
The use of Model Checking in
ATPG for sequential circuits

P. Camurati M. Gilli P. Prinetto M. Sonza Reorda

Dipartimento di Automatica e Informatica
Politecnico di Torino

Turin Italy

Abstract
Some design environments may prevent Design for Testability techniques from

r e d u ~ testing to a combinational problem: ATPG for sequential devices remains
a challenging field. Random and deterministic structure-oriented technlques are
the state-of-the-art, but there is a growing interest in methods where the function
implemented by the circuit is known. This paper shows how a test pattern may be
generated while trying to disprove the equivalence of a good end a faulty machine.
The algorithms are derived from Graph Theory and Model Checking. An example
is analyzed to discuss the applicability and the cost of such an approach.

1 I n t r o d u c t i o n

Despite Design for Testability [WiPa82], test pattern generation for synchronous sequen-
tial circuits is still needed for some design environments, e.g., those based on Partial
Scan [Motog0]. A major class of devices is represented by Finite State Machines (FSMs)
that are in extensive use as building blocks in a variety of applications, ranging from
VLSI devices to network controllers. As reported in [Vv'olfg0], many ASICs are "control-
domir~atecff, i.e., they are best mode]eel in terms of FSMs, rather than in terms of data
path and control part. Moreover, following methodologies such as "Macro Testing"
[BEGP86], complex devices may be partitioned for testing purposes, creating macros
composed by one or more FSMs that can be tested individually.

Researchers investigated different approaches to ATPG for synchronous sequential
circuits. The extension of fault simulation techniques to test generation for sequential
devices has been the object of research [ACAg89], but reduced CPU time and high fault
coverage for very complex circuits still cannot be guaranteed. Other works focused on
extended combinational deterministic algorithms: starting from Huffmann's model that
transforms sequential behavior over time frames into combinational behavior on iterated
structures, the basic method extends the D-algorithm [PuRo71]. Many enhancements
to it have been proposed, limiting the number of copies [Fuji85], introducing a 9-valued
algebra [Muth76], searching for a path to be sensitized [Marl86], [Chen88], exploiting
the benefits of techniques used in combinational ATPG [ScAu89].

87

A common feature of most ATPGs is that they are ~tructure.oriented, i.e., the only
knowledge they have of the device is its topology. Some efforts have shown a growing
interest on algorithms where a certain amount of reasoning is performed or the f~nction
implemented by the circuit is known. [HuSe89] describes an application of Temporal
Logic [ReUr71]: its operators are used both to describe future behavior and to justify
the past one and a reasoning process yields a test pattern. The knowledge of the state-
transition table is used in {MDNS88] to justify backward the values needed to control
an observable fault until the initial state and the primary inputs are reached. The need
to know the function restricts the application domain to medium-sized circuits, since
the function must be extracted from the structure. Whenever the same approach is
embedded within a synthesis system, this limitation is overcome easily [ChJog0], since
the state transition table is available immediately.

This paper presents a method to generate test patterns for synchronous sequential
circuits working in fundamental mode [McC186]. The devices are modeled as Finite State
Machine~ (FSMs) and may be Mealy or Moore machines, indifferently. This method is
based on a strong interaction between Graph Theory and Model Checking [BCDM86].
The basic hypothesis is that the function realized by the device, represented by its au-
tomaton, may be extracted from its structure. Once the fault, of the traditional single
stuck-at type, is inserted, a faulty automaton is created. The fault detection condition is
expressed in theoretical terms within the framework of the product machine [PoMC64]
that might in principle be used, although experience shows that it becomes unmanage-
able for other than trivial circuits. Without any loss of information, it is possible to
refer to a Deterministic Finite Automaton (DFA) that is considerably smaller. Other
approaches refer to the Error Latency Model (ELM) state table [ShMC76], although
their objective is not test pattern generation, rather error latency estimation. The DFA
is a Moore Machine and it is a suitable input for the Model Checker of the MCB sys-
tem [CESi86]. The use of the DFA overcomes the Model Checker's limitation to Moore
FSMs, at least for testing applications. The test detection condition is easily stated
as a CTL formula and the counterexample facility of MCB is used to compute the test
pattern.

Section 2 describes the theoretical framework for FSM modeling, stating the test
generation problem in terms of the product machine and of the DFA and showing
where Model Checking intervenes. Section 3 illustrates these concepts by means of a
simple example. Conclusions are drawn in Section 4, justifying the use of this approach,
defining its applicability limits, and pointing to future work.

2 Theore t i ca l f ramework

Defini t ion 1

A Finite State Machine .A4 is defined by a 6-tuple [Koha70]:

= (I, 0, S, 6, A, 8 0)

88

where:

I is a finite, nonempty set of input values

O is a finite, nonempty set of output values

S is a finite, nonempty set of states

5 : I x S --* S is the state transition function

: I x S --* O is the output function

s o is the initial state.

A Mealy machine is such that A : I x S --* O.
A Moore machine is such that A : S --, O.

o

D e f i n i t i o n 2

Two completely specified FSMs .M1 and .M2 operating on the same input
and output sets are equivalent iff, for all input sequences, all the elements of
the output sequences are equal, t2

The test generation problem for a FSM may be stated as follows: given a good machine
.A//1 and a single stuck-at-i (i e {0, 1}) fault ~', generate a faulty machine/v/2, operating
on the same input, output , and state sets, where the fault ~" changes the 5 and /or
functions. If one can demonstrate that the two FSMs are n o t equivalent, i.e., tha t there
is an input sequence such that the k-th elements (k >_ 1) of the two output sequences
differ, then a test pat tern has been found. If equivalence can be proven, then fault ~" is
undetectable.

Some ancillary definitions are necessary before stating the equivalence condition
of two FSMs in Theorem 1.

D e f i n i t i o n 3

Oiven two FSMs A~x = (I, O, Sx, 5a, ~1, 810) arid d~ 2 = (I, O, ~2, ~2, ~t2, sO),
the product machine .Atf12 is defined as a 6-tuple:

• M12 = (I, 012, $22, 6t2, A12, s~2)

where:

012 = 0 x 0

,.%2= Sl x S2

612: S l x S 2 x I - * & x & :

A12: & x $2 x I ~ O x O :

where:

81ESI ; s 2 E S 2 ; i E I

802 0 0 = (81,82)

s2,0 = (101, O, O)
 ,12(s1,s,,O = (1(s1,0, ,2(s2,0)

O

89

Given two machines ~/ft and .A//2, the state set $12 of their product machine
• MI~ may be partitioned into two subsets Qt~ and Zt~ such that $12 = Q12 O Z12 and
Qt~ f) ZI~ = 0. The two subsets are defined as:

Q1, = { q12 = (q l ,q ,) ~ s12 : v i ~ x ~1(q1,i) = ~,(q~,i) }
z l , = { Zl, = (Zl,Z,) ~ s12: s i ~ x ~1(~1,i) # ~2(~2,i)

The following theorem, whose proof is quite obvious and is thus omitted, ex-
presses the equivalence condition for two FSMs.

T h e o r e m 1

Two FSMs ,A~ll and .A//2 are equivalent iff in the product machine .M12 the
subset ZI~ is either unreachable from the initial state 8°2 or empty. []

Proving that the subset Zx2 is either unreachable from s°2 or empty is very heavy com-
putationally. It is possible to reduce complexity, without affecting the validity of the
method, by noting that only the states of Q12 are needed to prove equivalence and that
a~ the states of Z12 can be collapsed into a single failure state, indicating that the FSMs
axe not equivalent. This allows to transform the product machine into a DFA.

Def in i t ion 4

A Deterministic Finite Automaton (DFA) is defined by a 5-tuple [Koha70]:

D F A = (I , S, 6, * °, F)

where:

I is a finite, nonempty set of input values

S is a finite, nonempty set of states

: / x S --* S is the state transition function,

s o is the initial state

F is the set of final states 2 ¢. tD

A DFA, associated to the product machine Ad12, whose final state indicates a failure in
proving equivalence, is defined as follows:

Def in i t ion 5

Given two FSMs A/fl and .M2 and their product machine Mix, if ,° 2 E QI~,
the DFA associated with ~x2 is the 5-tuple:

where:

DFA(:~12) = (L ¢~2 u F'u/, ~12, s~2,/)

90

/ is the final failure state
F' = { Z12 e Z 1 2 : 3 i e I 5~2(q~2,d) = z~2, q12 e q12}
~q12:

if (t E Q~2) then 5q12(~,i) = 512(~,i)
if(~ E ~' ^ (~12(t,0 = (ol,o2)) ^ (Ol # 02))

then 6q12(~,0 = /
else undefined. O

By using Definition 4 and Theorem 1, Theorem 2 may be obtained.

T h e o r e m 2

Given two FSMs .M1 and .M~, representing the good and the faulty ma-
chines, respectively, evezy string of the language recognized by DFA(.M12)
is a test pattern. I"1

Obviously, if the final state / is not reachable, the two machines ~/1 and .M2 are
equivalent and therefore fault 5 r is undetectable.

The construction of the DFA(/vI12) associated to the product machine of the two
FSMs leads to the determination of all the test patterns for the fault; sometimes it is
sui~iclent to fred only one pattern, possibly the shortest one. In order to do this we use
MCB [CESI86]. MCB has as an input the graph of any Moore FSM and a formula of
Branching Time Temporal Logic called CTL, describing the property to be verified. We
must reduce the DFA of Definition 4 5 to a structure that can be accepted by MCB.
The DFA is a Moore FSM in which the output associated with all the states except the
final state is 0, while the output associated with the final state is 1. It is important to
note that we reduce the problem of the eqnivalence of two Mealy Machines to that of a
simple DFA, which is a trivial Moore Machine; thus we are able to use MCB in finding
a test pattern for a generic FSM. The formula to be verified by the MCB asserts that
the output of the DFA has to be different from 1. Since the logic is branching in time,
the A G operator is used to assert that the formula is true for all possible evolutions in
the future, i.e., for every path and at every node on the path.

The equivalence formula, if O is the output of the DFA, is:

AG(" O).

3 A n e x a m p l e

In this section we analyze the example of Fig. 1, originally presented in [MDNS88].
The functional description of the FSM expresses the inputs to the D-FFs in terms

of the state variables z0 zl and of the input i:

,~lCCzo,~l),i) = C(~.~o) + ~.~1), (d ~ l))

91

~i $'tuck-Q~-l~
D

Figure 1: An example

i:
The primary output depends on the state variables z0 zl and on the primary input

~ ((, 0 , , ~) , i) = i . ~ 0

Fig. 2(a) shows the automaton ~ a of the good machine. Let us consider the
stuck-at-1 fault indicated in Fig. 1. The functions corresponding to the faulty FSM are:

~ , ((-0 , -1) , i) = (-0 + i . , 1 , i ~ ~1)

~ , ((, 0 , ~ ,) , i) = i . ~-~

In this particular case the fault's effect is limited to the ~ function. The automaton
.M~ of the faulty FSM is shown in Fig. 2(b).

The DFA(.A4a2) of Fig. 3 is easily built according to Definition 5.

Only 6 states of this automaton are reachable from the initial state; the remaining
4 are unreachable and are not useful to determine test patterns. Two of the 6 states
(F~ and f) are only introduced to formally define the DFA, thus only 4 states are really
needed, compared with 16 states for the product machine. The shortest testing sequence
is 01011.

92

1/1 1/1

(Q) (b)

Figure 2: The good and faulty automata for the example of Fig. 1
i J . J] H i i

If we use MCB with Moore FSM corresponding to the DFA of Fig. 3 as an input,
the CTL formula to be disproved is:

AG (" 0).

The MCB finds that the formula is false and the counterexample sequence coincides
with the test pattern.

4 C o n c l u s i o n s

This paper presented an approach to ATPG for synchronous circuits modeled as Moore
or Mealy FSMs. The graph representing state and output transitions is first extracted
from the structural description of the circuit, then the effect of the single stuck-at
fault is injected, resulting in a faulty graph. The test pattern generation algorithm is
based on techniques used to prove the equivalence of FSMs by considering the product
machine as a mere conceptual framework. Transforming the product machine's graph
into a DFA without unreachable states reduces memory requirements. The advantage
of the DFA with respect to the product machine resides in the drastic reduction of the
number of states, which in the best case are almost linear in the number of states of
the good machine. The Model Checking algorithm is used to disprove, when possible,
a CTL formula and MCB's counterexample facility returns the test pattern. A fault

93

1

- - 1

L_

Figure 3: The DFA

simulator [CGSR89] serves the purpose of fault dropping. Preliminary experimental
data, on an international benchmark set [BBKo89] (Tab. 1) indicate that the good and
faulty machine's graphs are considerably smaller than their upper bound and that the
CPU time to create them is reasonable. The main limit is now imposed by MCB, which
is able to deal only with a reduced number of states. Results on fault coverage are
encouraging: on the s298 circuit 100% coverage for detectable faults is reached.

The novelty of our research resides in modeling both the good and the faulty circuit
as graphs, so that the fault detection condition can easily be stated. The use of the
DFA and efficient graph simplification algorithms make this approach more efficient.
Although the current version refers t o t h e single stuck-at, the algorithm is independent
of the fault model, since the latter intervenes only during the generation of the faulty
graph. It is thus possible to investigate the use of other models, namely functional ones,
whose goodness may be assessed giving a figure of merit in terms of single stuck-at fault
coverage.

The programs to extract graphs, to build and reduce the DFA, the combinational
ATPG, and the fault simulator have been implemented in separate packages, amounting
to a total of 4000 C-code lines and together with MCB, they run on a SUN Sparcstation-
1.

This work has been partially supported by the EEC under contract ESPRIT BRA

94

Circuit

total
states

s27 8

s208 256

s298 16384

s344 32768

s349 32768

s382 2M
s386 64
s400 2M

s444 2M

s526 2M

s526n 2M

Good Machine

reachable CPU time
states (s)

6 0.05
17 7.81

218 0.82
2625 400.17
2625 405.81
8865 64.61

13 1.37
8865 66.56
8865 42.70
8868 38.07
8868 37.47

Faulty Machines
(reachable states)

avg max Imin[CPUtime(s)

4 7 3 0.05
17 256 1 12.81

189 347 2 0.96
3216 19693 11 775
3171 19693 11 768
5999 13858 2 52.01

11 22 2 1.51
6027 15790 2 53.54
5929 15790 2 38.71
6884 14580 2 41.45
6879 14580 2 41.22

Table 1: Graphs statistics

3216 "CHARME" and by the Italian National Research Council "Progetto Strategico
CoUaudo".

References

[ACAg89] V.D. Agrawal, K.T. Cheng, P. Agrawal: "A directed search method for
test generation using a concurrent fault simulator," IEEE Transactions on Computer-
Aided Design, Vol. 8, n. 2, February 1989, pp. 131-138

[BBKo89] F. Brgiez, D. Bryan, K. Ko~.m]Sski: "Combinational profiles of sequen-
tial benchmark circuits," ISCAS'89: IEEE International Symposium on Circuits And
Systems, Portland, OR (USA), May 1989, pp. 1929-1934

[BCDM86] M. Browne, E.M. Clarke, D. Dill, B. Mishra: "Automatic verification of
sequential circuits using temporal logic," IEEE Transactions on Computers, Vol. C-35,
n. 12, December 1986, pp. 1035-1044

[BEGP86] F.P.M. Beenker, K.J.E. van Eerdewijk, R.B.W. Geritzen, F.F. Peacock,
M. van der Star: "Macro Testing: Unifying IC and Board Test," IEEE Design & Test
of Computers, December 1986, pp. 26-32

[CESi86] E.M. Clarke, E.A. Emerson, A.P. Sistla: "Automatic verification offinlte-
state concurrent systems using temporal logic specifications," ACM Transactions on
Programming Languages and Systems, Vol. 8, n. 2, April 1986, pp. 244-263

[CGSR89] G. Cabodi, S. Gai, M. Sonza Reorda: "Partitioning Techniques in Mul-
tiprocessor Simulators," ELM-89: European Simulation Multiconference, Rome (Italy),
June 1989, pp. 311-317

[Chen88] V~.T. Cheng: "The Back Algorithm for sequential test generation,"

95

ICCD'88: IEEE International Conference on Computer Design, Rye Brook, NY (USA),
October 1988, pp. 66-69

[ChJog0] K-T. Cheng, J-Y. Jou: "Functional test generation for Finite State Ma-
chines," ITC'90: International Test Conference 1990, Washington, DC (USA), Septem-
ber 1990, pp. 162-168

[Fuji85] H. Fujiwara: "Logic testing and design for testability," The MIT Press,
Cambridge, MA (USA), 1975

[HuSe89] R.V. Hudli, S.C. Seth: "Temporal Logic based test generation for se-
quential circuits," IFIP TC 10/WG 10.2 Working Conference on CAD systems using
AI techniques, Tokyo (Japan), June 1989, pp. 91-98

[Koha70] Z. Kohavi: "Switching and finite automata theory," Computer Science
Series, Mc Graw Hill, New York, NY (USA), 1970

[Marl86] R. Marlett: "An effective test generation system for sequential circuits,"
DAC-23: 23th IEEE/ACM Design Automation Conference, Las Vegas, NV (USA), June
1986, pp. 250-256

[McC186] E.J. McCluskey: "Logic Design Principles with Emphasis on Testable
Semicustom Circuits," Prentice-Hall, Englewood Cliffs, NJ (USA), 1986

[MDNS88] H.K.T. Ma, S. Devadas, A.R. Newton, A. Sangiovanni-VincenteKi:
"Test generation for sequential circuits," IEEE Transactions on Computer-Aided De-
sign, Vol. 7, n. 10, October 1988, pp. 1081-1093

[Motog0] A. Motohara: "Design for Testability of ASICs in Japan," IEEE 13th
Annual Workshop on Design for Testability, Vail, CO (USA), April 1990, (Oral presen-
tation; no proceeding8 available)

[Muth76] P. Muth: "A nine-valued circuits model for test generation," IEEE
Transactions on Computers, Vol. C-25, n. 6, June 1976, pp. 630°636

[PoMC64] J.F. Poage, E.J. McCluskey: "Derivation of optimum test sequences for
sequential machines," 5th Annual Symposium on Switching Theory and Logical Design,
1964

[PuRo71] G.R. Putzolu, J.P. Roth: "A heuristic algorithm for the testing of asyn-
chronous circuits," IEEE Transactions on Computers, Vol. C-20, n. 6, June 1971, pp.
639-647

[l~Ur71] N. Rescher, A. Urquart: "Temporal Logic," Springer-Verlag Library of
Exact Philosophy N. 3, Springer-Verlag, Berlin (FRG), 1971

[ScAu89] M.H. Schulz, E. Auth: "ESSENTIAL: an efficient self-learning test pat-
tern generation algorithm for sequential circuits," ITC'89: International Test Confer-
ence 1989, Washington, DC (USA), September 1989, pp. 28-37

[ShMC76] J.J. Shedletsky, E.J. McCluskey: "The error latency of a fault in a
sequential digital circuit," IEEE Transactions on Computers, Vol. C-25, n. 6, June
1976, pp. 655-659

[WiPa82] T.W. Williams, K.P. Parker: "Design for Testability - a survey," IEEE
Transactions on Computers, Vol. C-31, n. 1, January 1982, pp. 2-15

[Wolf90] W. Wolf: "The FSM network model for behavioral synthesis of control-
dominated machines," DAC-27: 27th IEEE/ACM Design Automation Conference, Or-
lando, FL (USA), June 1990

