
PAPETRI : Environment for the Analysis
of PETRI nets

G. BERTHELOT (*), C. JOHNEN (**), L. PETRUCCI (***)

(*) CEDRIC-lIE, 18 All6e Jean Rostand, BP 77, 91002 EVRY CEDEX

(**) L.R.I., U.A. au CNRS 410, Brit. 490, Universit6 Paris-Sud, 91405 ORSAY CEDEX

(***) MASI, tour 65, Universit6 Pierre et Marie Curie, 4 place Jussieu, 75252 PARIS CEDEX 05

Work supported by ESPRIT project DEMON (BRA 3148).

A b s t r a c t

In this paper, we present PAPETRI, a general and integrated environment for
editing and analysing Petri nets. PAPETRI allows us to work with different classes of
nets. Several analysis tools are available for each of these classes.

The kernel of PAPETRI is the graphical and interactive editor, PETRIX. Five
analysis tools are available : a graphical simulator of Petri nets, two constructors of
covering graphs, a generator of semi-flows (COMBAG), a method using rewriting
techniques (PETRIREVE), an analyser and simulator of algebraic nets (VAERA).
Each of these tools, as well as PETRIX, is detailed hereafter.

1/ P A P E T R I : overv iew

Petri nets I and their extensions are special classes of transitions systems where
states are specified by tuples and transitions by a couple of tuples representing
respectively precondition and modification of the state.

The goal of PAPETRI (in French, Poste pour l'Analyse des rdseaux de PETRI) is
to provide a friendly editing environment and to afford a great deal of analysis tools

1 Basic notions and definitions on Petri nets can be found in [Rei85].

14

for several classes of Petri nets. These tools are not only based on nets classical
methods but also on original approaches using rewriting techniques and abstract data

types.

A particular care was accorded, in the conception of PAPETRI, on one hand to the
flexibility of edition and on the other hand to the easy integration of new tools. The
actual functionnalities are given hereafter, for each class of nets •

• P e t r i ne t s • simulation, construction of covering graphs, computation of a
generative family of semi-flows, analysis with rewriting techniques;

• C o l o u r e d n e t s [Jen81] : construction of covering graphs, semi-flows
calculus;

• A l g e b r a i c ne ts [Vau85] : syntactic verification, simulation, skeleton analysis
(Petri net), normed net analysis (algebraic net).

This list will be enlarged • the edition of nets may be extended to other classes, and
other tools can be integrated in PAPETRI.

The main function of PAPETRI is PETRIX, a graphical and interactive
environment for the edition of nets. The characteristics of PETRIX are detailed in
section 2. The commands which may be used are called throughout a set of unfolding
menus and dialog windows. They also allow us to call analysis tools for the class of the
edited net.

Five analysis tools are presently integrated in PAPETRI :

• S i m u l a t o r • graphical simulation of token game, described in section 2;

• C o v e r i n g g r a p h s : a first procedure builds the classical Karp and Miller covering
graph and allows to check some net properties. A second one computes the minimal
covering graph. These two tools are presented in section 3;

• C O M B A G : semi-flows computation, introduced in section 4;

• P E T R I R E V E : analysis of Petri nets using rewriting techniques, described in
section 5;

• V A E R A • tool for syntactic verification, simulation and analysis of algebraic nets,
detailed in section 6.

2/ P E T R I X : the e d i t o r - s i m u l a t o r

The graphical and interactive editor of nets, PETRIX, uses the XWINDOWS
environment on UNIX workstations.

15

PETRIX allows to draw a net, using the mouse and unfolding menus. It is possible
to create, modify, drag and suppress the basic objects of a Petri net that are places,
transitions, arcs and tokens. An arc joining a place and a transition together may be
created as a broken arrow between the two objects. A token must be created inside a
place but may be moved into another one. So, the graph obtained is a correct Petri net.
Each of the objects may be named. It is possible to create texts which are either free
(comments, title of the net), or linked to another object. The shape and the size of
graphical objects may be changed.

Several nets can be edited at the same time, each of them being displayed in separate
windows. Operations such as cut (or copy)/paste allow the user to insert a part of a net
into another net.

The size of edited nets is only limited by the available memory (several thousands
of objects for 1Mb).

The simulation of an ordinary net allows to play the token game using the usual
enabling roles. Evolutions can be viewed, as the marking of each place is modified in
the window. The token game can be performed according to three modes : manual,
semi-automatic or automatic. In manual mode, the simulator selects the enabled
transitions and the user chooses the one he wants to occur. In semi-automatic mode,
the evolution is done as long as only one transition can occur. Otherwise, all enabled
transitions are highlighted and the user chooses the one to occur. In automatic mode,
choices are randomly made. The simulation stops when no transition can occur. The
user can stop the simulation whenever he wants, in any mode.

3/ Covering graphs

The more classical technique for the analysis of Petri nets consists in the
construction of the covering graph : all the reachable markings are listed; when the set
of reachable markings is infinite, a shortened list leads to build a bounded graph
[KM69]. Important properties (boundedness of places, quasi-live transitions,
regularity of the language) are decidable by procedures which analyze the graph.

A procedure to build this graph is available for places/transitions nets and coloured
nets in PAPETRI. Once the graph is computed, an analyser of covering graphs
provides diagnosis functions for the net as well as a visualisation of the graph. These
functions are obtained through a menu.

The analysis functions concern the following properties : regularity of the
language, existence of repetitive sequences of transitions, list of unbounded places and
quasi-live transitions.

16

The analyser can compute the covering graph terminal connected components,
which gives more information concerning liveness of transitions, home states,
deadlocks of the net.

The mutual exclusion between places can be tested. The users specifies the places he
wants to test the mutual exclusion of, then the analyser tests it on all nodes labels.
Moreover, the analyser indicates whether these places can be empty all together.

The user can specify a sequence of transitions to occur, starting from the initial
marking, and the analyser indicates the node obtained if the sequence labels a path in
the graph. In the case of a bounded net, this function allows a behavioural study.

The graph may be scanned : the analyser lists all nodes labels.

The construction of a covering graph is expensive as well in time as in space. These
difficulties may be reduced by the use of the minimal covering graph [Fin89] : are
only kept the nodes with uncomparable labels. The number of nodes may thus be
drastically decreased (several orders of magnitude). The construction of such a graph,
both for places/transitions nets and coloured nets, was integrated in PETRIX [Mor89].
For the moment, the diagnosis functions are not available with this sort of graph.

For coloured nets, it could be possible to reduce furthermore the size of covering
graphs, by the use of this technique combined with Jensen's, which are based on
symmetries between colours ([HJJJ86]).

The construction of the covering graph allows to analyse the net for only one initial
marking. However, a lot of nets model systems with various initial states. In our
example, the protocol must be valid whichever the number of trains departing from
West_Terminus or East_Terminus is. This goal can be reached by the study of semi-
flows.

4/ COMBAG : semi-flows computation

In this section, we present COMBAG [Tre88] : a structural analysis method (i.e.
which relies only on edges between places and transitions) which allows the validation
of net properties independently of the initial marking. COMBAG is a tool for semi-
flows computation in a Petri net. Two kinds of semi-flows are derived from the
incidence matrix C :

• a p - s e m i - f l o w f weights every place such that fT .c -- 0. It leads to a net
invariant : the weighted sum of tokens in places is constant for any reachable
marking;

17

• a t - s e m i - f l o w f associates a number of occurrences with every transition such
that C.f = 0. It denotes the repetitive and stationnary sequences of transitions.

In the following, we will use the term s e m i - f l o w to denote as well p-semi-flows as t-
semi-flows.

The semi-flows over 1~I (weights are positive integers) allow a finite generative
family ." every semi-flow over l~I can be expressed as a linear combination of the semi-
flows in the generative family.

COMBAG calculates a generative family of semi-flows over t~I, using Farkas'
algorithm, the complexity of which is exponential w.r.t, time. To decrease the
answering delays, COMBAG proposes, at each step, two optimization techniques. The
first one consists in looking for the incidence matrix column that generates less
operations, and the other one suppresses unusefull lines.

The use of coloured nets, which shorten Petri nets, leads to more concise nets. The
arcs can be valued by variables (in this case, any token may be used, with no constraint
as concerns its colour), or by colours (the token must have the same colour as the
valuation).

COMBAG provides semi-flows for coloured nets having a finite number of
colours. It calculates a generative family for three classes of semi-flows over ~.
(weights are signed integers) of a coloured net [VM84] :

• type I : semi-flows f such that fT.ICI = 0. They indicate invariant assertions on the
number of tokens in places, without considering their colour.

• t ype 2 : semi-flows f such that fT.c = 0. They denote invariant assertions on the
number of tokens of a colour, valid for every colour (except the distinguished
neutral one).

° type 3 : semi-flows f such that fT.l-[a(C) = 0 (where l-Ia(C) is the projection of the

incidence matrix on colour a). They represent invariant assertions on the number
of tokens with colour a. This sort of semi-flows can be calculated for each colour
(except the black one).

This technique enables us to find out structural properties of a net, but it does not
give any piece of information concerning the net behaviour. In the next section, we
introduce an original approach for the analysis of nets w.r.t, a class of initial
markings.

18

5/ PETRIREVE : analysis with rewriting techniques

PETRIREVE [CJ85] analyses Petri nets with validation techniques based on
rewriting systems. This technique studies the behaviour of a net independently of the
initial martking, and thus validates structural properties of the net (termination).

PETRIREVE builts a set of oriented equations representing the behaviour of the
net. Knuth-Bendix's completion transforms these equations into a rewriting system.
To do so, PETRIREVE uses system REVE [FG83] - rewriting laboratory -
developped by the CRIN (Nancy, France) and the MIT (Cambridge, USA). Studying
the obtained rewriting system leads to straightly deduce some net properties
(confluence, boundedness). Other properties (invariants, quasi-liveness,
reachability, termination) may be validated by testing the completion of the
rewriting system to which a specific equation is added.

We conceived a general technique to represent the behaviour of a net by a canonical
rewriting system. A marking is represented by a term with operator state as header,
this operator having as many arguments as there are places in the net. Each argument
corresponds to a place : the value of the argument is the number of tokens in the place.

Each transition is represented by an equation. The left term denotes the
precondition necessary for the transition to occur. Every term that unifies with the
left term denotes a marking for which the transition can occur. The right term
represents the state obtained after the occurrence of the transition.

PETRIREVE creates other equations in order to rewrite any term representing a
deadlock as an identical term where the header is deadlock.

The rewriting system obtained after performing Knuth-Bendix's completion must
converge to be used for proofs. Moreover, the equations have to be oriented as the
occurrences of transitions. These two requirements leaded us to design an order on
place-arguments of state to ensure termination, if possible, taking into account the
orientation induced by transitions.

PETRIREVE automatically constructs the equations related to the net behaviour.
These equations are transmitted to REVE which transforms them into a rewriting
system with Knuth-Bendix's completion. The completion reduces the two members of
an equation into their normal form and orientates the equation. Critical pairs
eventually generate new equations. So, on one hand, rules can be redundant and thus
suppressed of the system. On the other hand, these new equations may lead to
reduction of already existing rules.

As the rewriting system is canonical, proofs which usually need a recurrent
procedure can be performed. The equation to satisfy is added to the rewriting system.
If the system (with this new equation) completion does not build any equation between

19

generators (s, 0), then the equation is satisfied in the initial algebra [HH80]. To verify
a p-semi-flow, the user adds a rule corresponding to the associated invariant to the
system. It is as follows :

inv(state(before occuring) == inv(state(after occuring)).

If these equations create rules between generators, the invariant is not coherent
with the occurrence of the transition. As the completion does not create any equation
between generators, the invariant is valid.

We deduce, with this technique, the termination of the net for a class of initial
markings (and not for only one initial marking).

PETRIREVE is the first tool to verify the termination of a net for a class of initial
states (a net terminates from an initial state if it always reaches a unique terminal state
without successors). For the moment, PETRIREVE only analyses Petri nets. It may
be extended to other classes of nets. However, the delays of completion will certainly
be quite long.

6/ VAERA : Verification, Analysis and Evolution of algebRAic nets

The algebraic nets defined by J. Vautherin [Vau85] add another extent to Petri nets.
The main interest of such a sort of high level nets is structuring data by the use of a
specification of abstract data types. This is consistent with recent programming
methods.

Let us shortly recall the way an algebraic net works. Such a net consists in the
association of two components : a specification of abstract data types, which describes
the data types used and the operations on them, and a Petri net. The places of the net
are sorted, the tokens being constants of the specification, of the same sort as their
containing place. The arcs are valued by terms of the specification.

The transitions are enabled according to the following criteria : first of all, the
conditions on the amount of tokens in places must be valid, as in places/transitions
nets, secondly, conditions between arcs valuations and tokens values must be satisfied.
Each arc entering a transition is valued either by a term without variables, or by a
single variable. In the first case, a token with this value must be used to fire the
transition. In the second case, the variable takes the value of one of the tokens for the
occurrence of the transition. Afterwards, if the transition occurs, the term associated
with each arc exiting the transition is evaluated (variables occurring in the term have
the value given when examining the entering arcs), and a token having this value is

20

created in the corresponding place. Transitions may also have an auxiliary condition
(sound equation) associated with them. This equation, the hand-sides of which are
functions of the entering variables, must be valid for the transition to occur.

The analysis of algebraic nets is more complex than the analysis of
places/transitions nets, due to the powerfulness of abstract data types. Tokens meaning
is denoted as well by their presence in places as by their value. Two tokens within a
same place may have different interpretations. We will first explain how PETRIX
deals with the def'mition of an algebraic net, and we will detail afterwards the analysis
tools we have designed.

When the user wants to design an algebraic net, he describes the Petri net part with
PETRIX and uses VAERA for everything related to algebraic specifications. These
must have been created by ASSPEGIQUE (in French, ASsistance ~t la SPEcification
alg6brIQUE, see [Cho88]), environment for algebraic specification developped at the
LRI (Orsay, France), which can be called by VAERA.

Once the net is created, VAERA provides a tool for syntactic verification of the
terms in the net and checks the coherence of the sorts used (tokens must be of sort of
the place they are in).

It is also possible to use the simulator included in VAERA to observe the behaviour
of the net : the user selects, with the mouse, the transition to occur. The tool verifies
that the conditions necessary for the transition to occur are satisfied, and if true, fires
the transition as described before. As tokens may have different values, two modes of
simulation are available : either the user chooses which tokens will be used for the
transition to occur, or the tokens are randomly chosen by VAERA.

Let us now introduce our various analysis tools. It may be interesting, in order to
analyse algebraic nets, to yield simpler models by ignoring some pieces of
information. These models are the skeleton and the normed net. Indeed, the difficulty
of analysis of algebraic nets countervails their expression power.

The skeleton of an algebraic net :

The first model that we will study is the underlying Petri net, named skeleton (see
[Vau85]). VAERA can automatically generate the skeleton of an algebraic net :
auxiliary conditions for transitions to occur, arcs valuations and tokens values are
forgotten. Thus, we obtain a net which can be analysed by the places/transitions tools
previously described.

Some properties such as the boundedness of a place, the non quasi-liveness of a
transition and the termination of a net are true for the algebraic net if they are true for
its skeleton.

21

The n0rmed net :

Another model extracted from the algebraic net is the normed net (see [Pet88]).
The normed net is a model between the algebraic net (the most structured model) and
the skeleton (the less structured model). This net contains less information than the
algebraic net, but more than the skeleton. The analysis of the normed net is indeed
more complex than the analysis of the skeleton, but its importance leans upon the
degree of information it contains. This is the reason why its analysis allows us to
detect properties of the algebraic net which are not valid for the skeleton. The main
analysis which can be performed concerns the termination of the net.

The normed net is derived from the algebraic net by forgetting the auxiliary
conditions for transitions to occur and by changing the valuation of arcs as well as the
values of tokens into their norm. The norm maps a term to its "size". For example, as
concems files, function norm counts the number of elements in the file.

To generate this net, the user will have to include in his specification the definition
of function n o r m . T h e net obtained is then such that the values of the tokens are
unsigned integers. A transition will not occur if this operation leads to create strictly
negative tokens.

We have proved [Pet88] that the termination of the normed net implies the
termination of the algebraic net. To validate this property, we observe the behaviour
of the net transitions. If a transition cannot infinitely occur, we will say that it can be
blocked. If all the transitions can be blocked, the net terminates. VAERA decides, in a
lot of cases, of the blocking of transitions. It tells the user if the net terminates, and
otherwise gives the list of blockable transitions.

For the moment, we only have semi-decision procedures. They cannot infirm
termination. Hence, to improve the analysis of algebraic nets, we intend to add a tool
for the construction of finite reachable markings graphs.

7/ Conclusion and future work

We presented, in this paper, PAPETRI. It offers, in a graphical environment,
various analysis tools. Moreover, it deals with different classes of nets : ordinary nets,
coloured nets, algebraic nets. The mixture of techniques from various theories allows
to study all the aspects of a system and to fully validate it.

As concerns the examples we studied, the answering delays are reasonable w.r.t, the
calculus complexity (a few minutes for the longer operations).

22

PAPETRI is an open system which may easily receive other tools and may be
extended to other classes of nets. The next foreseen extensions deal with the
construction of reachable markings graphs for algebraic nets and verification of home
states.

Bibliography

[Cho88]

[CJ85]

[FG831

[Fin89]

[Jen81]

[KM69]

inns0]

[HJJJ86]

[Mor89]

[Pet88]

[Rei85]

[Tre88]

[Vau85]

[VM84]

Choppy C. : ASSPEGIQUE user's manual, rapport de recherche L.R.I.
n°452, Orsay, 1988.

Choppy C., Johnen C. : PETRIREVE : proving Petri net properties with
rewriting systems, LNCS vol.202, rewriting techniques and applications,
Jouannaud J.P. Ed., Springer Verlag, 1985.

Forgaard R., Guttag J.V. : REVE : a term rewriting system generator with
failure resistant Knuth Bendix, Proc. of an NSF Workshop on the rewrite
rule laboratory, 1983.

Finkel. A. : A minimal coverability graph for Petri nets, rapport de
recherche L.R.I., Orsay, 1989.

Jensen K. : Coloured Petri nets and the invariants method, T.C.S., 14-3, pp.
317-336, 1981.

Karp R.M., Miller R.E. : Parrallelprogram schemata, JCSS,4, pp. 147-195,
1969.

Huet G., Hullot J.J. : Proofs by induction in equational theories with
constructors, JCSS, 25, pp. 239-266, 1982.

Huber P., Jensen M., Jensen K., Jepsen O. : Reachability trees for High-
Level Petri nets, T.C.S., 45, 1986.

Moreau J. M. : Graphe de couverture minimal clans les r~seaux de Petri,
rapport de stage de D.E.A., Universit6 d'Orlrans, 1989.

Petrucci L. : Etude d'un environnement d'ex~cution de r~seaux de Petri
alg~briques, rapport de stage de D.E.A., Universit6 de Paris-Sud, Orsay,
1988.

Reisig W. : Petri Nets, Springer Verlag, 1985.

Treves N. : A comparative study of different techniques of semi-flows
computation in higher-level nets, Proc. IX European Workshop on
Applications and Theory of Petri nets, 1988.

Vautherin J. : Un module alg~brique, bas~ sur les r~seaux de Petri, pour
l'~tude des systdmes paralldles, Thrse de doctorat d'ingrnieur, Universit~
Paris-Sud, Orsay, 1985.

Vautherin J., Memmi G. : Computation o f flows for unary-
Predicate~Transition nets, LNCS 188, G. Rozenberg ed., Springer Verlag,
pp. 307-327, 1984.

