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A b s t r a c t  

This paper presents the algorithm we have developed for proving that a finite state machine holds some 
properties expressed in temporal logic. This algorithm does not require the building of the state-transition 
graph nor the transition relation of the machine, so it overcomes the limits of the methods that have been 
proposed in the past. The verification algorithm presented here is based on Boolean function 
manipulations, which arc represented by typed decision graphs. Thanks to this canonical representation, 
all the operations used in the algorithm have a polynomial complexity, expect for one called the 
computation of the "critical term". The paper proposes techniques that reduce the computational cost of 
this operation. 

1 Introduction 

Within the community of people working on the verifcation of sequential machines, the word 
"verification" has received two quite different meanings. For some people, to verify a machine is to pro- 
ve that it holds some properties, such as "liveness" or "safety" properties [3] [4] [6] [7] [13]. For the 
others, to verify a machine is to prove that it is correct with respect to its behavioral specification, which 
is a program written in some high level hardware description language. This problem comes down to 
proving the behavioral equivalence between two machines [12]. Though both kinds of verification arc 
needed to design complex circuits, these two verification problems have until recently been studied 
independently and the techniques that have been proposed to deal with them had few relations one with 
another. 

The behavioral equivalence between two machines M 1 and M 2 can be proved by traversing the state- 
transition graph of the product machine 9dr 1 x M 2 [12]. The first techniques that have been proposed were 
based on a double enumeration of the states and the input patterns of the machines [I 1], so that in many 
cases the time needed to traverse the state-transition graph of the machine M I × ~/'2 grows exponentially 
with the number of inputs of ~,r! and M 2. 

More recently we have presented [8] [9] a proof procedure that manipulates sets of states and inputs. The 
basic concepts that underlie this proof procedure are (1) to represent sets either by their characteristic 
functions or by vectors of Boolean functions [9] and (2) that the operations on these Boolean functions 
can be efficiently performed by denoting them with typed decision graphs [I]. This procedure can handle 
machines that could not be treated with the enumeration based methods referenced above. 

It has been shown [3] [6] that these basic concepts can also be used to develop a procedure for proving 
that a sequential machine holds some temporal properties without building its state-transition graph. 
Such procedures could overcome the limits of the methods that have bccn developed in the past, which all 
required the partial or total building of this graph. However the procedure described in [3] [6] requires 
the construction of the transition relation of the sequential machine, which is not feasible for most of 
complex machines, 
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This paper presents the proof procedure that we have independently developed to check that a machine 
holds a temporal property. This technique, which does not use the transition relation of the machine, is 
based on specific operators eaUed "restrict" and "expand". The paper is divided into 4 parts. Part 2 
defines the model of machines and the temporal formulas that the proof system handles. Part 3 gives the 
proof algorithm used by the system and shows that it uses the standard Boolean operations in addition 
with the computation of a specific term. Part 4 is dedicated to the computation of this term that we call 
the "critical term" because its evaluation is the bottleneck of the algorithrrh Part 5 gives some 
experimental results and discusses them. 

2 Definit ions 

This section describes the inputs of the verification system presented in this paper. First it def'mes the 
model of sequential machines that the system handles. Then it gives the syntax and the semantics of the 
temporal formulas to be verified. 

2.1 M o d e l  o f  S e q u e n t i a l  M a c h i n e s  

The sequential machine M that must be verified is an uncompletely specified deterrninistie Moore 
Machine. This machine is defined by the 6-tuple (n, m, r, co, 8, Ink), where: the state space of the 
machine Mis  {0, 1 }n, its input space is {0, 1 }m, and its output space is {0, 1 }r ; co is the partial output 
function from {0, 1 }n × {0, 1 }m into {0, 1 }±r ; 8 is the partial transition function from {0, 1 }n × {0, 1 }ra 
into {0, 1 }n± ; Ink is the characteristic function of the set of initial states of 

In this description, all the Boolean functions are denoted by typed decision graphs (TDG), which are a 
very compact graphical canonical form [1]. These Boolean functions are automatically computed from 
the behavioral description of the machine using symbolic execution [2]. The transition function 5 is 
denoted by a couple (Cns, F). Cns denotes the domain where the transition function is defined, so it is a 
Boolean function from {0, 1}nx {0, 1} ra into {0, 1}. It is buik out of constraints given by the designer 
and additional constraints computed during the symbolic execution [2]. F is a vectorial function I l l  -- fn], 
where each fj is a Boolean function from {0, 1]n× {0, 1} m into {0, 1}. The partial function 8 is then 
defined by: 

5 = ~.s.~.p.(if Cns(s, p) then F(s, p) else .1_) 

For the sake of simplicity, we assume in the following that co is completely specified. We also assume 
that (Vs 3p Cns(s, p)) is a tautology, which means that any state has at least one successor. This is not a 
restriction, because temporal formula have no meaning on states that have no successor. If 
(Vs 3p Cns(s, p)) is not a tautology, then Xs.(Vp ~ Cns(s, p)) is the characteristic function of the set of 
states that have no successor. 

2.2 S t a t e  F o r m u l a s  in  C o m p u t a t i o n  T r e e  L o g i c  

The temporal formulas handled by the verification system are the state formulas  of the computation tree 
logic CTL [7]. This logic is a formalism specially developed to express properties about the states and 
the computation paths of finite state systems. The different kinds of state formulas and their meanings 
with respect to a state of the machine ~/'= (m, n, r, co, 8, Init) are the following: 

1. r 1, r 2 . . . . .  r n, o 1, o 2 . . . . .  o r are state formulas. For any state s of the machine, s I = rj if and only if 
the j-th component of s is 1. For any state s of the machine, s I = oj if and only if the j-th 
component of c0(s) is 1. 

2. I f f a n d  g are state formulas then so are (~f) ,  ( f A g ) ,  ( f v g ) ,  Ofe~g) ,  and ( f ~ g ) .  The logical 
connectors have their usual meanings, for instance s [= ( f ^  g) if and only if s I=-fand s I= g. 

3. If f is a state formula, so are the formulas EX(/') and AX(f). For any state s of 9,~ s ~ EX(f) iff 
there exists at least one input pattern p such that 8(s, p) I=f, by definition, AX(f) is ~ (EX(~f)). 
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4. I f f  and g are state formulas, so are the formulas E[fUg] and A[fUg]. For any state s of the 
machine ~ s ]=- E[f U g] if and only if there exists at least one path (s 0, s 1, ...) with s O = s, and: 
3i ((s i ~ g) ^ (~j (0 < j < i ~ sj [=.0)). 
For any state s of the machine 9.~ s ~ A ~ U  g] if and only if for all paths (s 0, s 1, ...) such that 
s o = s, we have: 3i ((s i ~ g) ^ (Vj (0 < j  < i ~ sj ~.t))). 

Abbreviations have been added to make the C'IT, formulas more legible: EF(f)=defE[True U f];  
AF(f) =def A/True Uf]  ; EG(f) =def "" (AF(~ f)) ; A G(f) =def ~ (EF(~ .t)), i. e. f holds on any state of every 
path. The reader can refer to [7] to find examples of properties of finite state systems expressed in CTL. 

3 Verification Algorithm 

It has been shown that "safety properties" of finite state systems [4] can be checked with the forward 
symbolic traversal procedure presented in [9]. The machine M holds a safety property f i f  and only if 
some sub-part ~ of the machine M has an observable behavior that is equivalent to the one of the most 
general model of the formula f, which is a finite state automaton . ~  This automaton can be automatically 
built from the formula f In this  case the proof is made by traversing the state diagram of the machine 

x Af without building it [10]. For instance, to prove that the machine M satisfies the formula f = 
AG (r i ~ AX (AG (oj))) comes down to proving that the observable behavior of M at its j-th output is 
equivalent to the behavior of the automaton Af given in Figure 1. 

r i = l  ~ @  

r i = 0  1 

Figure 1. The automaton ~ associated to 
the formulaf = AG (r i ~ AX (AG (oj))). 

This part presents a more general proof algorithm that can handle all the state formulas described in the 
previous section. This algorithm does not require the building of the state-transition graph of the machine 
M under verification. The algorithm takes as inputs a machine M described by its 6-tuple 
(rn, n, r, co, (Cns, F), Init) and the formula f t o  be verified. It recursively computes the set of states F that 
satisfy the formulaf from the sets of states that satisfy the sub-formulas off.  At each step there arc only 
four basic cases to consider that correspond to the four kinds of formulas given in Section 2.2. Once the 
set of states Fthat  satisfy the whole formulafis  obtained, to check whether s [=f for some state s of M 
comes down to checking whether s belongs to 

The verification algorithm manipulates sets represented by their characteristic functions, and functions 
are denoted by their TDG's. We will make no distinction between a function and its TOG, or between a 
set and the TOG of its characteristic function. The quantifiers that will be used in the sequel axe handled 
using the following identities: if x is a propositional variable, (3x f(x)) is equivalent to (frO) v f(1)), and 
(Vx fix)) is equivalent to if(0) ^ f(1)). For any n-tuple x = Ix 1 ... xn] of propositional variables, (Qx f(x)) 
=Oef (QXl "" Qxn f(xl ..... Xn)), where Q is either the existential or universal quantifier. The size of a TOG 
f is its number of vertices, and it will be noted [ f I. The size of the TOG of a function is relative to a total 
ordering of its variables [ 1 ] [5]. 

The formulas of type (1) and (2) are trivial to treat. For instance, if f =  (f! ^f2), and FI and F2 are the 
characteristic functions of the sets of states that satisfy fl  and f2 respoctively, then F i s  ~.s.(Fl(s) ̂  F2(s)). 
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The cost of computing the TDG of 9-is in O(I 9"1 I x I 9"2 I) [1] [5]. As soon as 9"is computed, it is trivial 
to determine whether s [=f, since this is equivalent to compute F(s), which is done in O(n), and then to 
test whether 9"(s) = 1. In the same way, M [=f if and only if ~s.(Init(s) ~ 9-(s)) = 1, which can be tested 
in 0(I Init I x I F I). 

3.1 EX a n d  AX Formulas 

The sets of states that satisfy the formulas of types EX and AX are computed in a single step. Let fbe  a 
formula and 9- be the set of states that satisfy f. The set of states E.X of the machine M that satisfy the 
temporal formula EX(f) is {s / 3p 8(s, p) ~ 9-}. Its characteristic function is: 

~X = Xs.(3p Cns(s, p) ^ 91FCs, p))). (1) 

By definition, AX(]) = -~ EX(~f), so the characteristic function ~ r o f  the set of states of the machine M 
that satisfy AX(]) is: 

5iX = ~.s.(~ (tip Cns(s, p) ^ -~ F(F(s, p)))). (2) 

3.2 E U  a n d  A U  Formulas 

The sets of states that satisfy the formulas of types EU and AU are computed using iterating algorithms 
[3]. Letfand g be two formulas and Fand G be the sets of states that satisfyf and g respectively. The set 
E¢/of states that satisfy the formula E[f U g] is the limit of the converging sequence (~j) of sets defined 
by: ~_0= G, and T~k+I=E k U [ s / ( s ¢  93 ^ ( tp 5(s,p)¢ ~-k)}" The characteristic functions of these 
sets are the following: 

= G, and 

Ek+ 1 = ~.s.(Ek(S ) v (Pls) ^ ( tp Cns(s, p) ^ ~Ek(F(s, p))))). (3) 

In the same way the set A~/of states that satisfy the formula Aft U g] is the limit of the converging 
sequence (~) defined by: ~ = G, and ~+1 = ~ ~ {s / (s ~ 93 ^ (Vp (8(s, p) #.1-) = (~(s, p) E ,%))}. 
The characteristic functions of these sets are the following: 

A0 = G ,  and 

.~k+l = ~'s.(Ak(S) v (9-(s) ̂  (Vp Cns(s, p) = Ak(F(s, p))))). (4) 

3.3 T h e  Cr i t i ca l  T e r m  

In the formulas (1) to (4) given in the preceding sections two terms appear that actually are the same one, 
and that has the form ~p  Cns(s, p) ^ ~(F(s, p))). Since the formula (V'x f) is equivalent to (-~ ('dr --~f)), 
the equation (4) can be rewritten into: 

"~+1 = ~'S'('~Ik(S) V (9-($) ^ -', ('~p Cns(s ,  p)  A ---1Ak(F(s, p))) ) ) .  (4') 

From the computational point of view this means that the four basic cases of CTL formulas can be treated 
with the standard Boolean operations (negation, conjunction, and disjunction), the test of equivalence (to 
test whether the sequences E k and A k have converged), in addition with the evaluation of the critical term 
(tp Cns(s, p) ^ z(F(s, p))), where ~ is a TDG denoting a Boolean function from {0, 1} n into {0, 1}. Next 
section explains why we call this term the "critical term", and discusses how it can be computed. 

4 Computing the Critical T e r m  

This section shows that computing the critical term is the bottleneck in the verification algorithm. Then it 
explains why the critical term can be easily computed when the TDG of the transition relation of the 
machine can be build [3] [6]. At last, it presents the techniques we have developed to perform this 
computation when it is not possible to build this TDG, which happens for most of complex circuits. 
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4.1 Is the Computation of the Critical Term a Difficult Problem? 

Since typed decision graphs are canonical, testing the equivalence of two TDG's is in O(1). All the stan- 
dard Boolean operations on TDG's are performed in polynomial time [1] [5]. This means that the compu- 
tational cost of the formal verification of CTL formulas depends on the evaluation of the critical term. 

The complexity of the critical term computation can be studied using the composition problem. This 
problem is to compute the TDG of ~x.g(fl(x) ..... fn(X)), from the TDG's of the Boolean functions 
fl ..... in, and g. The three following theorems show that computing the critical term is the most difficult 
operation that appears in the algorithm presented in Section 3. 

Theorem I.  Composition is O(1)-reducible to the computation of  the critical term. 

Proof It is immediate that composition is reducible in O(1) to the evaluation of the critical term 
(31) Cns(s, p) ^ %(F(s, p))), where Cns = 1, X = g, and Xs.~.p.F = [Xs.~.p.fl(s ) ... Xs.XP.fn(S)]. [:1 

Theorem 2. Composition is NP-hard. 

Proof Let C = Aj  cj be a 3-conjunctive normal form made of n clauses cj, Each clause cj is a disjunction 
(qlj v q2j v q3j) of three literals, so the TDG's of these clauses are built in O(n). Let g be the function 
~'[Yl --. Yn]'(Aj Yj), whose TDG is a n-vine built in O(n). Since C is satisfiable if and only if the TDG of 
g(c 1 ..... c n) is not equal to 0, which can be tested in O(1), composition is NP-hard. [:l 

The two precedings theorems show that the computation of the critical term is NP-hard. By using the 
hypothesis that the order of the variables cannot be modified, we obtain the more precise following 
theorem. 

Theorem 3. Composition is a no polynomial problem if the ordering of the variables is fixed. More 
precisely, there exist some TDG's f l  ..... fn and g, using O(n) variables, with Zj Ifj I + I g I = O(n ) ,  and 
such that I g~l ..... fn) I = 0(2% 

Proof We consider 2n variables Yl < ... < Y2n, and the function g = ~.[x l ... Xn].(A j xj). Its TDG is a n- 
vine of size n. We define n functions fj = ~-[Yl ... Y2n]-(Yj ¢=~ Y2n-j+l)" The TDG's of the functions fj have 
all two vertices, so Ejl fj 1 = 2n. Thus I g I + Ej I fj 1 = O(n). The composition g(fl . . . . .  fn) is the function 

~y.(Ajfj(y)), that is ~'[Yl "-'Y2n]'(Aj(Yjc:OY2n-j+I)), but the TDG of the term ((Yl ¢:~Y2n) A 
(Y2 ¢=~ Y2n-1) A ... A (Yn ¢=~ Yn+l)) with the order Yt < --- < Y2n has a size in o(2n). Q 

This last theorem shows that computing the critical term on TDG's is at least exponential in the worst 
case. However, one can object that the TDG of the term ((Yl ¢~ Y2n) A (Y2 e:~ Y2n-1) ̂  "- A (Yn ¢:~ Yn+l)) 
is in O(n) with the variable ordering Yl <Y2n <Y2<Y2n-1 <---<Yn < Yn+l" We may think that 
composition can be computed more efficiently if we are able to find a variable ordering that minimizes 
the sizes of the manipulated TDG's. The following remarks show that the problem is not such simple. 
First, finding such a variable ordering is itself a NP-hard problem. Second, there exist some functions of 
n variables whose TDG has a no polynomial size with respect to n, whatever the variable ordering. The 
last remark shows that the composition, and so the computation of the critical term, is certainly no 
polynomial even if an oracle would provide dynamically a "good order". 

4.2 Using the Transition Relation to Compute the Critical T e r m  

The transition relation A of the machine ~V/is a subset of { 0, 1 } n x { 0, 1 } n. For any states s and s', (s, s') 
belongs to A if and only if (3p (s' = 8(s, p))). This means that A =def ~.~.s'(3p Cns(s, p) A (S' -- F(s, p))). 
Using the transition relation A, the critical term (31) Cns(s, p) A X~(S, p))) can be rewritten into: 

(3s' h(s, s') ^ X(s')). 
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Given the TDG's of A and X, the TDG of (A(s, s') A X(S')) Can be built in O(I A I x I X I), and the critical 
term is obtained by eliminating from this TDG the n atoms associated to s'. Note that this elimination is 
not polynomial with respect to n in the worst case, but experience shows it remains polynomial on 
practical examples. 

Assuming that the TDG of A can be built, this technique is very efficient [6], because it uses only the 
standard logical operators, which have relatively low computational costs. But building A requires the 
computation of the TDG of (Cns(s, p) A (Aj (sj' --- fj(s, p)))), which is done in O(I Cns [ x 2 n x II. [ f. D . . . . . . . .  J ~ • 
Experience shows that for complex machines, it is not possible to build the TDG of the transition relation 
A, so others techniques are needed. 

4.3 Using the "Restrict" and the "Expand" Operators to Compute the Critical term 

The term OP Cns(s, p) A z(F(s, p))) can be computed in two steps. The first step consists in building the 
TDG of the formula (Cns(s, p) A z(F(s, p))), and the second step in eliminating from this TDG the atoms 
associated to the input pattern p. The term z(F(s, p)) is the composition of Z with the vectorial function 
F = [ f l  "- fn], whose computation is exponential in the worst case, as shown in Section 4.1. More 
precisely, it can be easily shown, using a proof similar to the one of Theorem 3, that the computation of 
the TDG ~(fl ..... fn) from the TDG's of fl ..... fn and ;~ is at least in O(1 ~ I × rlj I fj t). 
Section 4.3.1 shows that it is not necessary to build explicitely the TDG of ;~ o F to compute the term 
OP Cns(s, p) ^ ~(F(s, p))). It presents the "expand" operation that avoids this construction. Section 4.3.2 
presents the "restrict" operator that further reduces the computational cost of the composition by reducing 
the sizes of the TDG's fj used in the term %(F(s, p)). 

4.3.1 T h e  " E x p a n d "  O p e r a t i o n  

The idea that underlies the "expand" operation is to express the term ;~(F(s, p)) as a sum of functions 
whose TDG's have less vertices than the TDG of 2c(F(s, p)). Using these functions noted h 1 ..... h k, the 
critical term can be rewritten into (3p Cns(s, p ) ^  (Vjhj(s, p))), that can be further transformed into 
(3p Vj (Cns(s, p)A h,(s,p))) by distributing the conjunction over the disjunction The existential j 
quantifier commutes with the disjunction, so that the critical term finally becomes: 

(Vj (3p Cns(s, p) A hi(s, p))). 

The final form of this term expresses that its computation can be decomposed into a sequence of 
computation of simpler terms. 

aSai  

Figure 2. Application of the Expand Function on a BDD. 
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Consider the functions f l  ..... fn, and g. The computation of a list of Boolean functions h 1, h 2, .... h k 
whose sum is equal to the function g(fl ..... fn) is made by the "expand" operation. For clarity's sake, we 
present here the "expand" operation on the binary decision diagrams (BDD) [5]. 

Each path in the BDD of the function g starting from the root and leading to the leaf 1 defines a cube cj of 
the function g, and the function g is equal to the sum of its cubes. This means that we could take as 
functions hj the functions cj(f I ..... fn)" However this would lead to perform many redundant 
computations. Consider for instance the BDD drawn in Figure 2. In this BDD there are four paths from 
the root to 1 that define the four cubes e l = ( ~ a l ^ 4 a 2 ^ a 3 ^ a 4 ) ,  c 2 = ( 4 a l ^ a 2 ^ ~ a 3 ^ a 4 ) ,  
c 3 = (7  a 1 ̂  a 2 ^ a 3 ^ ~ a4), and c 4 = (a 1 ̂  ~ a 3 ^ a4). The four functions that would be computed are 
h 1 = (~  fl ^ 4 f2 ^ f3 ^ f4), h2 = (~  fl ^ f2 ^ ~ f3 ^ f4), h3 = (4  fl ^ f2 ^ f3 ^ 4 f4), h4 = (fl ^ ~ f3 ^ f4). 

It is obvious that during the computation of the functions h 1, h 2, h3, and h 4, the product (4  f l  ^ f2) is 
computed twice, as well as the product (4  f3 ^ f4). Some of these redundant computations can be 
eliminated by storing partial results in the vertices of the graph that are shared. This is done by the 
function "expand" that performs a top-down traversal of the BDD of g, and stores in each vertex v of g, 
the BDD of the function Cv(f 1 ..... fn), where C v is the sum of all the cubes represented by the paths 
starting from the root of the BDD of g and leading to v. Each time the top-down traversal reaches a leaf 
equal to I, the function "expand" produces one of the functions hi. 

For the BDD drawn in Figure 2, the partial functions stored in the vertices are: (1) for the vertex (I), 
(7  t=1) for (2), (4  fl '^ 4 f2) for (3), (--, fl  ^ f2) for (4), ((7 fl ^ ~ f2 ^ f3) v (7  fl  ^ f2 ^ 4 f3)) for (5), (fl) 
for (6), and ((~ fl ^ f2 ^ f3) v (fl ^ ~ f3)) for (7), and the "expand" operation produces two functions: 

hi = (f4 ^ ((~ fl ^ 4 f2 ^ f3) v (~ fl ^ f2 ^ ~ f3))), and 

h2 = (~  f4 ^ ((4 fl ^ f2 ^ f3) v (fl ^ ~ 1"3)))- 

Experience shows.that the TDG's of the functions h 1 . . . . .  h k generated by the "expand" operation are 
smaller than the TDG of the function ~(F(s, p)). The time needed to compute each of these functions 
directly depends on the sizes of the TDG's of the functions 5j(s, p). Next section presents a new Boolean 
operator that can be used to reduce the sizes of the TDG's used in the term ~(F(s, p)). 

4 .3.2 T h e  " R e s t r i c t "  O p e r a t o r  

This section presents the Boolean operator "restrict" [8], noted "1~", that gives a means to reduce the sizes 
of the TDG's of the functional vector F(s, p) used in the formula x(F(s, p)). This directly reduces the 
computational cost of the critical term. 

The idea that led to the "~" operator is made clear by the following remark. In the equation (3) given in 
Section 3.2: 

Ek+ l = ~.s.(Ek(S) v (7(s) A (qp Cns(s, p) ^ ~k(F(s, p))))), (3) 

as soon as the term Ek(S ) is equal to 1 or the term 7(s) is equal to 0, the value of Ek+l(S) does not depend 
on the value of (3p Cns(s, p) A Ek(F(s, p))). In the same way, when Cns(s, p) is equal to 0, then so is 
(Cns(s, p) A Ek(F(s, p)). This means that in the term Ek(F(s, p)), the vectorial function F can be replaced 
with its restriction ~D to the domain D, where D is the set whose characteristic function is 
~.s.~.p.(-, ~ ( s )  A Y(S) A Cns(s, p)). 

The same remark holds for the equations (I), (2), and (4'). For these equations the characteristic 
functions of the domains D to which the vectorial function F can be restricted are the following: 

D = Cns for (1) and (2), 

D = 2~s.kp.(-~ Ek(S ) ^ Y(s) ^ Cns(s, p)) for (3), 

D = %s.~.p.(-~ Ak(s) ^ y(s) ^ Cns(s, p)) for (4'). 
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The "restrict" operator has two arguments f and D that are Boolean functions. Its definition [8] on 
Shannon's canonical form is given in Figure 3. In this figure, we note f.root the atom that occurs at the 
top of Shannon's canonical form of f, and (f/--~, f/a) the Shannon's decomposition of f with respect to the 
atom a. We have the identity: f = ( ~  a ^ f/-~a) v (a ^ f/a). 

function restrict(f, D); 
i f  D -- 0 then error; 
if  D = 1 or f = 0 or f = I then return f; 
let a = D.root in { 

i f  D/--~a = 0  then return restrict(f/a, D/a); 
i f  D/a  = 0  then return restrict(f/--~ D/-~a); 
i f  f/-~a = f/a then return restrict(f, D/---,a v D/a); 
return ((~a ^ restrict(f/--,a, D/-~a)) v (a ^ restrict(f/a, D/a))); 
} 

Figure 3. Semantics of the Restrict Operator. 

The main properties of "~" are expressed by the following theorems. Their proofs are made by induction 
on Shannon's canonical form of f and D, and by case analysis. 

Theorem 4. Let f and D ;~ 0 be two Boolean functions. Then D(x) = I implies that (f  ~ D)(x) = f(x). 

Theorem 5. Let f and D be two Boolean functions, with D # O. If (D ~ f), then (f ~[ D) = 1. If (D ~ ~ f), 
then (f ~ D) = O. 

Theorem 6. Let f and D be two Boolean functions, with D ~ O. Amongst the functions g such that 
(D ~ (g =-f)) is a tautology, there is a unique function whose Shannon's canonical form has a minimal 
number of vertices, and this function is (f J~ D ). 

Corollary. Let f and D be two Boolean functions, with D ~ O. Shannon's canonical form of (f  l[ D) has 
less or the same number of vertices than Shannon's canonical form off. 

Remark. Each time the case ('D/~a = 0) or (D/a = 0) is used to re, cursively compute Shannon's canonical 
form of (f 1[ D), one branch of Shannon's canonical form of f is deleted. This means that the sooner a "0" 
occurs on a branch of Shannon's canonical form of D, the larger the number of vertices of Shannon's 
canonical form of f that are deleted is. This expresses that the smaller the set D is, the greater the 
reduction is [8]. 

The operator "~" defined above on Shannon's canonical form can also be defined on TDG's. Passing 
from the canonical nee representation to the canonical graph representation gives rises to the following 
problem. It can happen that during the application of the operator '@'  to the TDG's of the function f and 
of D, some vertex that is shared in the TDG of the function f gets restricted several times, with different 
vertices from D. This can lead to create a TDG that has more vertices than the one of f. This means that 
Theorems 4 and 5 hold for this operator on TDG's, but not Theorem 6. To assure that the application of 
the operator "~" on the TGD's of f and D does not return a larger TDG than the one of f, it is sufficient to 
compare the sizes of the TDG's of f and of (f 1[ D), and to return the smallest 'rDG, which is done in 
O(max(] f I, I D I)). The function that returns the TDG of (f ~ D) uses Theorem 5 to speed up the 
computation, and uses a cache to avoid redundant computations. The complexity of the operator "8" is 
O(I f l x l D I ) .  

4.4 D i s c u s s i o n  o f  t h e  M e t h o d  

The computation of the critical term depends mainly on the cost of the composition. The "expand" 
operation can be basically seen as a method to compute Z(fl ..... fn), whose computational cost is at least 
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O(I Z I × FIj I fj J). Theorem 4 assures that, for the domains D associated to the equations given in Section 
4.3.2, the application of the operator "8" on each component of the vectorial function I l l  --- fn] is valid. 
Applying the "8" operator on F with the domain D is made in O(I F I × I D I). The TGD's of the functions 
(fl j~ D) ..... (fn ~ D) have less vertices than the ones of the functions fl  .. . . .  fn- Assuming that each TDG 

has a size s, and that each TDG (fj 8 D) has a size bound by (s × R), where 0 < R < 1 is the reduction 
o, the composition Z o (F U D) is made with a gain of complexity of at least (1 / R) n. This means that 

the quadratic operation "~" can reduce exponentially the computational cost of the critical tenn. 

5 Experimental  Results - Discussion 

The verification algorithms given above have been written in LISP, and the CPU times given here have 
been obtained on a BULL DPX5000 mini computer with 32 megabytes of main memory. 

CLM is a part of an interface board designed at BULL. It is made of 33 state registers, and has 14 inputs. 
The TDG's that represent its vector of transition functions has more than 10000 vertices and the largest of 
them has more than 2500 vertices. This machine has about 377000 valid states out of the 233 possible 
states. The CPU time needed to symbolically traverse the state diagram of this machine using the 
procedure given in [9] is 1227 seconds. We did not succeed in computing the TDG of the transition 
relation of this machine, so the method of [3] and [6] cannot be applied. The property to be proved valid 
required the computation of only one fixed point that was obtained in 38 steps that took 4000 seconds of 
CPU time. The composition X~(s, p)) of the critical term stopped to be computable using the standard 
composition algorithm after a very small number of steps. The "restrict" operation was very useful since 
it reduced the TDG's of fl  . . . . .  f33 used in the "expand" operation in such a way that during the iteration, 
none of them had more than 186 vertices. The largest TDG representing one of the sets in the sequence 
had 352 vertices. 

The sequential circuit Sync is a synchronizer that has 21 state registers and 4 inputs. The property to be 
verified was thai the value of the output o r  is equal to 1 in any valid state of the machine. This property 
is expressed by the formula Init I=AG(OlO. The CPU time needed to prove this formula valid was 4160 
seconds and the fixed point was found in 9 steps. The "restrict" operator was not very useful since it did 
not reduce the sizes of the TDG's of the transition function. The largest TDG found in the sequence of 
sets had more than 2000 vertices. 

The property AG(oK) is a safety property. It can be checked by traversing the state diagram of the 
machine Sync using the symbolic traversal procedure given in [9]. At each step during the traversal that 
starts from the initial state Init of the machine, it is sufficient to check that the output o~ is equal to 1. 
Since the traversal stops when all the valid states of the machine have been reached, the proof is 
complete. Verifying the property in this manner takes 140 seconds, and the traversal is done in 20 steps. 
This example seems to show that whenever the formula to be proved is a safety property, it is better to 
use this procedure rather than the general procedure described in this paper. 

In fact, the technique proposed here cannot give to the symbolic backward traversal procedure the 
performance of the forward symbolic traversal procedure [9]. The symbolic backward traversal 
procedure is essentially based on the computation of the reverse image of the vectorial function 8 on a set 
Z. The symbolic forward traversal procedure is based on the computation of the image of the vectorial 
function 8 on a set Z. Given a machine specified by the 6-tuple (n, m, r, co, 8, Init), we can show that the 
reverse image symbolic computation is intrinsically more difficult than the image symbolic computation. 
It is easy to show that image symbolic computation is NP-hard (for instance, composition is linearly 
reducible to image symbolic computation), and that it is O(n)-reducible to reverse image symbolic 
computation. The problem is that reverse image symbolic computation is not polynomially reducible to 
image symbolic computation, because reducing the former to the latter requires to inverse the vectorial 
function & which is a NP-hard problem (image symbolic computation itself is O(1)-reducible to vectorial 
Boolean function inversion). 
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Conclusion 

This paper has presented a proof algorithm that automatically checks whether some uncompletely defined 
deterministic Moore machine ~,f holds some property expressed in the CTL formalism. This algorithm 
does not require the building of the state-transition graph of the machine ~f, so it overcomes the limits of 
the previous methods based on this construction. This means that sequential machine with a very large 
number of states and transitions can be handle with this method. 

Moreover, this proof algorithm does not require the building of the TDG of the transition relation of the 
machine, which is too large for many practical examples. The proof algorithm is based on the algorithms 
that were initially developed for proving the equivalence between two machines, in addition with a 
procedure that essentially computes the reverse image of a vectorial Boolean function. This procedure is 
the bottleneck of the proof algorithm. 
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