
Vectorized Model Checking
for Computation Tree Logic

Hiromi Hiraishi, Shintaro Meki and Kiyoharu Hamaguchi
Department of Information Science, Kyoto University

Sakyo-ku, Kyoto, 606, Japan.

Abs t rac t

The aim of this paper is to show how big model checking problems for Computa-
tion Tree Logic (CTL) can be handled by using current powerful vector processors.
Although efficient recursive model checking algorithms for CTL, which run in time
proportional to both the size of Kripke structures and the length of formulas, have
been already proposed [7, 2], their algorithms cannot be vectorized due to recursive
procedure calls. In this paper we propose a new model checking algorithm, called a
vectorized model checking algorithm, for CTL which is suitable for the execution on
vector processors. It can handle more than 1 million state Kripke structure derived
from a deterministic sequential machine.

1 I n t r o d u c t i o n

Recently various kinds of formal methods for automatic verification have been widely
studied. Among them, the model checking approach based on a branching time temporal
logic called CTL (Computation Tree Logic) [2, 3, 5, 6, 7] is one of the most efficient
approaches. In verification of a system which consists of several machines communicating
with each other, however, there is a problem so-called a state explosion problem. Although
there are several works trying to avoid this problem [8, I0], it seems to be difficult to
avoid the problem in general, and there are strong requirements for verification of large
systems[11].

We mainly aim at clarifying how big machines can be verified based on the model
checking algorithm for CTL by using current powerful vector processors. As the first step
to this purpose, we challenged to vectorize model checking for CTL on Kripke structures
this time. Although the model checking algorithms in [7] are efficient and runs in time
proportional to both the size of Kripke structures and the length of CTL formulas, they
are not suitable for vector processors because it is difficult to vectorize them due to their
recursive procedure calls. In order to extract high performance of vector processors, we
need an algorithm using repeated uniform operations on array type data. It is easy to
develop such a model checking algorithms based on fixpoint calculations of CTL semantics~
but the direct implementation of the fixpoint calculations would easily lead to an algorithm
whose time complexity is proportional to Isi s or IS] 4, where IS[is the number of states
of Kripke structure.

45

The new model checking algorithm called vectorized model checking algorithm pro-
posed here can be vectorized for executions on vector processors. I t runs in t ime linear
to bo th the size of Kripke structures (i.e. tSI ÷ IRI, where t/{I is the number of edges
of Kripke structure) and the length of CTL formulas. We also implemented the algo-
r i thm on a vector processor FACOM VP400E. The analysis of storage requirement of the
implementation shows that it can manipulate more than 1 million state Kripke struc-
ture derived from a deterministic sequential machine. We also present the result of an
experiment which shows the efficiency of our implementation.

This paper is orgamzed as follows: Section 2 summarizes the definition of CTL. Sec-
tion 3 describes the vectorized model checking algorithm for CTL in conjunction with
explanations about vector processors. In Section 4 we explain the implementation of
the algorithm on a vector processor FACOM VP400E and show its experimental result.
Section 5 concludes this paper with summarizing remaining future problems.

2 C o m p u t a t i o n T r e e L o g i c

Computat ion Tree Logic (CTL)[6] is a branching time temporal logic. Let A P be a set
of atomic propositions. CTL formulas are inductively defined as follows:

• If p E A P , p is a CTL formula.

• If ~? is a CTL formula, then so are -~y, E X y and EGy.

• If ~ and ~ are CTL formulas, then so are ~ V ~ and E[~U~].
The semantics of CTL is defined over a Kripke structure K = (S, R, I) , where
• S is a non-empty finite set of states.

• R C S x S is a total binary relation on S (i.e. for Vs E S, there exists s' E S such
that (s, s') e R).

• I : S --~ 2 AP is an interpretation function which labels each state with a set of
atomic propositions true at that state.

An infinite sequence of states Ir = SoSlS2... is called a path from So if (s~, si+1) E / /
for Vi ~ 0. ~r(i) denotes the i - t h state of the sequence ~r (i.e. ~r(i) = s~).

The truth-value of a CTL formula is defined at a state of a Kripke structure and
K, s ~ ~? denotes that a CTL formula y hold at a state s of a Kripke structure K. If there
is no ambiguity, we will omit K and just write as s ~ ~7. The relation ~ is recursively
defined as follows:

• s ~ p (e A P) i ffpEI(s) .

•

• s ~ E X ~ iff there exists some next state s' of s (i.e. (s, s') E R) such that s' ~ 7.

• s ~ EG~? iff there exists some path ~r on K starting from the state s such that
r(i) for w > 0.

• s ~ E[~?//~] iff there exists some path r on K starting from the state s such that
3i > 0, and for 0 < Vj < i.

46

DO 10 I = 1,N
10 A(/) = B(I) + C(I)

(a) contiguous access

DO 10 I = 1, N ,K
10 A(O = B(I) + C(O

(b) constant strided access

DO 10 I = 1,N
10 A(I) = B(L(1))

(c) indirectly addressed access

Figure 1: Three types of vector accesses.

DO 10 I = I ,N K = 0
10 IF (A(/) .GT. 0.0) B(I) = B(I) ÷ C(I) DO I0 I = I, N

(a) DO loop with a conditional statement IF (A(I) .GT. 0.0) THEN
K = K + I
C(K) = B(0

ENDIF

10 CONTINUE

(b) vector compress function

Figure 2: DO loops containing conditional statements

3 Vectorized Model Checking Algorithm

3.1 Vec to r processors

Vector processors are supercomputers for large-scale computations. They achieve more
than several hundred MFLOPS (Million FLoating-point Operations Per Seconds) by vec-
tor instructions which execute uniform operations on axray-structured data using pipelined
functional units, and they usually have large main memory of several hundred mega bytes.
In conjunction with floating-point operations, they also support integer and bit-wise log-
ical operations.

Although the maximum speed of vector processors are very high, the following two
points axe very important in programming for vector processors to achieve their maximum
performance:
Vec tor iza t ion rat io: Vectorization ratio is the rate of the operations executed by vector

instructions to the whole operations in a program. This ratio should be more than
90% to obtain high performance of vector processors.

Vec to r length: Since there are some overheads for setting up vector instructions, the
length of operands (vector length) of vector instructions should be large enough;
it should be larger than several hundreds to get maximum performance of vector
processors.

As for data transmission between the main memory and vector registers, there axe
load/store pipelines which support basica~y the following three types of vector accesses:
contiguous vector access, constant strided vector access and indirectly addressed vector
access (see Figure 1).

Furthermore, vector processors support D O loop with conditional statements and
vector compress function shown in Figure 2. These vectorized functions axe very powerful
in implementing vectorized model checker for CTL.

47

I. procedure Verify_Not(-,~) I. procedure Veri~_Or(~ V ~)
2. f o r a n s E S d o 2. fora l l s E S d o
3. Label(-,~, s) := Not(Zabel(~,,)); 3. Label(~ v ~, s) := Or(Zabel(~l, ,), Label(~, s));
4. return; 4. return;
5. end of procedure 5. end of procedure

Figure 3: Vecorized model checking algorithms for Boolean operators

3.2 Vector ized mode l checking a lgor i thm

The vectorized model checking algorithm for CTL runs in bottom-up way by labeling
each state with the truth value of each sub-formula contained in a given CTL formula.
Label(rt, s) denotes the truth value of a CTL formula ,7 at a state s in the following.

Case Boolean opera t ions (-~ or ~7 v ~): We need only to calculate logical nega-
tion or disjunction of Label(,7, s) and Label(~, s) for each state s as VeriJy_Not(-,~?) and
Verify_Or(~ V ~) in Figure 3.

Case EXI?: First, it assumes that EX~7 is false at all the states. For all states where
holds, it labels EX~7 to be ~rue at their all predecessor states (see Veri]y_EX(EX~7) in

Figure 4.).
Case E[~U~]: From the definition of E[~b/~], it holds at the states where ~ is irue

and it also holds at the states which are reachable to such states only through the states
where ~7 holds. Therefore, this is a kind of teachability problem.

In the procedure Verify_EU(E[~?bl~]), the sets of states N1 and N2 are used to keep
track of the states where the truth value of E[~//~] is newly determined to be ~rue. It first
initializes the set NI and then it calculates the initial values of Label(E[~U~], s) at each
state (lines 3 ,,~ I1) as follows: if ~ holds at the state, it is 1 (i.e. true) because E[~U~]
holds at the state apparently and the state is inserted to N1; if neither ~ nor ~7 hold at
the state, it is 0 (i.e. false) because E[~7 b/~] does not hold at the state apparently; if ~7
holds but ~ does not, it is temporarily assigned to 2 indicating that it will be determined
later by checking the teachability.

Next, for all the states labeled 2, the procedure checks the reachability to the state
labeled 1 through the states labeled 2, and the reachable states are labeled 1 and the
unreachable states are labeled 0. This step is done as follows (lines 12 ~ 27): For each
state where E[~U~] is newly determined to be true, the labels of its predecessor states
are checked, and if they are 2, then they are relabeled as 1 because they are the reachable
states and they are added to the set which keeps track of the states newly labeled as 1.
This step is repeated until no more states axe newly labeled as 1 (lines 12 ,.~ 23). Finally,
the states whose labels axe still 2 are labeled as 0 because they are the unreachable states
(lines 24 ,., 27).

Case EGrl: From the definition of EG~, it holds at the states on the loops which are
constructed only by the states where ,1 holds. It also holds at the states readable to such
loops through the states where ,7 holds. In order to find out such states, the procedure
Verify_EG((~) (Figure 4) first constructs a sub-graph logically by extracting all the states
where ~7 holds. Then it keeps removing the states from the sub-graph whose out degrees
are 0 while such states exist. It is almost clear that EG~ holds at the states contained in

48

1. p r o c e d u r e Veri]y_EX(EX~) 1. p r o c e d u r e Verify_EG(EG~)
2. f o r a l l s E S d o 2. Nl:----0;
3. Label(EX*l, s) :-- O; 3. fo r a l l s E S d o
4. fo r a l l s ~ E S d o 4. i f Label(~l, s) = 1 t h e n
5. i f Label(*}, s I) = 1 t h e n 5. b e g i n
6. fo r a l l s such t h a t (s , s ') E R d o 6. Label(EG~,s) := 1;
7. Lsbel(EX~, s) := 1; 7. N1 := At1 U {s};
8. r e t u r n ; 8. e n d
9. e n d o f p r o c e d u r e 9. e l se

10. Label(EG~l, s) := 0;
1. p r o c e d u r e VeriJy_EU(E[~lU~]) 11. i f Art ~ 0 t h e n
2. Nx := 0 12. b e g i n
3. fo r a l l s E S d o 13. fo r a l l s ' E N x d o
4. i f Label(~, s) = 1 t h e n 14. fo r a l l s such t h a t (s, s ') E R d o
5. b e g i n 15. i f Label(EG~7,s)>_ 1 t h e n
6. Label(E[11U~], s) : = 1; 16. Label(EG~l, s) : = Label(EG~l, s)+ 1;
7. .,v~ :=/v~ u {s}; I~. /v2 := ~;
8. e n d 18. fo r a l l s E N1 d o
9. e l se i f Label(*l,s) = 0 t h e n 19. i f Label(EGTl, s) = 1 t h e n
10. Label(E[~IU~], s) := 0; 20. b e g i n
11. e l se Label(E[t}U~],s) := 2; 21. Lable(EG~i,s) := 0;
12. w h i l e N x # 0 d o 22. N 2 : - - ' N 2 U { s }
13. b e g i n 23. e n d
14. N2 := 0; 24. Nx := IV2;
15. for a l l s IE Nt d o 25. e n d
16. for a l l s s u c h t h a t (s, s I) E R d o 26. w h i l e N1 ~ 0 d o
17. i f Label(E[~lU~],s) = 2 t h e n 27. b e g i n
18. b e g i n 28. N2 := 0;
19. Lgbel(E[~}b[~],s) := 1; 29. fo r a l l s ~ E Nx d o
20. N~ := N2 U {s}; 30. for all s such that (s,s') E R do
21. end 31. begin
22. Art := N~; 32. if Label(EG~I, s) = 2 then
23. e n d 33. Nz := Nz U {s};
24. fo r a l l s E S 34. Label(EG~l, s) := Labet(EG~l, s) - 1;
25. i f Label(E[~U~],s) = 2 t h e n 35. e n d
2e. La~el(E[,lU,~],s) := O; 36. _,V~ := -,V2;
27. return; 37. end
28. end of procedure 38. for all s E S do

39. i f Label(EG*l, s) > 2 t h e n
40. Label(EG~l, s) := 1;
41. e l se
42. Label(EG~l, s) := 0;
43. r e t u r n ;
44. e n d o f p r o c e d u r e

Figure 4: Vectorized model checking algorithms for temporal operators

49

the resulting sub-graph and it does not hold at all other states.
More precisely, after initializing the set of states N1 to be empty, the procedure labels

the states as 1 where y holds; it labels the states as 0 where y does not hold (lines 3 ,,~ 10).
For each state labeled 1, if the labels of its predecessor states are greater than 0, then they
are incremented (lines 13 ,,~ 16). At this point, the label 0 means that EGy does not hold
at the state; the label greater than 0 means that y holds at the state and it has its label -
1 successor states where y holds. Next, for each state labeled 1 (i.e. the state which has
no successor states where ~? holds), the label is relabeled to 0 and the state is inserted to
the set N~ which keeps track of the states newly labeled as 0 (lines 18 ,,, 23). In lines
27 ,,~ 37, for each state newly determined that EGy does not hold on it, the labels of its
predecessor states are decremented. This step is repeated for those states that become to
have no successor states until no more such states exist. Finally, the states whose labels
are greater than 1 are relabeled to 1 because such states have at least one infinite path
on which y always holds; the other states are labeled as 0 (lines 38 ,,~ 43).

3.3 T i m e c o m p l e x i t y

It is clear that Verffy_Not(-~y) and Veri]y_Or(~ V ~) runs in time proportional to ISI.
In the case of Veri]y_EX(EXy), the lines 6 ,,~ 7 are executed only IRI times in total

by adopting a data structure which assigns a list of its predecessor states to each state.
Therefore, the time complexity is O(IS I + IRD.

In the case of Veri]y_EU(E[yU~]), the]or loop from the line 3 to the line 11 is executed
IS I 'times. The lines 16 ,,~ 21 are executed only IRI times in total because it never checks
the predecessor states of the same state twice. The last]or loop (lines 24 ,,~ 26) is repeated
IS] times. Therefore, its time complexity is O([S] + IRD.

In the case of VeriJy_EG(EGy), it is easy to see that the lines 3 ~,, 10, 18 ,-~ 23, and
38 ,,, 43 are executed tSI times in total, and the lines 14 ,,~ 16 and 30 ,~ 35 are repeated
IRI times in total in the same way as in the case of Verify_EU(E[~U~]). Therefore, its
time complexity is O(IS I + IRI).

Since one of these procedures is executed for each sub-formula of a given CTL formula
~?, the time complexity of the vectorized model checking algorithm is O((IS I + IRI)IOI),
where]~?1 denotes the length of 7/.

3.4 Fairness c o n s t r a i n t s

Fairness constraints can be handled efficiently by labeling]air states which have at least
one]air path [7, 9]. This can be done by first obtaining]air strongly connected components
and then getting reachable states to the fair strongly connected components.

There is a well known linear time algorithm to get strongly connected components of
a directed graph based on the depth first search [1]. It seems to be difficult to vectorize
this algorithm. We leave the vectorization of this part as a future problem and decided
to use the non-vectorized well known algorithm.

Once the strongly connected components have been obtained, it is easy to vectorize the
decision procedure if they are fair or not. The reachability problem can be also vectorized
in the same way as model checking of E[~? H~].

The labeling for fair states should be done once before starting model checking and it
should be also done when evaluating EG operator.

50

4 Vectorized Model Checker

4.1 Imp lemen ta t i on

We have implemented the vectorized model checking algorithm on a vector processor
FACOM VP400E as a vectorized model checker. In the VP400E, three pipelined vector
functional units, each of which consists of 4 pipelined units, can operate in parallel with
7 nano second cycle time. Its peak performance is about 1714 MFLOPS. It has a 256 M
byte main memory, in which we can use 200 M bytes as a user area.

The input of the vectorized model checker is a Moore type deterministic sequential
machine and CTL formulas to be verified. It creates the corresponding Kripke structure
internally from a given Moore type deterministic sequential machine.

Let M = (X, Z, ~, 5, A, So) be a Moore type deterministic sequential machine, where
• X is a finite and nonempty set of binary input signals (atomic propositions);

• Z is a finite and nonempty set of binary output signals (atomic propositions);

• ~ is a finite and nonempty set of states;

• 6 : 2 x x ~] -* ~ is the state transition function;

• A : ~ -* 2 z is the output function;

• so is the initial state.
Then, the corresponding Kripke structure K -- (S, R, X) becomes as follows:

S = {s~jIs~ E ~,,j E 2Xand 6(j, st) is defined.}

zCs j) = {,1= u {zlz e

Intuitively, there is a one to one correspondence between the transition edges of the Moore
type deterministic sequential machine M and the states of the corresponding Kripke
structure K. The size of the Kripke structure becomes as follows:

O(ISl) = 0(1~ l x 2 Ixl)

o(1RI) = o(IEI x 2 m

o(ISl + IRI) = o ((I q + lED x 2m),

where IEI represents the number of transition edges of M and O(]EI) = o(Ir.I x 21Xl).
Almost all parts of the model checker are vectorized except the fairness constraints

handling. The most time consuming parts of the vectorized model checker are the calcula-
tions of labels of the predecessor states for each state (lines 16 ,~ 21 of Veri~_EU(E[~U~])
and lines 30 ,,~ 35 of Verify_EG(EG~) in Figure 4). The average vector length for these
parts becomes the average number of predecessor states of each state, and it is IRI/IS] or
21xl. That is, if the machine has 10 input signals, the average vector length becomes 1024
and it is enough large to extract high performance of a vector processor.

In order to represent a transition relation R of a Kripke structure, we use 2 integer
arrays Q and R. Since there is a one to one correspondence between the edges of a
sequential machine and the states of the corresponding Kripke structure, it is possible
to number the states of the Kripke structure so that each state s~ has its predecessor
states SQ(0 ,,~ sR(0. By using this numbering method, we can use the efficient contiguous

51

Table 1: Kripke structures for benchmark tests

Name ISpecl
Total:

SR8 Boolean:
Temporal:

SR9
Total:
Boolean:
Temporal:

~States
306
212 131,072

94
368
254 524,288
114

~Edges

67,108,864

536,870,912

access (see Figure 1) to calculate the labels of predecessor states which is the most time
consuming parts of the model checker. The sizes of the arrays Q and R are both IS].
These 2 integer arrays Q and K can be easily constructed directly from a given Moore
type deterministic sequential machine in proportional time to the size of the corresponding
Kripke structures by using one additional integer array of size IS].

As for N1 and N2 used in Veri/y_ZU(E[,lU~]) and Verify_EG(EG,}), we also use integer
arrays with the corresponding index variables. Initialization of Ni (i.e. N,- := 0, i = 1, 2)
can be done by just substituting 0 to the corresponding index variable. Insertion of a
state s to N; (i.e. N~ := Ni U {s}) can be done by just storing the state s at the place
in Ni pointed by its corresponding index variable and updating the index variable. As
for copying data from N2 to N1 (i.e. N1 := N2), we just exchange the role of N1 and N~
instead of copying data actually. The maximum required sizes of the arrays N1 and N2

ISl.
In order to store the truth value of each sub-formula at each state, we use 1 bit each.

Therefore, the required memory in total for this purpose is IS] × 1~/I/8 bytes. In addition,
we use a working integer array of size IS I to store a label for each state in checking
temporal operators.

We also use ISI x 8 words to handle fairness constraints.
Note that 1 integer word consists of 4 bytes. Therefore, the total amount of required

memory is
ISl × 56 + ISl × I, I18 bytes.

For CTL formulas which contains 256 and 1024 operators, the vectorized model checker
can manipulate Kripke structures of 2.3 million and 1.1 million states respectively with
main memory of 200 M bytes.

4.2 Example

In order to measure the efficiency of the vectorized model checker, we applied it to the
verification of two large Kripke structures (SR8 and SR9) corresponding to synchronous
shift registers with parallel load and serial output. SR8 consists of 131,072 states and
67,108,864 edges (each state has 512 edges), and SR9 consists of 524,288 states and
536,870,912 edges (each state has 1024 edges) as shown in Table 1. The CTL formulas
which give their full specifications contain more than 300 different sub-formulas with no
fairness constraints.

The benchmark results without fairness handling are shown in Table 2. Both SR8
and SR9 are verified to be true on the vector machine of VP-400E in about 5 seconds

Name

SR8
SR9

52

Table 2: Results of benchmark tests
Scalar Vecotr Acceleration Average Used

Execution Execution Ratio Vector Memory
(m see.) (m see.) Length

132,126 4,998 26.4 512 13 MB
Ii131,039 28,985 39.0 1,024 52 MB

and 29 seconds by using 13 MB and 52 MB of memory respectively. This means that our
vectorized model checker evaluates about 7 ,,~ 8 states in a second, which implies that it
will be able to verify 1 million state Kripke structure in a couple of minutes. Furthermore,
the acceleration ratio obtained by our algorithm is around 26 ,~, 39, which is extremely
high ratio in non numeric application programs.

We also verified SR8 by using the CTL model checker B1.0 developed by Clarke et al.
[5] installed on Sun-3/80. It took about 5,068 seconds to verify SR8. By considering that
some benchmark tests show that the scalar unit of FACOM VP-46OE is about 6.7 times
faster than Sun-3/80, it will still take about 750 seconds to verify SR8 even if we instal]
the CTL model checker B1.0 on VP-400E because their algorithm cannot be vectorized
due to recursive calls.

5 Conc lus ion

We proposed a vectorized model checking algorithm for CTL and implemented the vec-
torized model checker on a vector processor FACOM VP400E. Almost all parts of the
algorithms axe vectorized except the parts to obtain strongly connected components for
fairness constraints handling.

It can handle about 2.3 million or 1.1 million state Kripke structures derived from a
Moore type deterministic sequential machine when the length of a give CTL formula is
less than 256 or 1024 respectively.

We also presented examples which show that a CTL formula of 368 different sub-
formulas is verified to be true in 29 seconds on a Kripke structure with 524,288 states and
536,870,912 edges.

There are several remaining future problems:
The first is to devise a vectorized algorithm for obtaining strongly connected compo-

nents of a directed graph, and we need more consideration.
The second is a vectorization of model checking which can handle sequential machines

directly [2]. We think this is not so difficult and would like to implement it in the near
future.

The third is a vectorization of model checking based on Binary Decision Diagrams
(BDD) because the BDD is a powerful technique to reduce necessary amount of memory
for model checking dramatically in some cases [4].

Although our current version of the vectorized model checker takes a single Moore
type sequential machine as input, it would be interesting to challenge the vectorization of
the procedure to create direct product of several concurrent/parallel sequential machines.
It would be also interesting to devise vectorized algorithm for model checking without
creating direct product explicitly.

53

Acknowledgmen t s The authors would like to express their appreciations to Prof. E. M.
Clarke of CMU for his valuable suggestions. They also would like to express their ap-
preciations to Prof. S. Yajima, Dr. N. Takagi, Mr. N. Ishiura and Mr. H. Ochi of Kyoto
University for their precious discussions and comments.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison Wesley, 1974.

[2] M. C. Browne. An improved algorithm for the automatic verification of finite state
systems using temporal logic. Technical Report CMU-CS-86-156, Carnegie Mellon
University, 1986.

[3] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic verification
of sequential circuits using temporal logic. IEEE Transactions on Computers, C-
35(12):1035-1044, December 1986.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 102° states and beyond. In Proc. Logic in Computer Science, 1990.

[5] E. M. Clarke, S. Bose, M. C. Browne, and O. Grumberg. The design and verification
of finite state hardware controllers. Technical Report CMU-CS-87-145, Carnegie
Mellon University, July 1987.

[6] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching
time temporal logic. In Proc. Workshop on Logic of Programs, pages 52-71. Springer-
Verlag, 1981.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite
state concurrent systems using temporal logic specifications: A practical approach.
Technical Report CMU-CS-83-152, Carnegie Mellon University, 1983.

[8] E. M. Clarke and O. Grumberg. Avoiding the state explosion problem in temporal
logic model checking algorithms. In Proc. 6th Annual A CM Symposium of Principles
of Distributed Computing, pages 294-303, August 1987.

[9] E. M. Clarke and O. Grumberg. Research on automatic verification of fmite-state
concurrent systems. Technical Report CMU-CS-87-105, Carnegie Mellon University,
January 1987.

[10] E. M. Clarke, D. E. Long, and K. L. McMillan. A language for compositional speci-
fication and verification of finite state hardware controllers. In Proc. 9th IFIP Sym-
posium on Computer Hardware Description Languages and their Applications, pages
281-295, June 1989.

[11] S. Gra~, J. L. Richier, C. Rodriguez, and J. Voiron. What are the limits of model
checking methods for the verification of real life protocols ? In Proc. Workshop on
Automatic Verification Methods for Finite State Systems, June 1989.

