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Abstract  
Some design environments may prevent Design for Testability techniques from 

r e d u ~  testing to a combinational problem: ATPG for sequential devices remains 
a challenging field. Random and deterministic structure-oriented technlques are 
the state-of-the-art, but there is a growing interest in methods where the function 
implemented by the circuit is known. This paper shows how a test pattern may be 
generated while trying to disprove the equivalence of a good end a faulty machine. 
The algorithms are derived from Graph Theory and Model Checking. An example 
is analyzed to discuss the applicability and the cost of such an approach. 

1 I n t r o d u c t i o n  

Despite Design for Testability [WiPa82], test pattern generation for synchronous sequen- 
tial circuits is still needed for some design environments, e.g., those based on Partial 
Scan [Motog0]. A major class of devices is represented by Finite State Machines (FSMs) 
that are in extensive use as building blocks in a variety of applications, ranging from 
VLSI devices to network controllers. As reported in [Vv'olfg0], many ASICs are "control- 
domir~atecff, i.e., they are best mode]eel in terms of FSMs, rather than in terms of data 
path and control part. Moreover, following methodologies such as "Macro Testing" 
[BEGP86], complex devices may be partitioned for testing purposes, creating macros 
composed by one or more FSMs that can be tested individually. 

Researchers investigated different approaches to ATPG for synchronous sequential 
circuits. The extension of fault simulation techniques to test generation for sequential 
devices has been the object of research [ACAg89], but reduced CPU time and high fault 
coverage for very complex circuits still cannot be guaranteed. Other works focused on 
extended combinational deterministic algorithms: starting from Huffmann's model that 
transforms sequential behavior over time frames into combinational behavior on iterated 
structures, the basic method extends the D-algorithm [PuRo71]. Many enhancements 
to it have been proposed, limiting the number of copies [Fuji85], introducing a 9-valued 
algebra [Muth76], searching for a path to be sensitized [Marl86], [Chen88], exploiting 
the benefits of techniques used in combinational ATPG [ScAu89]. 
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A common feature of most ATPGs is that they are ~tructure.oriented, i.e., the only 
knowledge they have of the device is its topology. Some efforts have shown a growing 
interest on algorithms where a certain amount of reasoning is performed or the f~nction 
implemented by the circuit is known. [HuSe89] describes an application of Temporal 
Logic [ReUr71]: its operators are used both to describe future behavior and to justify 
the past one and a reasoning process yields a test pattern. The knowledge of the state- 
transition table is used in {MDNS88] to justify backward the values needed to control 
an observable fault until the initial state and the primary inputs are reached. The need 
to know the function restricts the application domain to medium-sized circuits, since 
the function must be extracted from the structure. Whenever the same approach is 
embedded within a synthesis system, this limitation is overcome easily [ChJog0], since 
the state transition table is available immediately. 

This paper presents a method to generate test patterns for synchronous sequential 
circuits working in fundamental mode [McC186]. The devices are modeled as Finite State 
Machine~ (FSMs) and may be Mealy or Moore machines, indifferently. This method is 
based on a strong interaction between Graph Theory and Model Checking [BCDM86]. 
The basic hypothesis is that the function realized by the device, represented by its au- 
tomaton, may be extracted from its structure. Once the fault, of the traditional single 
stuck-at type, is inserted, a faulty automaton is created. The fault detection condition is 
expressed in theoretical terms within the framework of the product machine [PoMC64] 
that might in principle be used, although experience shows that it becomes unmanage- 
able for other than trivial circuits. Without any loss of information, it is possible to 
refer to a Deterministic Finite Automaton (DFA) that is considerably smaller. Other 
approaches refer to the Error Latency Model (ELM) state table [ShMC76], although 
their objective is not test pattern generation, rather error latency estimation. The DFA 
is a Moore Machine and it is a suitable input for the Model Checker of the MCB sys- 
tem [CESi86]. The use of the DFA overcomes the Model Checker's limitation to Moore 
FSMs, at least for testing applications. The test detection condition is easily stated 
as a CTL formula and the counterexample facility of MCB is used to compute the test 
pattern. 

Section 2 describes the theoretical framework for FSM modeling, stating the test 
generation problem in terms of the product machine and of the DFA and showing 
where Model Checking intervenes. Section 3 illustrates these concepts by means of a 
simple example. Conclusions are drawn in Section 4, justifying the use of this approach, 
defining its applicability limits, and pointing to future work. 

2 Theore t i ca l  f ramework  

Defini t ion  1 

A Finite State Machine .A4 is defined by a 6-tuple [Koha70]: 

= (I, 0, S, 6, A, 8 0 ) 
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where: 

I is a finite, nonempty set of input values 

O is a finite, nonempty set of output  values 

S is a finite, nonempty set of states 

5 : I x S --* S is the state transition function 

: I x S --* O is the output  function 

s o is the initial state. 

A Mealy machine is such that  A : I x S --* O. 
A Moore machine is such that  A : S --, O. 

o 

D e f i n i t i o n  2 

Two completely specified FSMs .M1 and .M2 operating on the same input 
and output  sets are equivalent iff, for all input sequences, all the elements of 
the output  sequences are equal, t2 

The test generation problem for a FSM may be stated as follows: given a good machine 
.A//1 and a single stuck-at-i (i e {0, 1}) fault ~', generate a faulty machine/v/2,  operating 
on the same input,  output ,  and state sets, where the fault ~" changes the 5 and /or  
functions. If one can demonstrate that  the two FSMs are n o t  equivalent, i.e., tha t  there 
is an input sequence such that  the k-th elements (k >_ 1) of the two output  sequences 
differ, then a test pat tern has been found. If equivalence can be proven, then fault ~" is 
undetectable. 

Some ancillary definitions are necessary before stating the equivalence condition 
of two FSMs in Theorem 1. 

D e f i n i t i o n  3 

Oiven two FSMs A~x = (I,  O, Sx, 5a, ~1, 810) arid d~ 2 = (I,  O, ~2, ~2, ~t2, sO), 
the product machine .Atf12 is defined as a 6-tuple: 

• M12 = (I,  012, $22, 6t2, A12, s~2) 

where: 

012 = 0 x 0 

,.%2= Sl x S2 

612: S l x S 2 x I - *  & x & :  

A12: & x $2 x I  ~ O x  O :  

where: 

81ESI ;  s 2 E S 2 ; i E I  

802 0 0 = (81,82) 

s2,0 = ( 101, O, O) 
 ,12(s1,s,,O = ( 1(s1,0,  ,2(s2,0) 

O 



89 

Given two machines ~/ft and .A//2, the state set $12 of their product machine 
• MI~ may be partitioned into two subsets Qt~ and Zt~ such that $12 = Q12 O Z12 and 
Qt~ f) ZI~ = 0. The two subsets are defined as: 

Q1, = { q12 = (q l ,q , )  ~ s12 : v i ~ x ~1(q1,i) = ~,(q~,i)  } 
z l ,  = { Zl, = (Zl,Z,) ~ s12: s i ~ x ~1(~1,i) # ~2(~2,i) 

The following theorem, whose proof is quite obvious and is thus omitted, ex- 
presses the equivalence condition for two FSMs. 

T h e o r e m  1 

Two FSMs ,A~ll and .A//2 are equivalent iff in the product machine .M12 the 
subset ZI~ is either unreachable from the initial state 8°2 or empty. [] 

Proving that the subset Zx2 is either unreachable from s°2 or empty is very heavy com- 
putationally. It is possible to reduce complexity, without affecting the validity of the 
method, by noting that only the states of Q12 are needed to prove equivalence and that 
a~ the states of Z12 can be collapsed into a single failure state, indicating that the FSMs 
axe not equivalent. This allows to transform the product machine into a DFA. 

Def in i t ion  4 

A Deterministic Finite Automaton (DFA) is defined by a 5-tuple [Koha70]: 

D F A  = ( I ,  S,  6, * °, F)  

where: 

I is a finite, nonempty set of input values 

S is a finite, nonempty set of states 

: / x S --* S is the state transition function, 

s o is the initial state 

F is the set of final states 2 ¢. tD 

A DFA, associated to the product machine Ad12, whose final state indicates a failure in 
proving equivalence, is defined as follows: 

Def in i t ion  5 

Given two FSMs A/fl and .M2 and their product machine Mix,  if ,° 2 E QI~, 
the DFA associated with ~x2  is the 5-tuple: 

where: 

DFA(:~12) = (L ¢~2 u F'u/, ~12, s~2,/) 
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/ is the final failure state 
F'  = { Z12 e Z 1 2 : 3  i e I 5~2(q~2,d) = z~2, q12 e q12} 
~q12: 

if (t E Q~2) then 5q12(~,i) = 512(~,i) 
if(~ E ~' ^ (~12(t,0 = (ol,o2)) ^ (Ol # 02)) 

then 6q12(~,0 = / 
else undefined. O 

By using Definition 4 and Theorem 1, Theorem 2 may be obtained. 

T h e o r e m  2 

Given two FSMs .M1 and .M~, representing the good and the faulty ma- 
chines, respectively, evezy string of the language recognized by DFA(.M12) 
is a test pattern. I"1 

Obviously, if the final state / is not reachable, the two machines ~/1 and .M2 are 
equivalent and therefore fault 5 r is undetectable. 

The construction of the DFA(/vI12) associated to the product machine of the two 
FSMs leads to the determination of all the test patterns for the fault; sometimes it is 
sui~iclent to fred only one pattern, possibly the shortest one. In order to do this we use 
MCB [CESI86]. MCB has as an input the graph of any Moore FSM and a formula of 
Branching Time Temporal Logic called CTL, describing the property to be verified. We 
must reduce the DFA of Definition 4 5 to a structure that can be accepted by MCB. 
The DFA is a Moore FSM in which the output associated with all the states except the 
final state is 0, while the output associated with the final state is 1. It is important to 
note that we reduce the problem of the eqnivalence of two Mealy Machines to that of a 
simple DFA, which is a trivial Moore Machine; thus we are able to use MCB in finding 
a test pattern for a generic FSM. The formula to be verified by the MCB asserts that 
the output of the DFA has to be different from 1. Since the logic is branching in time, 
the A G  operator is used to assert that the formula is true for all possible evolutions in 
the future, i.e., for every path and at every node on the path. 

The equivalence formula, if O is the output of the DFA, is: 

AG(" O). 

3 A n  e x a m p l e  

In this section we analyze the example of Fig. 1, originally presented in [MDNS88]. 
The functional description of the FSM expresses the inputs to the D-FFs in terms 

of the state variables z0 zl and of the input i: 

,~lCCzo,~l),i) = C(~.~o) + ~.~1), ( d ~ l ) )  
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~i $'tuck-Q~-l~ 
D 

Figure 1: An example 

i: 
The primary output depends on the state variables z0 zl and on the primary input 

~ ( ( , 0 , , ~ ) , i )  = i . ~ 0  

Fig. 2(a) shows the automaton ~ a  of the good machine. Let us consider the 
stuck-at-1 fault indicated in Fig. 1. The functions corresponding to the faulty FSM are: 

~ , ( ( -0 , -1 ) , i )  = (-0 + i . , 1 ,  i ~ ~1) 

~ , ( ( , 0 , ~ , ) , i )  = i .  ~-~ 

In this particular case the fault's effect is limited to the ~ function. The automaton 
.M~ of the faulty FSM is shown in Fig. 2(b). 

The DFA(.A4a2) of Fig. 3 is easily built according to Definition 5. 

Only 6 states of this automaton are reachable from the initial state; the remaining 
4 are unreachable and are not useful to determine test patterns. Two of the 6 states 
(F~ and f )  are only introduced to formally define the DFA, thus only 4 states are really 
needed, compared with 16 states for the product machine. The shortest testing sequence 
is 01011. 
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1/1 1/1 

(Q) (b) 

Figure 2: The good and faulty automata for the example of Fig. 1 
i J .  J ] H i i 

If we use MCB with Moore FSM corresponding to the DFA of Fig. 3 as an input, 
the CTL formula to be disproved is: 

AG (" 0). 

The MCB finds that the formula is false and the counterexample sequence coincides 
with the test pattern. 

4 C o n c l u s i o n s  

This paper presented an approach to ATPG for synchronous circuits modeled as Moore 
or Mealy FSMs. The graph representing state and output transitions is first extracted 
from the structural description of the circuit, then the effect of the single stuck-at 
fault is injected, resulting in a faulty graph. The test pattern generation algorithm is 
based on techniques used to prove the equivalence of FSMs by considering the product 
machine as a mere conceptual framework. Transforming the product machine's graph 
into a DFA without unreachable states reduces memory requirements. The advantage 
of the DFA with respect to the product machine resides in the drastic reduction of the 
number of states, which in the best case are almost linear in the number of states of 
the good machine. The Model Checking algorithm is used to disprove, when possible, 
a CTL formula and MCB's counterexample facility returns the test pattern. A fault 
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1 

- -  1 

L_ 

Figure 3: The DFA 

simulator [CGSR89] serves the purpose of fault dropping. Preliminary experimental 
data, on an international benchmark set [BBKo89] (Tab. 1) indicate that the good and 
faulty machine's graphs are considerably smaller than their upper bound and that the 
CPU time to create them is reasonable. The main limit is now imposed by MCB, which 
is able to deal only with a reduced number of states. Results on fault coverage are 
encouraging: on the s298 circuit 100% coverage for detectable faults is reached. 

The novelty of our research resides in modeling both the good and the faulty circuit 
as graphs, so that the fault detection condition can easily be stated. The use of the 
DFA and efficient graph simplification algorithms make this approach more efficient. 
Although the current version refers t o t h e  single stuck-at, the algorithm is independent 
of the fault model, since the latter intervenes only during the generation of the faulty 
graph. It is thus possible to investigate the use of other models, namely functional ones, 
whose goodness may be assessed giving a figure of merit in terms of single stuck-at fault 
coverage. 

The programs to extract graphs, to build and reduce the DFA, the combinational 
ATPG, and the fault simulator have been implemented in separate packages, amounting 
to a total of 4000 C-code lines and together with MCB, they run on a SUN Sparcstation- 
1. 

This work has been partially supported by the EEC under contract ESPRIT BRA 
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Circuit 

total 
states 

s27 8 

s208 256 

s298 16384 

s344 32768 

s349 32768 

s382 2M 
s386 64 
s400 2M 

s444 2M 

s526 2M 

s526n 2M 

Good Machine 

reachable CPU time 
states (s) 

6 0.05 
17 7.81 

218 0.82 
2625 400.17 
2625 405.81 
8865 64.61 

13 1.37 
8865 66.56 
8865 42.70 
8868 38.07 
8868 37.47 

Faulty Machines 
(reachable states) 

avg max Imin[CPUtime(s) 

4 7 3 0.05 
17 256 1 12.81 

189 347 2 0.96 
3216 19693 11 775 
3171 19693 11 768 
5999 13858 2 52.01 

11 22 2 1.51 
6027 15790 2 53.54 
5929 15790 2 38.71 
6884 14580 2 41.45 
6879 14580 2 41.22 

Table 1: Graphs statistics 

3216 "CHARME" and by the Italian National Research Council "Progetto Strategico 
CoUaudo". 
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