
Formal Verification of Digital Circuits
Using Symbolic Ternary System Models*

Raudal E. Bryant
School of Computer Science
Carnegie Mellon University
Pit tsburgh, PA 15213 USA

Carl-Johan H. Seger
Department of Computer Science

University of British Columbia
Vancouver, B.C. V6T 1Z2 Canada

Abstract

Ternary system modeling involves extending the traditional set of binary values (0,1}
with a third value X indicating an unknown or indeterminate condition. By making this
extension, we can model a wider range of circuit phenomena. We can also efficiently verify
sequential circuits in which the effect of a given operation depends on only a subset of the
total system state.

This paper presents a formal methodology for verifying synchronous digital circuits
using a ternary system model. The desired behavior of the circuit is expressed as assertions
in a notation using a combination of Boolean expressions and temporal logic operators. An
assertion is verified by translating it into a sequence of patterns and checks for a ternary
symbolic simulator. The methodology has been used to verify a number of full scale designs.

1 I n t r o d u c t i o n

Most formal models for hardware verification assume that every signal always has
a well-defined, discrete value. For example, a binary model assumes that each
signal must be either 0 or 1. In this paper we present a methodology for formal
verification in which a third value X is added to the set of possible signal values,
indicating an unknown or indeterminate logic value. By shifting to a ternary
system model, we gain several advantages.

As a first advantage, this extension maizes it possible to model an increased
range of circuit phenomena. For example, we can deal with circuits in which
nondigital voltages are generated in the course of normal circuit operation. This
occurs frequently when modeling circuits at the switch-level [4], due to (generally
transient) short circuits or charge sharing. We can also deal with circuits in which
indeterminate behavior occurs due cither to t iming hazards or to circuit oscillation.

"This research was supported by tile Defense Advanced Research Projects Agency, ARPA Order Number
4976, and by the National Science Foundation, under grant number MIP-8913667.

34

In all of these cases, the modeling algorithm expresses this uncertainty by assigning
value X to the offending circuit nodes, indicating that the actual digital value
cannot be determined [6, 7].

As a second advantage, we can efficiently verify many aspects of digital circuit
behavior by representing the circuit with a ternary system model. We do this by
ternary symbolic simulation, in which a simulation algorithm designed to operate
on scalar values 0, 1, and X, is extended to operate on a set of symbolic values.
Each symbolic value indicates the value of a signal for many different operating
conditions, parameterized in terms of a set of symbolic Boolean variables. Since
the value Xindicates that a signal could be either 0 or 1 (or a non-digital voltage),
we can often represent many different operating conditions by the constant value
X, rather than with a more complex symbolic value.

Simulators that support ternary modeling intentionally err on the side of pes-
simism for the sake of efficiency. That is, they will sometimes produce a value X
even where exhaLmtive case analysis would indicate that the value should be binary
(i.e., 0 or 1). On the other hand, symbolic simulation avoids this pessimism, be-
cause it can resolve the interdependencies among signal values. By combining the
expressive power of symbolic values with the computational efficiency of ternary
values, we can trade off precision for ease of computation.

In earlier work, we demonstrated the utility of ternary modeling for verifying
a variety of circuits [1, 5]. This earlier work demonstrated the viability of circuit
verification by symbolic simulation, but it fell short in terms of generality, ease
of use, and degree of automation. In this paper, we correct this shortcoming by
presenting a formal state transition model for a ternary system, a formal syntax for
expressing desired properties of the system, and an algorithm to decide whether
or not the system obeys the specified property. Our state transition system is
quite general, and is compatible with a mlmber of circuit modeling techniques.
The specifications take the form of symbolic trajectory formulas mixing Boolean
expressions and the temporal next-time operator. Finally, our decision algorithm
is based on ternary symbolic simulation. It tests the validity of an assertion of
the form [A '.. C], where both A and C are trajectory formulas. That is, it
determines whether or not every state sequence satisfying A (the "antecedent")
must also satisfy C (the "consequent"). It does this by generating a symbolic
simulation sequence corresponding to the antecedent, and testing whether the
resulting symbolic state sequence satisfies the consequent.

An important property of our algorithm is that it requires a comparatively
small amount of simulation and symbolic manipulation to verify an assertion.
The restrictions we impose on the formula synta~x guarantee that there is a unique
weakest symbolic sequence satisfying the antecedent. Furthermore, the symbolic

35

manipulations involve only variables explicitly mentioned in the assertion. Unlike
other symbolic circuit verifiers [2], we do not need to introduce extra variables
denoting the initial circuit state or possible primary inputs. Finally, the length of
the simulation sequence depends only on the depth of nesting of temporal next-
time operators in the assertion.

By modifying the COSMOS symbolic switch-level simulator[3], we have been able
to implement the algorithm described in this paper and to verify several f t~ scale
circuit designs. The following table indicates the performance of our prototype
verifier on several different circuits. All CPU times were measured on a DEC 3100
(a 10-20 MIPS machine). We also list the mmximum memory requirement of the
process, as this is more often the limiting factor in symbolic manipulation than is
CPU time.

Circuit Transistors CPU Time Memory
....... 64 x 32 bit moving data stack 16,470 1.25 min. 3.1 MByte
64 x 32 bit stationary data stack 15,873 7.5 min. 5.7 MByte

1K static RAM 6,875 3.7 min. 9.5 MByte

2 T e r n a r y S y s t e m

Let B = {0, 1} be the set of the binary values and let T = {0, 1, X}. The value X
is introduced to denote an "unknown", or "don't care" value.

Define the partial order E on T as follows: a E a for all a E T, X E 0, and
X E 1. The partial ordering orders values by their "information content." That is,
X indicates an absence of information whilc 0 and 1 represent specific, fully-defined
values.

We say that ternary vMues a ,'uld b are compatible, denoted a ,-~ b, when there
is some value c E T such that a E c and b E c. Also, given two compatible ternary
values a and b, the join between them, denoted a U b, is defined to be the smallest
element c E T in the partial order such that a E c and b E c.

It is convenient to define an algebra over T with operators U, "t, %, and - t , where
the latter are the obvious extensions of the corresponding Boolean operations •
(product), q- (sum), and - (complement).

Let T ' , n > 1, denote the set of all possible vectors of ternary values of length
n, i.e., {(a l , . . . , an)[a i E T, 1 < i < n}. The partial order E , the binary relation
,-~, and the operation U are all extended to T n pointwise.

A ternary function, f: T n - , T, is said to be monotone when for any g E T n

36

and b E 7"n we have
~C_b =~ f (~) E f (b)

This definition is extended pointwise to vector functions, ~ 7" n -* 7"0.

The above monotonicity definition is consistent with our use of information
content. If a function is monotone, we cannot "gain" any information by reducing
the information content of the arguments to the function. In other words, changing
some signals from binary values to X will either have no effect on the output values,
or it will change some binary values to X.

To express the behavior of a circuit operating over time, we must reason about
sequences of states. Conceptually, we will consider the state sequences to be infi-
nite, although the properties we will express can always be determined from some
bounded length prefix of the sequence. Define a the set S" to consist of all se-
quences [a0, a l , . . .] where each ai E "T". The relations _C and ~ are extended from
vectors to sequences pointwise. That is, two sequences.~0, a l , . - .] and [b0, bl, . . .]
are ordered (compatible) if and only if each pair ~i and bi is ordered (compatible),
for all i >_ 0.

For vector g and sequence S, the expression ~S denotes the sequence consisting
the vector g followed by the vectors in S.

3 C i r c u i t M o d e l

The underlying model of a circuit we use is quite simple, as well as.general. A
circuit C is a triple (A/', Y,]2), where Af is a set of nodes (let s = IAf[), Y is a vector
of excitation functions, and]2 is a set of symbolic Boolean variables with which
parameterized properties of the circuit are to be expressed.

The excitation functions are defined in a non-traditional way. We view them
as expressing "constraints" on the values the nodes can take on one t ime trait
later given the current values on the nodes. By constraint we mean specific binary
values, whereas the value Xindicates that no constraint is imposed. Since the value
of an input is controlled by the external environment, the circuit itself does not
impose any constraint on the value; hence the excitation of an "input node" is X.
More formally, if node ni corresponds to an input to the circuit then Y,~(ff) = Xfor
every ~ E T s. Nodes that do not correspond to inputs are ca~ed function nodes.
For a function node ni the excitation function is a monotone ternary function
Y,,: 7.~ ---, T determined by the circuit topology and functionality.

State sequences are useful when reasoning about circuit behaviors. However,
not all state sequences represent possible behaviors of a circuit. The excitation

37

functions generally restrict the possible state sequences significantly. We formalize
this property by introducing the concept of a circuit trajectory. Given a circuit C
and an arbi t rary sequence [a~0, ~1,.. .] E S s we say tha t the sequence is a circuit
trajectory if and only if

Y(ai) ~_. a i + l for i > 0.

The set of all trajectories of circuit C is denoted S(C). The above rule for trajec-
tories is consistent with our definition of an excitation function, i.e., a function
computing a constraint on the possible value of a node one t ime unit later. Thus
if the current excitation of a node is binary, say a, then the node must talce on the
value a in the next state in a valid trajectory. On the other hand, if the excitation
is X, then the node value is not constrained.

4 S p e c i f i c a t i o n L a n g u a g e

Our specification language describes a property of the circuit as an assertion of the
form [A ===> C], where both A and C are symbolic trajectory formulas expressing
constraints on the circuit trajectory.

Before we can define our language, we need to introduce some notat ion and
definitions. If 12 is a set of symbolic Boolean variables then an interpretation, ¢,
is a function ¢: 1) --+ B assigning a binary value to each variable. Let ~ be the set
of all possible interpretations, i.e., (]~ = {¢: l) --+ B}. A domain constraint, 79 C_ eb,
defines a restriction on the values ~s igned to the variables. We will denote such
domain constraints by Boolean expressions. Tha t is, let E be a Boolean expression
over elements of y . t This expression defines a Boolean function e: • --* 13 and thus
denotes the domain constraint 79 = {¢1e(¢) = 1}. The set of all interpretations
is denoted by the Boolean function 1, defined as yielding I for all interpretations.
Expressing domain constraints by Boolean expressions allows us to compactly
specify many different circuit operating conditions with a single formula.

4.1 S y m b o l i c T r a j e c t o r y F o r m u l a s

A t ra jectory formula expresses a set of constraints on a circuit trajectory. When
the formula contains Boolean expressions, each interpretat ion of the variables
yields a different set of constraints. A step-level symbolic t ra jectory formula is
defined recursively as:

1. C o n s t a n t s : TrtuE is a t ra jectory formula.

tFor the sake of brevity, we omit a formal syntax of Boolean expressions. Any standard expression syntax
su~l~ces.

38

2. A t o m i c propos i t ions : for ni EAf both (ni = 1) and (n~ = 0) are trajectory
formulas.

3. C o n j u n c t i o n : (F1 A F2) is a trajectory formula if F1 and F2 are trajectory
formulas.

4. D o m a i n res t r i c t ion : (E --* F) is a trajectory formula if E is a Boolean
expression over]2 and F is a trajectory formula.

5. N e x t t ime: (X,F) is a trajectory formula if F is a trajectory formula.

We say that a formula is instantaneous when it does not contain any next
time operator X, . For convenience, we often drop parentheses when the intended
precedence is clear.

The truth of a formula F is defined relative to a circuit, an interpretation ¢ of
the variables in]2, and a circuit trajectory. The truth of F , written C, ¢, S ~ F,
is defined recursively. In the following, assume that both S and gS are trajectories
of C.

1. C, ¢, S ~ TRUE holds trivially.

2.(a) C ,¢ ,~S ~ (ni----1) iff a ,= l.

(b) C, ¢, ES ~ (hi = 0) iff ai = O.

3. C,¢,S ~ (F1AF2) iff C,¢,S ~ F1 and C,¢,S ~ F~

4. C ,¢ ,S ~ (E --, F) l ife(C) = 0 or C ,¢ ,S ~ F, where e is the Boolean
function denoted by the Boolean expression E.

5. C,¢,~S ~ X , F i f fC ,¢ ,S ~ F.

For an instantaneous formula, its truth can be defined relative to a single state.
For instantaneous formula F, the notation C, ¢, ~ ~ F indicates that F holds
under interpretation ¢ for state ~. A formal definition of this notation can be
derived by a straightforward adaptation of rules 1-4 above.

4.2 Asse r t i ons

Our verification methodology entails proving assertions about the model structure.
These assertions are of the form [.4 :- C], where the antecedent A and the
consequent C are trajectory formulas. The truth of an assertion is defined relative
to a circuit C and an interpretation ¢. Unlike a formula, however, an assertion is
considered true only if it holds for all trajectories. That is, C, ¢ ~ [.4 ==~ C],

89

when for every S E S(C) we have that C, ¢, S ~ A implies that C, ¢, S ~ C.
Given a circuit and an assertion, the task of our checking algorithm is to compute
the Boolean function expressing the set of interpretations under which the assertion
is true. For most verification problems, this should simply be the constant function
1, i.e., the assertion should hold under all variable interpretations.

We have intentionally chosen to introduce only a heavily restricted trajectory
formula syntax for our base logic. By imposing these restrictions, we can guarantee
the following key property:

P r o p o s i t i o n 1 For any trajectory formula F, and any interpretation ¢, one of
the following cases must hold:

1. There is no trajectory S E S(C) for which C, ¢, S ~ F, or

e. There exists a unique trajectory SF.~ E S(C) such that for every S E S(C) we
have C, ¢, S ~ F if and only if S F,~ E S.

In the first case above, we say that the formula F is not satisfiable under in-
terpretation ¢. In the second case, we refer to the sequence SF,~ as the weakest
trajectory satisfying formula F under interpretation ¢.

Note that this proposition expresses a very strong property of our logic. It
demonstrates the reason why we can verify an assertion by simulating a single
symbolic sequence, namely the one encoding the weakest trajectories allowed by
the antecedent for every interpretation. It is stronger than the simple monotonicity
condition that if C, ¢, S ~ F and S E S', then C, ¢, S' ~ F.

The logic, as described above, is convenient for deriving the underlying theory.
Unforttmately, expressing "interesting" assertions about real circuits using only
the constructs above is very tedious. Two shortcomings malce using the logic
ctunbersome: the fine granularity of the timing, and the lack of more powerful
logical constructs. It is convenient to add extensions that do not add any expressive
power, but make it easier to write assertions.

This basic structltre of starting with a minimal basic logic and then adding
more elaborate structures as extensions also mirrors our current implementation.
The implementat ion consists of two parts. The underlying logic, with some few
extensions, is taken care of by our modified version of the COSMOS symbolic switch-
level simulator. The syntactic extensions are supported by a front-end written in
SCHEME. The user writes SCHEME code that, when evaluated, generates a file of
low-level simulation commands which are then evaluated by the simulator.

5 Symbol i c S imulat ion

40

In creating a symbolic model, we extend the scalar model defined in terms of
the binary and ternary domains B and T, to one defined in terms of binary- and
ternary-valued functions over the variables]). Define the symbolic domain B(]))
(respectively, 7"(]))) as denoting the set of functions mapping an interpretations
in ¢ to E (resp., T) . More formally B(])) = {f: ff --* B} and 7(])) = {/: ff --* T}.
We then extend the operations defined over scalar values to create a symbolic
algebra.

We can also extend the vector and sequence algebra defined over scalar values to
their counterparts defined over symbolic values. That is, define the vector domain
7 (v) " as

= e 7"(v)}.

In implementing a symbolic simulator, we in effect extend the excitation function
1~ to the symbolic domain as Y:T(]))" --~ T(]))*. For ~ E T(]))", let ~(¢) E T n
denote the vector with each element i equal to ai(¢). In this way, we can view
the symbolic vector g E T(Y)" either as a vector of symbolic elements, or as a
symbolic value which for a given interpretation yields a scalar vector.

We extend most operations from scalar to symbolic domains in a uniform way.
Consider an operation op: 91 x 92 -* 93, defined over vectors, single elements, or
a combination of the two. Its symbolic counterpart op: ~)1(])) X 92(])) --4 93(]2) is
defined such that for all a E 91(])) and b E 92(])), we have (a op b)(¢) = a(¢) op
b(¢). We use this method to extend the ternary algebraic operations "t, +t, and
-~, as well as the operation U.

When extending a relation R symbolically, we define the result to be a function
specifying the interpretations under which its arguments are related. That is, given
a binary relation R C 91 × 92, define R: 9a(])) × 92(])) --*/3(])) as (a R b)(¢) = 1
if and only a(¢) R b(¢). We use this method to define operations ~ and _ over
both single elements and vectors.

We require one operation that is extended to vectors in a nonstandard way.
Define the infix operator ?: B × T -4 T as a ? b equals b if a is 1, and equals X
otherwise. When extending this operation to vectors, only the second argument is
vector-valued. That is the operation ?: B x T" --* T" is defined as (a ? b~)i = a ? bl.
This operation is then extended symbolically in the manner described above.

As a final operation, we define a variant of the join operation that is defined
even when for some ¢ e ¢, we have ~(¢) 75 b(¢). When using this operation,
we will separately keep track of the conditions under which the arguments are

41

compatible. Define the operation t~: 7"(1))" x T('I))" .--, T(]))" as

{ u ~
(~ 5 b)(¢) = ~ , otherwise

where 2~ denotes a vector with all elements equal to X.

5.1 T rans l a t i ng I n s t a n t a n e o u s Formulas to Symbol i c Vec to r s

Given the above definitions and an instantaneous formula F, we derive a "domain"
function OKF, and a "weakest" symbolic vector gF as follows:

1. If F is TRUE then OKF = 1, and gF = (X , . . . , X).

2. (a) If F is (n, = 1) then OKF = 1, and gF = (X, X, 1, X , . . . , X), where the
1 is in position i.

(b) If F is (n, = 0) then OKF = 1, and gF = (X , . . . , X, 0, X , . . . , X), where the
0 is in position i.

3. If F is (F1 A F2) then OKF ---- OKRa" OKF2" (~F1 ~ gF2), and gF = afl 5 a~F2.

4. If F is (E --~ F1) then OKF = ~ + OKF~, and gF = e ? aft, where e is the
Boolean function denoted by the expression E.

The following proposition summarizes the main properties of OKF and ~F.

P r o p o s i t i o n 2 Given a circuit C, let F be an instantaneous formula and OKF and
aF be derived as above. Then OKF(¢) = 1 iff there exists some state b 6 T s such
that C, ¢, b ~ F. Furthermore, i f 0gF(¢) ---- 1, then C, ¢, b ~ F i f f gf(¢) _ff b.

5.2 C h e c k i n g Asse r t ions

Our first step in verifying an assertion is to rewrite the antecedent and consequent
into a normal form where all next-time operators are collected together. It is easy

2 to show that a trajectory formula F can be rewritten into F0 A XaFI A XsF2 A
k-1 • . .AXs Fk-1, for some k > 1, where each F/ is instantaneous. Note that some of

the ~ ' s might be the trivial formula T~UE. Note also that such a sequence can be
extended by appending X~TrtUE for i > k. Hence, without any loss of generality,
we will henceforth assume that the antecedent and the consequent in an assertion
are trajectory formttlas in normal form containing the same number of terms.

42

Given an assertion [.4 ==~ C] of the form

k - 1 [A0 A X s A 1 A . . . A X, Ak-1 ~ Co A X, Cl A . . . A X~-'Ck-,]

define a sequence of symbolic ternary vectors ~0 , . . . , x~-I as follows:

gA0, i = O

Y(z,_~) t~ ~A,, i > O.

Define the Boolean function OKA = l]0_<i<k OKA,, where Fl denotes Boolean prod-
uct. This function yields 0 for those interpretations for which the antecedent con-
tains some internal inconsistency. For example, the formula A = (hi = a)A(ni = b)
would have OI(A = a ~ b, because this formula cannot be satisfied when ¢(a)
¢(b). Define the Boolean function Traj = H1<i<k[]~(~i_l) ,,, ~A,]. This flmction
yields 0 for those interpretations where an incompatibility arises in the trajectory.

We can show that A is satisfiable under some interpretation ¢ if and only if
OKA(¢) • Traj(¢) = 1. Furthermore, we can extend the sequence ~0 , . . . , gk-1
to be an infinite sequence by defining ~i = Y(xi-1) for all i > k. It can then
be shown that for interpretati6n ¢ the sequence x~0(¢),~1(¢),.., is the weakest
trajectory satisfying A under interpretation ¢. This construction then provides
a proof of Proposition 1. This demonstrates how our symbolic simulator can set
up the weakest allowable conditions allowed by the antecedent under all possible
interpretations.

To check the consequent, define the Boolean function OKc = rI0<i<k OKc,.
This function yields 0 for those interpretations for which the consequent con-
rains some internal inconsistency. Finally, define the Boolean function Check =
rI0<~<k [~c~ _ gi]. This function yields 0 for those interpretations where some tra-
jectory satisfying the antecedent may violate the consequent.

Now define OK[A =~ C] as: ~ + - ~ + (OKc" Check). Informally, this equa-
tion states that the assertion is true under those interpretations for which the
antecedent is unsatisfiable (due either to internal inconsistencies or to an incom-
patibility in the trajectory), as well as those for which the consequent holds (i.e,
it is both internally consistent and is satisfied.)

The main result of this paper is captured in the following theorem:

T h e o r e m 1 Given a circuit C and an assertion [A '.. C] let 01([,4 ==~ 6"] E B(V)
be derived as above. Then

C,¢ ~ [A ~ C] if and only if O K [A ~ q (¢) = I.

Hence, determining whether a circuit satisfies [A ==~ C] is reduced to determining
whether OK[A ==~ 6"] = 1.

6 C o n c l u s i o n s

43

In terms of mathematical sophistication, the problem solved by our algorithm is
far less ambitious than what is attempted by fttll-fiedged temporal logic model
checkers. However, we believe that our language is rich enough to be able to
describe many important properties of a circuit and to provide a direct path by
which such properties may be automatically verified. By keeping the goals of our
verifier simple, we obtain an algorithm that is capable of dealing with muc~ larger
circuits. We are currently applying these ideas to larger and more complex circuits.

R e f e r e n c e s

[1] D. L. Beatty, R. E. Bryant, and C.-J. H. Seger, "Synchronous Circuit Veri-
fication by Symbolic Simulation: An Illustration," Sixth MIT Conference on
Advanced Research in VZSI, 1990.

[2] S. Bose, and A. L. Fisher, "Automatic Verification of Synchronous Circuits
using Symbolic Logic Simulation and Temporal Logic," IMEC-IFIP Interna-
tional Workshop on Applied Formal Methods for Correct VLSI Design, 1989,
pp. 759-764.

[3] R. E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffier, "COSMOS: a
Compiled Simulator for MOS Circuits," 2.#h Design Automation Conference,
1987, 9-16.

[4] 1~. E. Bryant, "Boolean Analysis of MOS Circuits," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. CAD-6, No. 4
(July, 1987), 634-649.

[5] R. E. Bryant, "Formal Verification of Memory Circuits by Switch-Level Sim-
ulation," To appear in IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 1990.

[6] J. A. Brzozowski, and M. Yoeli. "On a Ternary Model of Gate Networks."
IEEE Transactions on Computers C-28, 3 (March 1979), 178-183.

[7] C-J. Seger, and R. E. Bryant, "Modeling of Circuit Delays in Symbolic Simu-
lation", IMEC-IFIP International Work:shop on Applied Formal Methods for
Correct VLSI Design, 1989, pp. 625-639.

