is a computable object transformation.
(vii) Let 8 be an object and let HTC((8) be the the set of all objects and relations, which are in its rransitive
closure under membership (the hereditary transitive closure). Now we put HTC(3) to be HTCy(8) U {8}. Then
clearly HTC is a computable object transformation. Note that HTC preserves isomorphisms but, in contrast to
the previous examples, for no n>0 does it preserve n-isomorphisms.
(ix) We can use {} as truth value true and & as truth value false. This allows us to define computable predi-
cates as object transformations whose value are frue or false. The collection of objects which satisfy a comput-
able predicate generally is a class. Computable predicates can be used to define auxiliary data structures such as
Naturalnumbers,lists,stacks etc.
(x) To give one example of a auxiliary data structure we shall define the set of natural numbers with their suc-
cessor, following the classical representation of (finite) ordinals attributed to J.v.Neumann. Zero is the empty
set. If A is a natural number then s(A)=A U {A} is the successor of A. Clearly s(d) is a computable object
transformation. The traditional definition of the natural numbers is the smallest class containing the empty set
and being closed under the successor (Dedekind). This definition involves a fixed point. We now give a fixed-
point-free definition of the natural numbers: An object Ob is transitive if whenever x € Ob then x is a subset of
0b. 0b is connex if whenever x,y € Ob then either x € y , x=y or y € x. Ob is urelement-free if no member of
Ob is an urelement. It is folklore knowledge in set theory that the ordinals are exactly the class of transitive,
connex and urelement-free sets. Here, the natural numbers are exactly the ordinals, since all our sets are heredi-

tarily finite. It will follow from the Definability theorem in section 5 that the class of natural numbers is com-
putable.

We shall discuss computable data structures in more detail in section 6.

The examples (i)-(v) (or slight variations thereof) will be among the basic constructs of our object
transformation language DL, defined in the next section. The reader can easily find more examples. As an exer-
cise for computable predicates we suggest comparison of relations via file length, arity of relations and testing

whether an object is in V(D).
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4. The object transformation language OTL.

The object transformation language OTL we define is essentially a programming language computing finite

higher order objects over some finite domain.

4.1, Language definition: Syntax.

Y1 Y2s-. are variables of OTL. The set of terms of OTL is inductively defined as follows:
(i) D is a term of OTL; for i21 y; are terms of OTL; if Ob; is an object name then Ob; is a term of OTL.
(ii) For any terms t;,¢, of OTL

{tur}, Ult), Py, Singlty), (-t (1 U by
are terms of OTL.

The set of programs of OTL is inductively defined as follows:
(i) If ¢ is a term of OTL then y;=t is a program of OTL.
(ii) If P,,P, is a program of OTL then (Py;P,) and while y; do P, are programs of OTL.
(iii) If P is a program of OTL then

mkob y; from y; in ye by POy, ... .ym

is a program of OTL. The variable y; occurs here as a bounded variable similar to j in ¥a;.
i

4.2. Language definition: Semantics.

Let D be a finite set of urelements and V(D) be the class of objects over D.
(i) Let z be a function from the variables y;,y,, - - - into V(D), the set of objects over D. We call such a func-
tion a object assignment over D or assignment for short. We think of the set of all object assignments over D as
the set of states for our object transformation. We denote this set by Stares(D).
(iiy The meaning of a program P acting on D is a partial function p(P):States(D) — States(D).
First we define for every term ¢ of OTL inductively the meaning function py(r):States(D) — V(D) in the follow-
ing way:
(D) (2)={xx & D},
Hoy)(2)=2(y)s
Let #; and 1, be terms in OTL. Then for each z € States(D):

(D) Be{r,LNE={1olt: X2)Holt2) ()1,
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(2) Ho(P(1))(2)= Powerset of o(t1)(z)

(3) For pHo(U(#)(z) we distinguish three cases:

(3i) If all subobjects of py(4;)(z) are different from urelements then we set po(U(t;)(z)= W(Ho(1))(2);

(3ii) If po(#1)Xz) has at least two subobjects we take the union as in (3i) treating its subobjects which are urele-
ments as empty sets.

(3iii) If Wo(#)(2) has exactly one subobject which is an urelement Ur then wo(U(t, Xz)=Ur.

4) Holty U 1)(2)= No(11)(2) U Holt)(2). IF po(ty)(z) o pg(,)(2) is an urelement then oty U £)(2) is empty.

(5) Halti—t2)(2)= Ha(f1)(2)Ho(12)(2)

Here X-Y is the set of all elements of X not being in Y.

(6) Ho(Singl(t))(2)= {{x} : x € Ho(!1)(2) }

Next we define for every program P € OTL inductively the meaning function p(P) in the following way:
(a) If P is of the form y;=f then we put PW(P)(2)(yy=2(y) if j # i and PP)(z)(yy=Ho(f)(z) otherwise.
(b) If P is Py;P, then P(P)(z)=l(P2)((P1)(Z)). This is the usual composition of functions.
(c) If P is while y; do Py then p(P)(2) is defined in the usual way on a sequence of states z;,;=(P;)(z;) with
zo=2. M(P)(z) is the first z; such that z(y;) is not an empty relation or object.
(d) If P is mkob y; from y; iny, by Pi(y1, ... .y, then
WPYO)= {WP N z)0):210)=z(n) for 1= and z(y) € 203}, if for all z;, st z(y)=z(y) for I and
z(y) € 2(ye) WP1)(z1)(y) is defined, otherwise W(P)(z)(y;) is undefined.
In words this says, for the case m=j=1, that the new object y; is obtained in the following way: one applies in
parallel to all the subobjects y; of y; the program Py and puts in to y; all the results so obtained. If j>m the new
object contains exactly one subobject of the form #(yy,...ym). Otherwise, the objects yy....¥i1,Yj1,-. are free
parameters. Remember that y; occurs here as a bounded variable. The reader acquainted with axiomatic set

theory will easily recognize in this definition the replacement axiom of Zermelo-Frankel set theory.

4.3. Main results of constructs.

Let Oby,...,0b; be k given objects and let z4, be the assignment with 2. {(y)=0b; for all i<k and
ZiniiatYi)=2 for all i>k. Given a program P(y;,. ...y, € OTL and a variable y; we look at the function

Tp V(D) — V(D) TpOby, . . . .Ob=(P) Zimiza) 0))-



34

Theorem (Computability of OTL-programs): For every program P € OTL and each variable y; the the

function Tp, _,:V(D)" — V(D) is a computable object transformation.

Proof: For programs of the form y;=¢ this follows from the examples (i)-(iv) of section 3. For P of the
form Py;P, or while y; do P, this follows from the closure properties of partial recursive functions. For the
mkob-construct this follows from the following closure property of partial recursive functions:

Let f be a partial recursive function from N™ — N. We denote by <{f(a1,...@11,8,d41,....dm):a<b}> the Godel
number of the set {f(a,,...,aj_,,a,am,...,am):«b}. Let g(ap,...,ai1,0,a51,.-a,) be defined to be
<{f(@y,...s851,8,811..-,8m):0<b}>. Then g is a partial recursive function from N™ — N.

Now let P be of the form

mkob y; from y; in y. by Py, ... ¥
To complete the proof we note that f corresponds to the program Py, g(b) to ¥, b to y, and a to y;.

Theorem (Completeness of OTL): The object transformation language OTL is complete, i.e. for every

computable object transformation T there is a program Py € OTL computing it.

The natural question arises to whether the set of basic constructs is minimal, and if not, what are the exact
interrelationships. It turns out that this is a rather delicate problem. In the following definition we introduce a
sublanguage OTL, of OTL which has an independent set of constructs. The proof of the independence will be

sketched in section 5.

Definition: Let OTL, be obtained from OTL by restricting its definition to the constructs while and mkob

together with

Ds U(t)- {’1:'2}, ('1—"2)-
Theorem (Independent constructs for OTL):

(i) OTL, is complete (and therefore of equal compuational power as OTL).
(ii) For each construct ¢ of OTL, there is a computable object transformation T which is not expressible in
OTL—{c}.

To evaluate the complexity of the basic constrcuts of OTL, we would have to define precisely the compu-
tational model in which we count operations. But it is easy to verify that, in any reasonable machine model
(RAM or various notions of Turing machines etc), the basic operations are polynomial time computable and that

the while-construct and the mkob-construct satisfy our additivity criterion.
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5. Outline of proofs.

In this section we want to outline the proofs of our two main theorems, completeness and the indepen-
dence of the constructs. For this we have to relate our results to set theoretic definability theory. Definability
theory studies the structure of first order definable sets in various structures such as arithmetic, the real numbers,
models of set theory, etc. The purpose is to characterize definable sets in terms of recursion theory, topology or
game theory. Classical monographs on the subject are [Ba75, Mo74, Mo80]. The pioneer paper for models of
set theory is [Levy). There he introduces the notion of Z;-definability in set theory as a generalization of recur-
sive enumerability.in the infinite set theoretic context. The analogy of Z,-definable and recursive enumerable
sets is based on the following fact (which is folklore among set theorists):

Consider the structure HF(@)=<HF(J), € > with universe the hereditary finite sets without urelements and

membership as its only relation. In HF(QJ) the Z;-definable sets are exactly the recursive enumerable sets.

The notion of Z,-definability has a natural meaning also in the structures HF(D) where D is a finite set of
urelements. The structure HF(D) is the tuple <V(D), € > in which our language OTL operates. So, the question
arises whether the computable object transformations are related to an appropriate version of I;-definable sets.
The purpose of this section is to define Z,-definability appropriately and to establish the following theorem:

Theorem (Definability theorem for computable classes): Let A be a class in V(D). Then the following
statements are equivalent:

(i) A is recursive enumerable and isomorphism invariant (that means for each natural extension & of a bijection
from D to D: x € A iff h(x) € A);
(i) A is recognizable by a OTL-program;

(iif) A is Z;-definable, that means, there is a I;- formula ¢, s.t.

A={&:HF(D) |= §(8)}.
Note that (i) just states that the characteristic function of A is a computable object transformation, and (ii),
that the characteristic function of A is the meaning of a OTL-program. Therefore, their equivalence is just the

completeness theorem.

We consider first order formulas with equality using the binary membership relation symbol € and a

constant symbol D as its only nonlogical symbols.
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We write (Vx € y)P for Vx(xe y > P) and (A xe y)P for Hx(xe y AP). (Vxe y)and (Hx e y) are
called bounded quantifiers.

A formula ¢ is called I, iff all quantifiers in it are bounded and Z; iff it is of the form & x;,...,H x,y
where v is Zg.

Sketch of proof (of the definability theorem): We will prove (i) -> (iii) and (iii) -> (ii). (ii) -> (i) is trivial.

(i) -> (iii): Assume A is recognized by a Turing machine P. Then § € A iff
there is a correct coding of 8 and there is a P- computation on the coding giving a positive answer. Codings on
Turing machines and computations can be coded as sets in V(D), provided that A is isomorphism invariant.

Hence we get a £;-formula expressing A.

(iii) -> (ii): We want to prove that each SIMA,-expressible subset of V(D) is recognizable by a program in
OTL. At first we can prove that € is decidable by a OTL-program( x € y iff {x} Uy # @. Claim: if P is a
predicate, decidable by a OTL-program then also (3 x € y)P.
This claim can be proved by the following comprehension scheme in OTL:
Given a computable predicate P in OTL, then the function G which maps each object § to the set of its subob-
jects 8y, s.t. P(3y) is expressible in OTL.
To see this we observe:
(i) Let H be the function which maps each 3, to its singleton if P(3,) and to the empty set otherwise. H is obvi-
ously expressible in OTL if P is in OTL.
(i) \ J({H(8,):8, € 8} is the set G(3).

From this comprehension scheme it follows easily that each Zo-predicate is decidable by a OTL-program.

Now we have to consider a £, formula  xy. We get a computable object transformation which com-
putes for each for each natural number £ the set V(D). We only have to write a OTL-program which computes
the smallest Vi(D), which has an x satisfying . The class of natural numbers is computable in OTL since it is

Zg-definable as one can see by looking again at example (x) of section 3.
Proof of the Independence Theorem:

The proof of the independence of the constructs of OTLy is always based on variations of the same idea:
Ommitting a construct adds to the resnlting sublanguage a closure property which does not hold for OTLg. For

example, to show that the complement — is needed we observe that complement-free programs commute with
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homomorphic images of the domain. The least non-trivial result here is the necessity of the mkob-construct. Our
proof uses the fact that we do not have the full power set operation among our basic constructs. The full power
set, however, can be obtained using mkob and construct of unordered pairs {,}. To see that the construct of
unordered pairs {,} cannot be ommitted we observe that without it the class of constant terms has the following

property: Given an interpretation of a constant term then all its elements are isomorphic.

6. Polynomially recognizable classes and abstract data types.

In this section we want to describe the mechanism in herent in SETL-like languages for the specification
of abstract data types. Before we present the reader with a formal definition we want to discuss 2 motivating

example.

Assume we want to introduce a new data type GRAPH(D) of finite undirected graphs with a bounded

number of unspecified vertices. For this purpose we think of the vertices as urelements and the edges as unor-
dered pairs of vertices. The classe of graphs GRAPH(D) then consists of ali objects of the form <V,E> where V
is a subset of D (the urelements) and E is a subset of the unordered pairs of V' (denoted by W25
If we want to look at the class of numbered graphs NGRAPH we would require additionally that V is an initial
segment of the class NAT of natural numbers, as introduced in example (x) of section 2.
It is easy to verify that data types defined in this way have the property that their objects are polynomially
recognizable. The same holds for all the other common data types such as LISTS, STACKS, TREES, etc. The
purpose of this section is to define a specification language for data types recognizable non-deterministically in
polynomial time. Let C be a class of objects. We shall write C is in P (C is in NP) if C is recognizable (non-
deterministically) in polynomial time. Here the size of an object is given by the number of elements in its tran-
sitive closure HTC.

First we observe the following:

Proposition: Let C be a class of objects which is Zo-definable, i.e. there is a o-formula ¢(x) such that
is the collection of objects satisfying ¢. Then C is in P and there is a natural number n>0 such that C is close

under n-isomorphisms.

To characterize the classes of objects in NP we define the while-free terms of OTLo and denote therr

TROTL (terms and replacement of OTL).
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(1) The terms of OTLq are in TROTL.
(2)  If 11,1, are terms of TROTL and y; is a variable then MKOB(t t,y;) is a term of TROTL.

The semantics of TROTL is defined as for OTL, with the difference that MKOB s a term construct replac-
ing mkob. The interpretation of MKOB(t, 1,,) is the object interpreting y; in

mkob y; from y; in 4 by £,
We also define the set of terms TROTL(HTC) which is obtained from TROTL by closing it under the operation

HTC as defined in example (viii) of section 3.
Proposition: Every term in TROTL(HTC) represents a polynomial time computable object transformation.
We next define the specification language ¥ and Z, ' (HTC).
(1) I ty,t, are terms of TROTL (TROTL(HTC)) then t; € t, and t;=t, are formulas of ;7. (T (HTC)).
(2) If d and y are formulas of Xo" (Z(HTC)), then also ¢ A y,¢ V w,—¢ are formulas of X7 (Z¢"(HTC)).
(3) If 1 is a term of TROTL (TROTL(HTC)) and ¢ is a formula of Eo" (E(HTC)), then T y; € 6 1is also a
formula of £ (Zf(HTC)).
The semantics of £ -formulas and X;"(HTC)-formulas is obvious.
Proposition:
(i) Every class C definable in 5 (HTC) is in P.
(ii) There are classes C in P which are not Z¥(HTC)-definable.
(iiiy For every class C definable in X,” there is a natural number »>0 such that C is closed under n-
isomorphisms.
Proof: (i) is obvious and (ii) can be proved in a similar way as the statement in [CHS82] that there are
polynomial time queries which are not first order definable. To see (iii) we observe that the n is determined by

the number of bounded quantifiers occurring in the formula defining C.

Next we define the set of Z,"-formulas and X,°(HTC)-formulas:

(1) Al X -formulas (Z¢"(HTC)-formulas) are X,”-formulas (£,P(HTC)-formulas).

(2) If 4, is a term of TROTL (TROTL(HTC)) and ¢ is a formula of X, (P (HTC)), then H y; < 1 is also a

formula of £, (E,P(HTC)).
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Theorem (Characterization of NP-recognizable classes):

Let C be a class of objects which is closed under isomorphisms. (i) Then C is in NP iff C is I, (HTC)-
definable.
(ii) C is X, -definable iff there is a natural number n>0 such that C is closed under n-isomorphisms and C is in

NP.

Proof: The proof is a simple modification of Fagin's characterization of NP-recognizable classes of finite
first order structures [Fa74). Here it is essential that objects Ob are always represented by their transitive clo-

sure HTC(Ob).

This last theorem suggests that %7 and X, 7(HTC) are very reasonable specification languages for abstract
data types. The class NP arises naturally here since we have no order on the urelements. Characterizations of

lower complexity classes as in [Im83] always require some auxiliary predicates.

Problem: Find a natural choice of basic constructs which allows to characterize the lower complexity

classes such as logarithmic space and polynomial time.
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