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Abstract  

A theory of sequential hardware equivalence [1] is presented, including the notions of gate- 

level model (GLM), hardware finite state machine (HFSM), state equivalence (~), alignabillty, 

resetablility, and sequential hardware equivalence (~). This theory is motivated by (1) the 

observation that it is impossible to control the initial state of a machine when it is powered on, 
and (2) the desire to decide equivalence of two designs based solely on their netlists and logic 

device models, without knowledge of intended initial states or intended environments. 
Binary decision diagrams are used to represent predicates about pairs ofharware designs. A1- 

gorithms are given for computing pairs of equivalent states and sequential hardware eqniw.lence 

as implemented in the MCC CAD Sequential Equivalence Tool (SET). 

1 I n t r o d u c t i o n  

A problem often encountered in commercial hardware design is to map an existing design from 

one technology to another (in some way, superior) technology. Differences in physical characteristics 

of the new and old technologies (e.g., different relative speeds or area characteristics) often cause 

designers to reimplement parts of the design to exploit the characteristics of the new technology. 

When reirnplementation involves only purely combinational p~rts of the machine, tautology-checking 

algorithms can be used to decide equivalence. 

However, sometimes sequential parts are reimplemented as well (e.g., combinational logic might be 

moved across storage elements). Unfortunately, the designer may not have an accurate specification 

(other than the existing design) of the individual part that is being replaced. For example, he may 

not know a reset state or reset sequence for the part. Furthermore, the designer may not have a 

specification of the part's intended environment to know what signals the environment will emit 

and how it should interact with the part. Therefore, the theory of sequential hardware equivalence 

presented in [1] (and elaborated here) is motiwted by the desire to decide whether two gate-level 

designs are equivalent without reference to the intended environment, knowledge of initial (reset) 

states, and knowledge of reset (homing) sequences. 

*This report is a revision of MCC Technical Report: CAD 448-89 (Q) 
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I . I  R e l a t e d  Research  

In the classical theory of finite state machines [5], two FSMs are defined to be equivalent provided 

they Uaccept" the same input sequences. A FSM "accepts" a valid input sequence if, starting from a 

preferred initial state, the sequence leads to one of a set of designated final output states. Because, the 

theory presented here deals with comparison of two gate-level models (as defined by interconnections 

of logic gates and primitive storage elements), there is no notion of initial state, final state, or valid 

input to a state (though this notion of equivalence can be modified to reflect input constraints). 

In the present theory, "state" is any one of the 2 n assignments of boolean values to the n 

many primitive storage elements of a design, and hardware is modeled in terms of its sequential 

input/output behavior from any initial state. This viewpoint is required because the initial state of 

a machine, when it is powered up, cannot be reliably predicted. 

Also, the present theory is primarily concerned with equivalence of two hardware designs, rather 

than comparison of a design to a specification, though the latter can be accomplished with similar 

computational techniques. This viewpoint is dictated by the desire to understand when one design 

can be safely replaced by another, "equivalent", design. 

Coudert, Berthet, and Madre [2] present a verification method based on characteristic functions 

of sets of tuples of boolean values. Starting from a pair of initial states, they compute the set of 

reachable states until either a discrepancy between output functions is recognized or all reachable 

state pairs have been examined. By contrast, the method presented here extracts the set of all pairs 

(possibly empty) for which the two machines have the same input-output behaviors. Surprisingly, our 

experiments indicate that our algorithm generally converges faster. However, their more incremental 

approach should be able to handle larger designs. 

Devadas et al. [8] describe a method for comparing the state transition graphs of two finite 

automata (derived either from gate, register transfer, or ISP-like specifications) with boolean simu- 

lation. In contrast to the theory presented here, their comparison algorithm presupposes that the 

machines start in a valid initial state. The efficiency of their algorithm results from their ability 

to extract "don't care" information from the RTL or logic-levei description, which allows them to 

greatly reduce the number of cases to simulate. In contrast, it is a remarkable property of the BDD 

representation of the state transition relation employed in the current work, that only dependencies 

among logic variables which affect the characteristic function are explicitly represented. 

Symbolic simulation has been shown by IL~ndal E. Bryant and his students [4] to be an effective 

method for checking that a hardware implementation responds correctly to a sequence of symbolic 

inputs. This approach can avoid the combinational explosion that would normally occur in boolean 

simulation when evaluating circuit operation over many combinations of input and initial state. 

Symbolic simulation can effectively compare the output behaviors of two designs with the same (finite) 

sequence of symbolic inputs but cannot, by itself, establish the equivalence of output behaviors for all 

possible sequences of inputs of arbitrary length as in the present theory. On the other hand, symbolic 



56 

simulation can complement the present approach. When two designs are found to be inequivaient, 

symbolic simulation can find a sequence of inputs that cause the outputs to diverge starting from a 

pair of initial states that are thought to be equivalent. 

Bose and Fisher [10] use BDDs to characterize states of a machine and the machine's next-state 

function. They then check temporal logic properties of the design using algorithms similar to those 

in [11. 
It is well known that the size of an ordered binary decision diagram is sensitive to the ordering 

of boolean variables employed. For combinational circuits, orderings of circuit inputs derived from 

the circuit interconnectlons are described in [6] and [7]. In the present work, there is the added 

complication of ordering both circuit inputs and storage element outputs (representing both state 

and next-state variables). In the present work this is accomplished by a rather simple depth-first 

heuristic. However, better ordering of variables is a continuing subject of investigation. 

None of the previous works presents a theory of equivalent sequential hardware design based solely 

on netlists and logic models of devices. 

2 T h e o r y  

2.1 Gate-Level  Models  and H F S M s  

Synchronous designs are modeled at the gate level in terms of combinational elements and prim- 

itive storage elements. A primitive storage element (PSE} is a device that transports its input to 

its output on a clock event and holds the output value until the next clock event. An example of 

a primitive storag e element is a simple D flip-flop (without enable or reset). Fortunately, most real 

storage devices, such as D flip-flops with enable, reset and both Q and Qn outputs, can be modeled 

as a network of these primitive storage elements and combinational logic. 

A gate-level model (GLM or design} is defined to be an interconnection of purely combinational 

elements and primitive storage devices. Each interconnection (i.e., net) is required to have exactly 

one driver (design input or device output). A design may have no loops of purely combinational 

elements. 

A state of a GLM is an assignment of boolean wlues (0 or 1) to the output of each primitive 

storage element of the design. Suppose a design (GLM), D, has i many inputs, n many PSEs, and o 

many outputs. Design D has 2 n many states. For each state, each output is a boolean function of 

the inputs of D (if, for each state, each output function is a constant function, the design is called a 

Moore machine; otherwise, it is called a Mealy machine). To account for quotient designs, which are 

defined later, we present the following notion. 

Definit ion 1 A H a r d w a r e  Fini te  S ta te  Machine  (HFSM)  is a quadruple, (Ins, States, Transi- 

tion, Outputs} where Ins is a non-empty set of symbols, States is any non-empty set, Transition is a 

total function from {0,1} t × S into S, and Outputs is an n-tuple of functions (n >__ 0), each of which 

has domain {0,1} t × S and range {0,1}. 
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We will think of the transition function as a relation, Transition(~,i~,ne~t-q),  that holds if 

and only if the circuit has state ne~t-q when it receives inputs, ms,  while in state, ~. Note that 

this definition does not mention initial states or accepting states as in classical finite state machine 

theory. We define two designs to be compat ib le  if they have the same set of inputs and outputs. 

This notion of hardware equivalence is defined only for compatible designs. We now define several 

notions that are useful in stating the theory. 

Defini t ion 2 Let sO be any state of design D, and let SEQ be any finite sequence of  boolean input 

vectors. SEQ(s0)  is defined to be the state of design D following n machine cycles with inputs SEQ 

starting at sO. 

Definit ion 3 A set of  states, S, is closed u n d e r  (all) inputs  means that i f  s is an element of S 

and in is an input vector, then ~n(s) is an element orS. 

2.2 Equivalent  S ta tes  and the  Quot i en t  Design 

Definit ion 4 Suppose sO and s l  are states of  compatible designs DO and D1, respectively. We define 

sO to be equivalent  to s l  (i.e., sO ,~ sl}  to mean that for the state pair (sO, sl} and for all state pairs 

reachable from (sO, s1) by sequences (of arbitrary length} of identical inputs, all corresponding output 

functions for the two designs are the same. 

Clearly ,~ is an equivalence relation among states of compatible designs. An algorithm for com- 

puting the set of all equivalent state pairs of two compatible design is given later. 

Definit ion 5 The quo t i en t  machine  (D/  ,,~) of design D, is the IIFSM with the same inputs as 

D, with states being the set of equivalence classes induced by ,,,, and with pthe induced transition 

relation and output functions. 

The proof that this definition makes sense is based upon the observation that if two states are 

equivalent, they have the same output functions, and for any input vector, their successor states are 

equivalent. The equivalence class of state ~' (i.e., set of states equivalent to q-~ is denoted [q-]. 

2.3 Al ignabi l l ty  and  Design Equivalence  

Given that one cannot predict what state a design will be in when it is powered on, knowing that 

two designs have some pair of equivalent states is not enough to infer design equivalence. It must be 

possible to force the designs to behave the same no matter what their initial states are. 

Definit ion 6 A pair of states (sO, s l )  of a design pair (DO, D1) is alignable,  i f  there is a sequence, 

SEQ, of  inputs (called an aligning sequence)such that SEQ(sO) ,,, SEQ(s l ) .  

Definit ion 7 Given a compatible design pair (DO, D1), Alignable -S ta te -Pa i r s (D0,D1)  is the set 

of all pairs of alignable states. 
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An algorithm for computing Al lgnable -S ta te -Pa l r s (D0~D1)  is given later. We now define a 

pair of designs to be equivalent if they have some equivalent states, and for every pair of initial 

states, there is some sequence of inputs (called an aligning sequence) that wiU force them to behave 

the same. 

Defini t ion 8 T~oo designs, DO and D1, are equiva len t  (DO ~ D1) i f  and only i f  all state pairs are 

alignable (i.e., Alignable-State-Pairs(DO, D1) is the set of all pairs of  states). 

The following fundamental theorem shows that if every state pair is alignable with some aligning 

sequence (that may depend upon the pair), then there is a single aligning sequence that wiU align all 

state pairs. More detailed proofs of the following theorems are given in [1]. 

T h e o r e m  1 ( f u n d a m e n t a l  a l i g n m e n t  t heo rem)  I f  two design are equivalent, then there is a 

single aligning sequence (called a universa l  al igning sequence)  for all state pairs. 

The proof of the fundamental theorem is based upon the observation that the set of equivalent 

state pairs is closed under all inputs. So i fp  is a pair of non-equivalent states, let SEQ0 be a sequence 

that forces p to an equivalent pair (SEQ0 exists by hypothesis). Note that other pairs that were not 

equivalent may have been forced into equivalent states, but each pair that was already equivalent 

moved to equivalent states. Therefore, the number of non-equivalent pairs in the image of SEQ0 is 

fewer by at least one than the original number of non-equivalent pairs. This process is repeated until 

there are no more non-equivalent state-palrs. The concatenation of these sequences is the desired 

universal aligning sequence. 

We intend to define hardware equivalence (~)in such a way that it is an equivalence relation (i.e., 

reflexive, symmetric, and transitive) on the set of reasonable designs. 

T h e o r e m  2 The relation ~, is symmetric and transitive. 

An application of this theorem is the observation that if a design is equivalent to any other design, 

then it must be equivalent to itself. 

Coro l l a ry  1 I r A  ~ B,  then A ~ A. 

The following theorem shows the necessity of the hypothesis that all state pairs are aiignable in 

Theorem 1. 

T h e o r e m  3 There is a pair of machines having equivalent states such that no single aligning sequence 

will drive all alignable state pairs into the set of equivalent states. 

In fact, the example in [1] is of a single design such that not all state pairs are alignable. This 

example shows that, in general, hardware equivalence (~.) is not reflexive. The next section charac- 

terizes reflexivity. 



59 

2.4 Resetability 

The notion of resetability turns out to be fundamentM to the present theory of sequential hardware 

equivalence. 

Definition 9 A state, sO, of a machine is a reset state i f  and only if  there ezists a sequence of 

inputs, SEQ, (called a reset sequence) such that i f  s is any state then SEQ(s) = sO. The set of 

(all) reset states of machine D is denoted Reset-States(D). A design is resetable i f  it has a reset 

sequence. 

The following theorem characterizes the set of reset states as the set of states reachable from any 

reset state. 

Theorem 4 Let D be any HFSM and let sO be any reset state of  design D. Then Reset-States(D) 

is the set of  states reachable from sO. 

Note that this theorem may be applied when D is the quotient of an HFSM. The following theorem 

characterizes self-equivalence. 

Theorem 5 (Reset Theorem) Any design, D, is equivalent to itself 6.e. D ~ D) if  and only if  

the quotient (D[ ,,,) is resetable. Furthermore, an input sequence, SEQ,, aligns all pairs o l d  x D i f  

and only i f  SgQ is a reset sequence for (D/  ,~) 

Definition 10 A design is essentially resetable means that D/, ,~ is resetable. 

Corollary 2 (to Corollary 1) I f  A ~ B, then A and B are essentially resetable. 

Theorem 6 (Equivalence Theorem) The relation ~-, is an equivalence relation on the set of es- 

sentially resetable designs. 

2.5 The Isopmorphlsm Theorem 

We now present without proof an alternate characterization of hardware equivalence. This char- 

acterlzation requires the notion of isomorphism for HFSMs. As usual, isomorphism just means that 

the two structures are identical up to renaming. Two HFSMs H0 and HI are isomorphic if and 

only if they are compatible and there is a one-to-one function F from the states of H0 onto the 

states of H1 satisfying the following two properties. For each state SO of H0, corresponding output 

functions of the two designs are the same for states S0 and F(S0). For any input vector in and state 

SO of HO, 

transition Hl( i~, F( SO) ) = F( transition Ho( in, SO) 

The following theorem characterizes hardware equivalence (~) for the set of essentially resetable 

designs. 



60 

T h e o r e m  7 ( I s o m o r p h i s m  T h e o r e m )  Suppose that DO and D1 are essentially resetable designs, 

then the following are equivalent: 

1. D O , D 1 .  

• . There exists some equivalent state pair for DO and DI. 

8. State equivalence (N) is an isomorphism from Reset-States(DO/...) onto Reset-States(D1/~) 

From the point of view of the theory of sequential hardware equivalence presented here, the 

essence of a design is captured by the reset states of its quotient, i.e., Reset-States(D/ ,,,). For 

any essentially resetable design, DO, any other design, D1, is equivalent to DO if and only if D1 is 

essentially resetable and the set of reset states of the quotient of D1 modulo N is isomorphic to 

Reset-States(D0/,~). In fact, Reset-States(D/,~) is minimal in the following sense. 

T h e o r e m  8 For any essentially resetable design, D, the Reset-States(D~ N)  is a design ,nith the 

smallest number of  states that is equivalent to D. 

3 Algo r i t hms  

Binary decision diagrams (BDDs) [3] are used to represent characteristic functions of sets of n- 

tuples of boolean values. For example, suppose boolean values are assigned to the variables, ~, i t ,and 

n~-q.  " " ~ " " Then transit,on(q, m ,  nxt-q) has value TRUE if and only if the values assigned to n~-Lq are 

the next values of the primitive storage elements of the circuit when the current values are ~" and the 

inputs are in. The predicate qs-are-nezt.qs is true if and only if corresponding variables qs and nzt-qs 

have the same value. Iffoo is a predicate involving variables qs, then exist qs:foof:iqs-are-ne~t-qs is the 

same predicate in te r r~  of variables nzt-qs. The programs below illustrate how to calculate the BDDs 

for the predicates Transition, Equivalent-Outpu~ Equivalent-State-Pairs, and Equivalent-Designs. 

3.1 Ca lcu la t ing  Transition and Equivalent-Outputs 

The transition predicate is derived as follows from a netllst for a design. For the input to each 

primitive storage element, q, the input to q is expressed as a boolean function, in-q of variables, 

~" and in. For each variable nxt-q, let . . . .  nxt-predieate(q, m,  nz~-q) be the predicate, nzt-q = in-q. 

The transition predicate, trans2hon(q, zn, n±'Lq), is then the conjunction of all the nzt-predicate 

predicates. 

For corresponding outputs, Outo and Ouh,  of the two designs, the output is expressed as a 

function, Out-funo(m, qo) and Out-funl(iT~, ~) of the inputs and q-values. Let Out(~,  ~ )  be the 

predicate V/~, (Outo(~o, in) -- Ouh(qq,i~)). Equivalent-Outputs(~o, ~1) is the conjunction of all 

Outs. 
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3.2 Calcula t ing  Equivalent-State-Pairs 

Let Ao be the set of state pairs, (q~, q~), for which Equivalent-Outputs = 1, i.e., corresponding 

outputs of the two nmehines agree. In general, let state pair (q~,q~) belong to As+1 if and only 

if Equivalent-Outputs(~'o,~) = 1 and the set of all states immediately reachable from (q~,q~) is 

in As. A simple induction argument shows that a state-pair, (q~,q~), belongs to As if and only if 

Equivalent-Outputs(~'o, q'{) -- 1 and for any sequence of inputs, ins, ins-K, . . . .  in1, having length i, 

all of the states-pairs reached by that set of inputs satisfies Equivalent-Outputs. Furthermore, each 

As+l is a subset of A~. Hence, the intersection of all Ass is Equivalent-State-Pairs. 

char := I 

next_char := Equivalent-Outputs 

loop until (char = next_char) 

char := next_char 

correct-next-qs :ffi (exist qs: char&qs-are-next-qs) 

ins-qs-point-to-correct-next-qs 

:ffi (exist nrt-qs:transition&correct-next-qs) 

qs-always-point-to-correct-next-qs 

:= (all ins:ins-qs-point-to-correct-next) 

next_char :- Equivalent-Outputs&qs-always-point-to-correct-next-qs 

end loop 

equivalent-state-pairs :ffi char 

equivalent-state-pairs-non-empty :ffi exist qs:equivalent-state-pairs 

3.3 Calcula t ion  o f  Alignable-Palrs 

Suppose that the set of equivalent state pairs is non-empty (i.e., the characteristic function, 

equivalent-state-pairs, is not FALSE). Let B0 be the set of equivalent state pairs. For all i > 0, let 

B~+~ be the union of Bi and the set of state-pairs, p, such that for some vector of inputs, inp, if 

inp is applied to p, then the resulting state is in B~. The set B~ is the set of state-pairs that can 

be transformed into equivalent-state-pairs in i or fewer cycles. Since B~ is a subset of Bi+l, let the 

union of all the Bis be called the alignable-pairs.  The following algorithm computes the predicate 

alignable-pairs(~ from equivalent-state-pairs. 

char := 0 

next_char :- equivalent-state-pairs 

loop until (char ffi next_char) 

char := next_char 

new-align := (exist in's nxt-qs:transition & 

(exist qs: char & qs-are-next-qs)) 

next_char := char or new-align 
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end loop 

aliEnable-pairs := char 

Equivalent-Designs := (all qs:alignable-pairs) 

Two designs are equivalent if and only if Equivalent-Designs is True. 

3.4 Exper imenta l  Results  

The above algorithms together with an algorithm that computes all minimal reset sequences [1] 

are implemented in the MCC CAD Sequential Equivalence Tool (SET). The results using the 1988 

version of the BDD routines in COSMOS system by R. Bryant of Carnegie Mellon University are 

reported in [1]. The longest comparison was of two four-blt serial multipliers (multipliers are known 

to generate large BDDs) with 18 and 15 storage elements, respectively, which took less than four 

cpu minutes on a Sun 4. For all 44 of the Berkeley/MCNC examples (from bbara through train4) 

two designs were synthesized from KISS2 descriptions by a commercial synthesis tool using different 

state encodings. Equivalence for each.pair was decided in less than 23 cpu seconds and most were 

decided in less than two cpu seconds. 

SET is being modified to use the more efficient Brace-RudeU-Bryant [11] program from Carnegie- 

Mellon University and Synopsys Inc. 

4 Conclusion 

An intuitively appealing definition of equivalence of gate level models (i.e., sequential hardware 

designs) was formulated which, for essentially resetable designs, is an equivalence relation. Several 

theorems were presented. A design is equivalent to itself if and only if its quotient is resetable. For 

two essentially resetable designs the following are equivalent. (1) The designs are equivalent. (2) 

The set of reset states of their quotients are isomorphic. (3) Their quotients have at least one pair of 

equivalent states. Algorithms were presented for computing the transition relation, the set of state 

pairs with equivalent outputs, the set of pairs of equivalent states, the set of alignable state pairs, 

and design equivalence. Experimental results show that deciding design equivalence for relatively 

small sequential designs is tractable. 
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