
Quantitative Temporal Reasoning t

(Extended Abstract)

E. A l len EMERSON 1 A . If . MoK 1 A . P. SISTLA 2 Jai SRI~IVASAN t

1. D e p a r t m e n t of C o m p u t e r Sciences,

T h e Univers i ty of Texas a t Aus t in ,

Aus t in , T X 78712.

2. G T E Research Labora tor ies ,
Wa l tham, MA 02254.

Abstract

A substantially large class of programs operate in distributed and real-time environments, and an integral part
of their correctness specification requires the expression of time-critical properties that relate the occurrence of
events of the system. We focus on the formal specification and reasoning about the correctness of such programs.
We propose a system of temporal logic, RTCTL (Real-Time Computation Tree Logic), that allows the melding of
qualitative temporal assertions together with real-time constraints to permit specification and reasoning at the twin
levels of abstraction: qualitative and quantitative. We show that several practically useful correctness properties
of temporal systems, which need to express timing as an essential part of their functionality requirements, can be
expressed in RTCTL. We also develop a model-checking algorithm for RTCTL whose complexity is linear in the
size of the RTCTL specification formula and in the size of the global state-space graph. Finally, we present an
optimal, exponential time tableau-based decision procedure for the satisfiability of RTCTL formulae, which can be
used as the basis of a technique to automate the synthesis of real-time programs from specifications.

1 I n t r o d u c t i o n

Motivated mainly by the virtue of separating concerns, most of the research into the formal specification and reasoning
about the correctness of programs has paid little heed to dealing with quantitative temporal properties. In fact, this
has proved to be an advantageous abstraction because, in many applications, the correctness properties of a program
need to be stated independently of concerns of efficiency, performance, or features (e.g., the speed) of the underlying
hardware implementation. Given this, a common characteristic of most temporal or modal logics heretofore proposed
for program reasoning (cf. [Pn77], [FL79], [AbS0], [GPSSS0], [BHPS1], [BMP81], [Wo81], [EC82], [EH82], [Ko82],
[EH83], [ES84], [VW84]) is that they provide a formalism for qualitative reasoning about change over time. For
example, such formalisms allow the expression of assertions such as an event p will eventually occur (stated as Fp);
note that this assertion places no bound on the time that may elapse before the occurrence ofp. Thus, with p = halt,
F halt asserts that a program terminates, and, indeed, such a qualitative sort of correctness temporal property is in
fact the strongest one that may be desirable to state of many programs.

On the other hand, there is a substantially large class of programs that operate in distributed and real-time
environments (for example, network communication protocols and embedded real-time control systems), an integral
part of whose correctness specification requires the expression of time-critical properties that relate the occurrence of
events of the system. For example, consider p = respond, in the context of a control system. There, we might want

iThls work was supported in part by NSF grant DCR-8511354, ONR URI contract N00014-86-K-0763, and Netherlands NWO grant
nf-3/nfb e2-SO0.

137

to assert a quantitative correctness property such as F <so respond, meaning that a response is guaranteed within
hounded time, namely, 50 time units. By and large, the specification and verification of such systems has been
ad hoc. One common technique of coping with such systems (particularly, network communication protocols) has
been to abstract out their timing component, use formal techniques that handle qualitative temporal assertions to
ensure that their behaviour is correct upto timing constraints, and then incrementally consider quantitative temporal
specifications. This method does appear to have advantages in that it allows one to gain considerable intuition for why
some of the specifications may he incorrectly conceived, independent of timing constraints, and that it also permits
one to manually "fine-tune~ time-critical parameters of a system using one's intimate understanding of the system's
internals to guide the process.

We remark that methodologies for specifying and reasoning directly about real-time properties have been pro-
posed, but suffer from some limitations. For one thing, such formalisms are often designed with a very specific
application in mind and fail to consider or appropriately generalize the kinds of properties expressible, or to char-
acterize the class of properties provably expressible. Also, the ability to describe properties of a system is only one
component of a formalism: one also needs develop techniques to effectively, and tractably, reason about such asser-
tions. The few methodologies that do not resort to doing this arbitrarily often use techniques that are rigid, in the
sense that the correctness of the analysis depends on the specific values of constants in the assertions, and is not easily
modified to still be correct for different values of these constants. Moreover, the two-phased capability of being able
to reason, first qualitatively, and, then, refining the reasoning to be quantitative, is lost.

In this paper, we provide general techniques to augment systems of temporal logic to handle quantitative
assertions. We focus primarily on one system of logic, RTCTL (Real-Time Computation Tree Logic), which extends
CTL (Computation Tree Logic, cf. [EC82], [EH82]), a system of logic that has been widely applied to reasoning about
program correctness. RTCTL is able to overcome many of the difficulties of the other approaches because it builds
on the foundations of temporal logic. For example, it allows the melding of qualitative temporal assertions together
with real-time constraints to permit specification and reasoning at the twin levels of abstraction: qualitative and
quantitative. It supports not only efficient reasoning at both these levels, but also refinement from the qualitative
level down to the quantitative level. Moreover, temporal logic has demonstrably proved to be useful to reason about
a variety of discrete systems, and thus, an appropriate extension (such as RTCTL) would naturally allow one to
deal with various kinds of applications. And, finally, part of the power of our approach is derived from the fact
that standard problems in temporal logic such as satisliability and model-checklng have been shown to be applicable
to automating the construction of, and reasoning about, temporal systems such as concurrent programs (cf. [EC82],
iCES83], ~ W 8 4] , [LP85]), and, furthermore, techniques to effectively tackle these problems are well-established.

Our method is based on the expression of I'tTCTL assertions in the propositional p-calculus, extended with
natural number ordinal-ranks. We call this new logic Real-p. In the ordinary p-calculus ([Ko82]), correctness properties
are characterized as extremal fixpolnts of predicate transformers similar to those considered by Dijkstra ([Di76]).
Here, least fixpoints corresponding to eventualities are annotated with a natural number bound on when they must
he fulfilled. We show that several interesting quantitative temporal properties are thereby expressible.

We go on to develop a model-checklng algorithm for RTCTL which, like the algorithm for CTL, has complexity
linear in the size of the RTCTL specification formula and in the size of the global state-space graph. The key obser-
vation that makes this possible is that the model-checking algorithm of [EL88] actually recovers not only whether an
eventuality is fulfilled, but also when, based on calculating its rank in the Tarski-Knaster sequence of approximations.
Hence, our model-checking algorithm can be generalized to the full language Real-p in polynomial time complexity.

Next, we focus on the satisfiability problem for RTCTL. We exhibit an exponential time decision procedure for
RTCTL, using a tableau-based approach (cf. [FL79], [Vr80], [BHP81], [BMPS1], [Wo81], [EC82], [EH82], [LPZ85]),
and show that it is optimal. The importance of a tableau-based procedure lies in the fact that, unlike the automata-
theoretic approach (cf. [St81], [WVS83], [VW84], [Em85]), only the tableau-based method has been demonstrably
extended to construct a small model of a satisfiable formula. For applications, such as automating synthesis of
programs from their specifications, the model corresponds to the global flowgraph of the program, and the ability to
generate it is crucial. (Note, therefore, that the alternative approach of deciding P~TCTL by translating its formulae
to logics--such as the p-calculus--whose only known decision procedures are automata-theoretic does not suffice.)
Thus, our algorithm is a basis for automating the synthesis of programs with timing-constraints, and we expect that
the overall synthesis method would be similar to the ones described in [EC82] and [MW84].

The rest of this paper is organized as follows. In the next section, we present the logic RTCTL and some useful
assertions expressible in it. Section 3 deals with real-time model-checking, and Section 4 with the satisfiability problem
for RTCTL. Finally, Section 5 considers various other quantitative temporal logics derived from CTL.

138

2 T h e L o g i c R T C T L

The system of branching time temporal logic CTL (Computation Tree Logic) has been extensively used to specify and
reason about correctness properties of concurrent programs (cf. [EC82], [EH82], [CES83]). One disadvantage of CTL
and other extant temporal logics, however, is that they tack the ability to express properties of programs related to
real-time. In this section, we define RTCTL (Real-Time CTL), an extension to CTL that permits reasoning about
time-critical correctness properties of programs, and give a sample of the kinds of program properties RTCTL can
express. We begin, however, with a formal definition of the syntax and semantics of CTL.

Let X~ be an underlying alphabet of atomic propositions P, Q, etc. The set of CTL (Computation Tree Logic)
formulae is generated by the following rules:

S1. Each atomic proposition P is a formula.

$2. If p, q are formulae, then so are p A q and --p.

$3. If p, q are formulae, then so are A(p Uq), E(p Uq), and EXp.

A formula of CTL is interpreted with respect to a temporal structure M = (S, R, L) where S is a set of states,
R is a binary relation on S that is total (so each state has at least one successor), and L is a labelling which assigns
to each state a set of atomic propositions, those intended to be true at the state. Intuitively, the states of a structure
could be thought of as corresponding to the states of a concurrent program, the state transitions of which are specified
by the binary relation R. A fullpath x = so, sx, s2,.. , in M is an infinite sequence of states such that (st, st+l) E R for
each i; intuitively, a fullpath captures the notion of an execution sequence. We write M, s ~ p to rhean that "formula
p is true at state s in structure M ~. When M is understood we write only s ~ p. We define ~ by induction on
formula structure:

S1. so ~ P iff P is an element of L(so)

$2. s o ~ p A q i f f s 0 ~ p a n d s 0 ~ q
So ~ "~p iff it is not the case that so ~ p

$3. so ~ A(p Uq) ifffor all fullpaths s0,sl,s~ in M, Bi > 0 such that s~ ~ q and Vj,0 < j < i, sj ~ p
so ~ E(p Uq) ifffor some fullpath sO,Sl,S~ in M, 31 > 0 such that sl ~ q and Vj,0 < j < i, sj ~ p
so ~ EXp iff there exists an R-successor t of so such that t ~ p

The other propositional connectives are defined as abbreviations in the usual way. Other basic modalities of
CTL are also defined as abbreviations: AFq abbreviates A(true U q), EFq abbreviates E(true U q), AGq abbreviates
"~EF'~q, EGq abbreviates "~AF-,q, and AXq abbreviates "~EX'~q.

We now consider some examples of CTL formulae useful to describe qualitative temporal properties of programs.
AF q, for example, specifies the inevi~abillty of q: q must eventually hold along all paths. Thus, AG(p =~ AF q) says
that p inevitably leads-to q: q eventually holds along every path stemming from a state at which p is true. Similarly,
EFq indicates that q could potentially become true: it is true along some one fullpath. Note that none of these
modalities allows one to express that q will in fact become true within a certain number, say 10, of state transitions:
they merely assert that q will eventually become true.

So we extend CTL to RTCTL. The set of RTCTL (Real-Time Computation Tree Logic) formulae is generated
by the rules $1-$3 above together with the rule:

$4. If p, q are formulae and/~ is any natural number, then so are A(p U < k q) and E(p U < :~ q).

The temporal structures over which RTCTL formulae are interpreted are the same as CTL structures. The semantics
of the new RTCTL modalities are given by:

$4. so ~ A(p U <- t q) iff for all fullpaths so, $1, $2 in M, 3i, 0 < i < k, such that si ~ q and Vj, 0 < j < i, sj ~ p
so ~ E(p fl <- ~ q) iff for some fullpath so, sl, s~ in M, 3i, 0 < i < k, such that st ~ q and Vj, 0 < j < i, sj ~ p

139

Intuitively, k corresponds to the maximum number of permitted transitions along a path of a structure before the
eventuality p U q holds. We follow the convention that each transition takes unit time for execution (but see the
remark near the end of Section 3), so k specifies a time bound.

Some other basic modalities of RTCTL are defined as abbreviations: A F < ~ q abbreviates A(true U < ~ q) and
E F < - k q abbreviates E(true U -< k q). We also define the modality G -< ~ (for each natural number k) as the dual of
F< k i.e., AG <- k p abbreviates -~E F <- ~ -,p, and EG <- k p abbreviates -~AF <- k ~p.

It is worth pointing that the RTCTL modalities elegantly generalize the analogous CTL ones. Specifically, note
that A(p U q) abbreviates 3k : A(p U <- ~ q), and, similarly, E(p U q) abbreviates 3k : E(p U <- k q). This motivates the
following definition: If A(p U q) is true at a state s of an ttTCTL structure, we define the rank of A(p U q) at s as
the smallest natural number k such that A(p U <- k q) holds at s. The rank of A F q, E(p U q), and E F q are defined
similarly.

As usual, an rtTCTL formula is said to be valid if it holds at all states of all structures. From the semantics
above, it is easy to verify that the RTCTL formulae A(p U <- k q) ~ (q V (p A A X A(p U <- (4-1) q))) and E(p U <- k q) -
(q V (p A E X E (p U -< (k-l) q))) are valid for k > 1. Also A(p U <- o q) - q -_ E(p U <- o q) is valid. These formulae may
be regarded as the analogues of the fixpoint characterizations of the CTL modalities AU and EU ([EtI82]).

We conclude this section by illustrating how the basic RTCTL modaIities could be used to express important
correctness properties of programs that must place an explicit bound on the time between events. First, observe that
AF <-k q, for example, specifies the bounded insvltabilit¥ofq, i.e., q must hold within k steps along all fullpaths. Thus,
the RTCTL formula AG(p ::~ A F t k q) specifies that p always leads-to q within a bounded period of time, vi~.., k time
units. This formula is therefore useful to spe'cify, for example, that a system must respond (with the action q) to an
environmental stimulus p within k units of time; the importance of specifications of this kind for temporal systems is
underscored in [JM87].

As a second example, consider a family of m processes, the schedules of which are required to satisfy the property
of k-bounded fairness, i.e., each process should be scheduled for execution at least once every k steps of the system.
This can be expressed by the RTCTL formula A ~ t AF<- kPi ^ A~=I AG(P~ ~ A X A F <- (k-1)pi), where Pi indicates
that process i is executed. The first set of conjuncts ensures that each process is in fact executed along the first k
steps, and the AG conjuncts ensure that, once executed, a process must be scheduled for execution again within k
steps. We may remark, as an aside, that the property that there be at least one k~bounded fair execution sequence
is expressed by the formula E(A~=t F <- kPi ^ A~2=1 G(P~ ~ X F <- (k-Dpi)), which does not conform to the syntax of
ItTCTL.

As a third and final example, consider a system specification that requires that, on sensing an alarm, all normal
processes be suspended, and a vigilant mode be entered for at least the next k time units during which only a restricted
set of critical activities is performed. The RTCTL formula AG(alarm ~ AG <-~ vigilant) expresses this requirement.

3 R e a l - T i m e M o d e l - C h e c k i n g

In this section, we present an algorithm for the model-checking problem for RTCTL that is linear in both the size
of the structure being checked as well as the length of the input formula. Because of the simplicity of the model-
checking problem and the efficiency of its solution, the model-checking approach has found several applications to the
automatic verification of temporal systems. So far, model-cheeking algorithms for several temporal logics (cf. [CES83],
[LP85], [EL85], [CG87], [SG87]) have been used to verify a large number of finite-state systems ranging from examples
of concurrent programs presented in the academic literature (such as the mutual exclusion example in [OL~2]) and
network communication protocols ([SiiBT]) to VLSI circuits ([Br86]). The capability of RTCTL to allow one to reason
quantitatively about time in addition to the qualitative reasoning afforded by CTL can only enhance the utility of this
problem to such applications, for timing constraints play a key role in both network protocols and hardware circuits.

The way model-checking is applied to program verification may be summarized as follows. The global state
transition graph of a finite-state concurrent system may be viewed as a finite temporal structure, and a correctness
specification whose truth is to be determined of the program is expressed as a formula in rtTCTL. The model-checking
algorithm is used to determine whether the formula is true in the structure, and, thereby, whether the given finite-state
program meets a particular correctness specification. It is easily appreciated that this approach is potentially of wide
applicability since a large class of concurrent programming problems have finite-state solutions, and the interesting
properties of many such systems can be specified in a propositional temporal logic.

140

Fornmlly, the model-checklng problem for RTCTL may be stated as: Given an RTCTL formu/a P0 and a finite
temporal structure M = (S, R, L), is there a state s E S such that M, s ~ I)o? (Note that the RTCTL structure is
said to be finite if its size,]M], defined as ISI -I- IRt, is finite.)

Fig. 1 presents an algorithm that decides this problem. The goal is to determine, for each state s in M, whether
M, s ~ Po. The algorithm is designed to operate in stages: the first stage processes all subformulae of P0 of length 1,
the second, of length 2, and so on. At the end of the ith stage, each state is labelled with the set of all subformulas of
P0 of length no more than i that are true at the state. As the basis, note that the labelling L of M initially contains
the set of atomic propositions (i.e., all subformulae of P0 of length 1) true at each state of M. To perform the labelling
on subsequent iterations, information gathered in earlier iterations is used. For example, a subformula of the form
q A r, i.e., one whose main connective is A, should be added to the labels of precisely those states already labelled with
both q and r. Subformulae of the form -~q are handled in like fashion.

For the modal subformula A(q U <- k r), information from the suece~or states of s as well as that from the state
s itself is used. For now assume that the procedure AU.check is always invoked with k instead of vain(k, IS[). Since
A(q US ~ r) =. r V (q A A X A(q U <- (~-1) r)), A(q U <- ~ r) is initially added to the label of each state already labelled
with r. The satisfaction of A(q [IS k r) is then propagated outward, by repeatedly adding A(q [i<- ~ r) to the label of
each state labelled by q and having A(q U <- (t -Or) in the labels of all successors, i t is fairly easy to see that this
propagating step need be repeated at most k times, and that states labelled on the ith step actually satisfy A(q [iS ~ r).
Finally, if a state s satisfies A(q U < t r) for some i < k, it also satisfies A(q [I < t r); hence, the last fo reach loop in
AV-check adds A(q U S t r) to the labels of such states.

However, if AU_check is invoked with h instead of rain(h, [S]), its complexity would be linear in k. Since k is
represented in binary, rather than unary, the.complexity of the algorithm would be exponential in the length of the
binary representation of k, and, hence, in the length of p0. To overcome this, the invocation to AU.check is made with
the minimum of k and [S]. To see why this suffices, consider k > IS]. Note that for A(q U < k r) to hold at state s,
there should not be a fullpath stemming from s along which r never holds. Since M is finite, any such fullpath must
contain a loop. Thus, it suffices to check if A(q U <- ~ r) holds along the loop-free initial segments of all paths out of s,
and such segments have length at most IS[. Hence, it suffices to perform the iteration in the procedure AU-checkjust
[S[times. For much the same reason, to determine if the formula A(q U r) holds at a state, it suffices to determine if
A(q U <- ISl r) holds there. The modalities E[I and EU <- ~' are handled similarly.

We note that this version of the algorithm can be naively implemented to run in time linear in the length of P0
and quadratic in the size of the structure M. This is apparent for each of the cases when the main connective of the
formula is one of At.r, Err, A[I < k or EU < ~. In the other three cases, the procedure is in fact linear in the size of the
structure. However, the techniques of [EL88] are applicable here as well, and can be used to implement the algorithm
in time linear in the sizes of both the structure and the formula, i.e., the complexity of the algorithm is O(lpol x IMI)
We shall explain this further in the full paper. Thus, we have:

T h e o r e m 1 The model-checking problem for RTCTL is decidable in time linear in both ~he size of the input structure
as well as the lunch of ~he input formula, ra

We should remark that, with minor modifications to the procedures AU_check and EU.check, the above algorithm
can as efficiently handle more general temporal structures, ones in which each element of the binary relation R is
associated with an integer label that intuitively corresponds to the amount of time taken to "execute" tha t transition.
RTCTL structures as defined in the previous section may be thought of as labelling each element of R with a single
unit of time.

As evident from the algorithm, the basic idea behind this mechanical model-checking approach to verification
of finite-state systems is to make brute force graph teachability analysis efficient and expressive through the use of
temporal logic as an assertion language. Of course, much research in protocol verification--to cite just one area--has
attempted to exploit the fact that protocols are frequently finlte-state, making exhaustive graph rsachability analysis
possible. The advantage offered by model-checking seems to be that it provides greater flexibility in formulating
specifications through the use of temporal logic as a single, uniform assertion language that can express a wide variety
of correctness properties. This makes it possible to reason about, for example, both safety and liveness properties
with equal facility. And, now, with RTCTL, quantitative assertions can be handled.

4 Satisfiability for RTCTL

We now turn to the problem of determining the satisfiability of an RTCTL formula. This problem may be stated as:
Given an P~TCTL formula f , is there a temporal structure M and a state s o f M such that M , s ~ f ? I f f is true at

141

/* Input: A structure M = (S, R, L) and an RTCTL formula Pa. */
/* Output: There is a s tate s E S such that M, s ~ Po. */

for i := 1 to length(po) do b e g i n
fo reaeh subformula p of p0 of length i do b e g i n

case structure of p is of the form
P , an atomic proposition : / * Nothing to do as states of M already labelled with propositions. */;

q A r : f o r e a e h s 6 S d o
i f q E L(s) and r 6 L(s) t h e n add q A r to L(s);

-~q • fo reach s E S do
i f q ~ L(s) t h e n add "W to L(s);

E X q : fo reach s 6 S do
i f q 6 L(t) for some R-successor t of s t h e n add E X q to L(s);

AU_check (rain(k, ISl), q, r);
AU_eheek (ISl, q, r);
EU_check (rain(k, ISl), q, r);
EU_check (ISl, q, r);

A(q U S ~ r) :
A(q U r) :
E(q U<-~r) :
E(q U r) :

e n d ; / * case */
end; /* foreach */

end; /* for */
i f P0 6 L(s) for some s 6 S t h e n Output (trne)

else Output (false);

procedure AU_eheek (mazrank, q, r);

begin
foreach s E S do

i f r 6 L(s) t h e n add A(q US o r) to L(s);
for rank := 1 t o mazrank do

foreaeh s 6 S do
i f q 6 L(s) and A(q U<-(rank-l) r) 6 L(t) for every R-successor t o f s t h e n

add A(q U < ro.t r) to L(s);
foreach s 6 S do

i f A(q U <-j r) 6 L(s) for some j _< mazrank t h e n add A(q U <- k r) to L(s);
end; /* AU_check */

p r o c e d u r e EU-check (mazrank, q, r);

b e g i n

foreach s 6 S do
i f r 6 L(s) t h e n add E(q U S o r) to L(s);

for rank := 1 to mazrank do
fo reach s E S do

i f q 6 L(s) a n d E(q U <- (r~.k-1)r) 6 L(t) for some R-successor t of s t h e n
add E(q US r..k r) to L(s);

foreach s 6 S do
if E(q U <-j r) 6 L(s) for some j <_ mazrank t h e n add E(q U <- k r) to L(s);

end; /* EU_check */

Figure h A Model-Checking Algorithm for RTCTL.

]42

state s of M, M is said to be a model of f . Note that the RTCTL formula f is satisfiable iff -~f is not valid; hence
exhibiting a decision procedure for satisfiability amounts to deciding the validity problem (i.e., determining i f a given
RTCTL formula is valid) as well.

The satisfiability problem for temporal logics has been shown to have applications to synthesis of concurrent
programs from their temporal specifications (cf. [EC82], [MW84], [ESS89], [PR89 D. The method determines whether
the temporal logic formula expressing the program specifications is satisfiable, and, if.so, produces a model of the
formula. The model may be viewed as the global flowgraph of a program implementing the specifications, and the
program itself can be read off from the model. If the formula is not satisfiable, the specification is inconsistent: there
is no program that implements it.

As mentioned in the introduction, only the tableau-based approach has been demonstrably extended to produce
actual models of satisfiable formulae. Thus, we seek a tableau-based algorithm to decide the satisfiability of RTCTL
formulae. A naive way to do this is to translate the given R.TCTL formula, f , to an equivalent CTL one, g, by using
the fixpoint characterizations of the AUg k and EU -< k modalities to expand each occurrence of these modalities in
f . The tableau-based decision procedure for CTL could then be used to determine the satisfiability of g. But the
complexity of such an algorithm would be double exponential in Ift, as Igl itself would be exponential in [fl, and the
CTL decision procedure is exponential in the length of its input.

Instead, we outline a direct tableau-based decision procedure for RTCTL, whose complexity is only exponential
in the size of its input. Let f be the R.TCTL formula whose satisfiability needs to be determined. We first define
several useful notions used in the description of the procedure, beginning with the Fiseher-Ladner closure, CL(f), of
an RTCTL formula f (cf. [FL79], [EH82], [LPZ85 D. For conciseness of presentation, we assume that f is strictly in
the syntax presented, i.e., it does not have any of the abbreviations listed in Section 2. Identifying -~-~p with p, and
A(p U < Oq) and E(p U <- Oq) with q for any R.TCTL formulae p and q, CL(f) is the smallest set of formulae containing
f and satisfying the following eight conditions:

A. -,p e CL(f) ¢, p e eL(f) ,
B. p A q E CL(f) ::~ p, q E CL(f),
c . E X p ~ CL(I) :* p ~ CL(S),
D. A X p E C L (f) ::~ pECL(f) ,
E. A(p U q) 6 CL(f) ::~ p, q, AXAOa U q) E CL(f),
F. E(p U q) E CL(I) ~ p, q, EXE(p U q) E CL(I),
O. A(p U <- k q) e CL(I) ~ p, q, AXA(p U <- (k-l) q) E CL(f) for k >_ 1, and
H. E(p U <-k q) 6 CL(I)=¢* p, q, EXE(p US(~-l) q) E eL(f) for k ~ 1.

Note that the size of CL(I) is exponential in If[. We shall call a formula in CL(I) elementary if it is of the form
E X p or AX p. We define a subset S of eL(f) to he maxima//¥ consistent iff S satisfies all the following conditions:

1. For each p E eL(f) , ",p E S ¢~ p ~ S,
2. p A q 6 S ¢~ p, q 6 S ,
3. A(pUq) E S ¢~ q E S o r p , AXA(pUq) ES,
4. E(pUq) 6 S Cet q G S o r p , EXE(pUq) 6S ,
5. A(pU<-kq)ES ¢~ q E S o r P , AXA(pU<-(k-1)q)6Sfork)_l ,
6. E(pU<-kq) E S ¢~ q E S o r p , E X E (p U S (k - *) q) E S f o r k ~ l ,
7. A(pU<-Oq) E S ¢~ qES ,
8. E(pU<-°q) 6S ~ qES,
9. A(pU<-kq) ES =V forallj>ksuchthatA(pU<Jq) ECL(f),A(pU<-Jq)eS, and
IO.E(pU<-kq) ES ~ forallj>ksochthatE(pU<-Jq) eCL(f),E(pU<-Jq)ES.

We now show that the number of maximally consistent subsets of CL(f) is only exponential in If[. An even-
tuality is any formula of the form A(p U q), E(p U q), A(p U <- k q), or E(p U <- k q). We shall call a formula in CL(f)
quantitative if it is of the form A(p U <- ~ q), AXA(p U <- k q), E(p U -< t q), or EXE(p U <- k q). We let 7/denote the
set of quantitative eventualities that appear in f as subformulae. We partition the positive formulae (i.e., formu-
lae not of the form -~p) in eL(f) into 17/1 + 1 sets: each quantitative eventuality H = A(p g < t , q) (respectively,
H = E(p U -< t " q)) that appears in f has a corresponding partition, YH, which contains all formulae in CL(f) of
the form A(p U < J q) and AXA(p U < ~ q) (respectively, E(p U -< $ q) and EXE(p U < ~ q)), where j ~ kH. All other
positive formulae in CL(f) are members of a separate partition, Yo- It is easy to see tha t IY01 is linear in [f[, whereas,
for any H ~ 7/, IYHI is exponential in the number of bits in kit, and hence, exponential in Ifl-

143

Next, we note from Rule 1 above that in constructing any maximally consistent set S, we have two choices for
each formula in Y0: either include it in S or include its negation in S. For the formulae in Y//, however, Rules 9
and 10 imply that we can effectively choose only one j , viz, the smallest one, which is no more than/:Ix, such that
A(p U <j q) or E(p U <J q) is in S. Also, once this choice of the smallest j is made, Rules 5 and 6 determine the
quantitative elementary formulae of H that must appear in S. Thus, the number of distinct maximally consistent
sets is of the order of 211"ol × l - I H ~ (k / / + 2), i.e., of the order of 2[y[. Note, also, that the number of elements in a
maximally consistent set is also exponential in If[.

The decision procedure we outline focnsses on establishing a small-model ~hsorem for RTCTL, i.e., on showing
that each satisfiable RTCTL formula / has a model that is bounded by some small function of its length. The first
step in the procedure is to construct the initial tablean f o r / . This tableau, which we denote by To, is a directed graph,
whose nodes correspond to the maximally cons~tent sets of CL(f). A node corresponding to the set S is labelled
with the formulae in S. We use the elementary formulae in a node to guide us in determining the edges of To. An
edge is added from node V to node W iff (a) for every formula of the form A X p in V, p is in W, and (b) for every
formula of the form "~EXp in V, -~p is in W.

The next step is to prune To by deleting nodes the conjunction of the formulae in whose labels cannot ever label
any state of any temporal structure. Despite the fact that RTCTL has more kinds of eventualities than CTL, this
step is identical to the pruning step for CTL (of. [EH82]). The main task of the pruning step in the CTL algorithm
is to check for each eventuality in the label of each node, whether there is a directed acyciic subgraph of the tableau
for that eventuality rooted at that node which certifies fulfillment of that eventuality at that node. For RTCTL, it
would appear that such a directed acyclic subgraph would need to be detected for the quantitative eventualities in
the label of a node as well; however, this is not required because the local structure of the tableau (i.e., the way the
initial tableau is constructed) guarantees that such an acyclic subgraph can always be found. We shall describe the
pruning procedure for CTL in the full paper and prove:

P r o p o s i t i o n 2 The above algorithm decides the saris]lability of its input RTCTL formula / correcffy and in time
o(21/l), v

Thus, we have a deterministic decision procedure for RTCTL whose complexity is at most exponential in the
length of f . Since the problem of determining the satisfiability of CTL formulae is deterministic exponential time
complete ([EH82]), and since RTCTL subsumes CTL, our algorithm is optimal. Also, note that the techniques in
[EC82] and [EH82] to construct the initial tableau "bottom-up ~ are applicable to RTCTL as well. Thus the exponential
blow-up in If[need be incurred only in the worst case, rather than in the average case as would be done by the above
naive construction of the initial tableau.

5 O t h e r Q u a n t i t a t i v e M o d a l i t i e s a n d T e m p o r a l L o g i c s

In this section, we briefly consider two other quantitative temporal modalities: U > b and U = t . Intuitively, A(p U~ tq)
says that q is true after b or more time instants along each fallpath and p is true till then. Similarly, A(p U f t q)
states that q is true exactly at the kth time instant along all fullpaths and p is true at each of the preceding k - 1
time instants. More formally, we define the logic CRTCTL (Complete RTCTL) to comprise the formulae generated
by the rules $1-$4 in Section 2 together with the rules:

$5. If p, q are formulae and h is any natural number, then so are A(p U > t q) and E(p U >- b q), and

$6. If p, q are formulae and k is any natural number, then so are A(p U •t q) and E(p U =~ q).

We also define two sublogics of CRTCTL: RTCTL ->, whose formulae are obtained by using Rules $1-$3 and $5, and
RTC~L =, whose formulae are generated by Rules $1-$3 and $6.

The semantics of the new quantitative modalities are given by:

$5. so ~ A(p U >- t q) iff for all fullpaths so, s l , s2 in M, 3i, i > k, such that si ~ q and Vj, 0 < j < i, sj ~ p
so ~ E(p U >- t q) iff for some fullpath so, s l , s~ in M, 31,i > k, such that st ~ q and Vj, 0 <_ j < i, sj ~ p

$6. so ~ A(p U fk q) ifffor all fullpaths s0 ,s l , s2 in M, st ~ q and Vj, O < j < k, sj ~ p
so ~ E(p U = t q) iff for some fullpath so, sl , s t in M, sk ~ q and Vj, 0 < j < k, sj ~ p

144

Other abbreviations of these modalities can be defined as in Section 2. It is worth noting that A F = tp -- AG ffi tp
is a validity. So is A(p U = t q) =~ A(p U <-~ q) A A(p g > t q), but the same formula with the implication reversed is
not valid. We could also define modalities such as U < k and U > k, hu t as we are dealing with discrete time, these are
easily expressed in terms of U -<k and U -> t respectively.

From the semantics above, it is easy to verify that the following formulae are valid. First, for each k _> 1:
(i) A(p u>-~q) - p A AXA(p U>-(~-~)q); (iO E(p ~>_kq) = p A EXE(p U>-(k-~)q); (iii) A(p ~;=kq) - p A
A X A (p U = (t - l) q); and (iv) E(p U ffi t q) -- p A E X E (p U =(t-x) q). Secondly, for k = 0: (v) A(p U >- o q) --_ A(pU q);
(ui) E(p U>° q) --- E (pU q); and (vii) A(p U=t q) - E(p U=~ q) =- q. These formulae may be regarded as the
analogues of the fixpoint characterizations of the CTL modalities AU and EU ([EH82]).

We conclude this section with a summary of results (which we shall prove in the full paper) concerning the logics
CRTCTL, RTCTL, RTCTL >- , and RTCTL =. First, we note that the expressive power (cf., [GPSSS0], [EH83]) of each
of these logics is the same as that of CTL as each of them subsumes CTL and the basic quantitative modalities can
be expanded into CTL formulae using their flxpoint characterizations. Thus, each of these logics is as expressive as
every other.

Secondly, there is a polynomial t ime model-checking algorithm for each of these logics. In fact, an RTCTL >
formula, p, can be model-checked over a structure M in time O(IPl × IM1 ~) and an RTCTL = or a CRTCTL formula p
can be model-checked in time O(Ipl × IMls). The algorithm for RTCTL > is similar to that of RTCTL: to test whether
a state s in a structure M satisfies A(q U >t r), say, we first rank all states in M that satisfy A(q Ur) with 0, and
"radiate" the satisfaction of A(q U >- $ r), j _</~, outward from these states. To test if s satisfies A(q U = t r), however,
we need to compute all states in M that are/~ time units away from s. This can he done in time linear in/~ and
polynomial in [M[by an algorithm similar to the one that computes the transitive closure of a directed graph. So,
model-checking CRTCTL and RTCTL = is somewhat more computationally intensive.

Finally, the satisfiability problem of RTCTL >, like that of RTCTL is deterministic EXPTIME.complete; in fact,
IITCTL's algorithm can be used with appropriate changes. Surprisingly enough, however, the satisfiability problem
of I tTCTL = (and, hence, of CI~TCTL) is deterministic double exponential time complete. The algorithm outlined
for RTCTL can also be modified to handle these logics. The resulting algorithm is double exponential in the number
of bits used to represent the integer constants in the input formula, hut only single exponential in the length of the
remainder of the formula, i.e., in the length of the formula without these integer constants. Thus, this algorithm is
likely to be more efficient than translating formulae of these logics to (exponentially longer) formulae in CTL and
using CTL's decision procedure to determine their satisfiabi]ity.

R e f e r e n c e s

[AbSO] Abrahamson, K., Decidability and Expressiveness of Logics of Processes, Ph.D. Thesis, Univ. of Washington, 1980.

[Br86] Browne, M.C,, An Improved Algorithm for the Automatic Verification of Finite State Systems Using Temporal
Logic, Prec. Syrup. on Logie in Computer ~:ience, Cambridge, pp. 260-266, 1986.

[BHP81] Ben-Ari, M., J.Y. H~lpern, A. Pnueli, Finite Models for Deterministic Propositional Dynamic Logic, Prec. 8th
Annual lnternationaJ Colloquium on Automata, Languages and Programming, LNCS~ll5, Sprlnge~-Verlag, pp.
249-263, 1981; a revised eereion entitled Deterministic Propositional Dynamic logic: Finite Models, Complexity~
and Completeness, appears inJouraaJ of Computer and System Sciences, vol 25, no. 3, pp. 402-417, 1982.

[BMP81] Ben-Ari, M., Z. Manna, A. Pnueli, The Temporal Logic of Br~nchlng Time, P~c. 8th Annual ACM Syrup. on
Principles of Programming Language& Williamsburg, pp. 164-176, 1981; obo appeared in Act" Informatlc~ voL
20, no. 3, pp. 207-226, 1983.

[CES83] Clarke, E.M., E.A. Emerson, A.P. Sistla, Automatic Verification of Finite State Concurrent Systems Using Temporal
Logic Specific~tious: A Practical Approach, Proc. JOth Annua/ACM Syrup. on Principles of Programming Lan-
guages, Austin, pp. 117-126, 1983; abo appeared in ACM Transactions on Programming Languages and Systems,
vo l . 8, no. 2, pp. 244-263, 1986.

[CG87] Clarke, E.M., O. Gzemberg, Avoiding the State Explosion Problem in Temporal Model Checking Algorithms, Prec.
of the 6th Annual ACM Symp. on Principles of Distributed Computing, Vancouver, pp. 294-303, 1987.

[Di76] Dijkstra, E.W., A Disclpllne of Programming, Prentice-Hall, 1976.

[Em85] Emerson, E.A., Automata, Tableaux, and Temporal Logics, Proc. Conf. on Log/ca o£Programs, Brooklyn, R. Parikh,
editor, LNCS~193, Springer-Verlag, pp. 79-88, 1985.

[EC82] Emerson, E.A., E.M. Clarke, Using Branching Time Logic to Synthesize Synchronization Skeletons, Science of
Comp, ter Programming, voL 2, pp. 241-266, 1982.

145

[EH82]

[EH83]

[ELSS]

[ELSg]
[ES84]

[Ess89]

[FL79]

[GPSS8o]

[3M87]

[Ko82]

[LP85]

[LPZ85]

[MWs41

[OL82]

[PnT?]

[PR89]

[Pr8O]

[sir87]

[sc82]

[SG87]

fats1]

[vw84]

[Wo81]

[wvs83]

Emerson, E.A., J.Yo Halpern, Decision Procedures and Expressiveness in the Temporal Logic of Branching Time,
Proc. of the 14th Annual ACM Syrup. on Theory of Computing, San FranCisco, pp. 189-180, 1982; also appeared
in 3ournal of Computer and System Sciences, vol 30, no. 1, pp. 1-24, 1985.

Emerson, E.A., J.Y. Halpern, "Sometimes n and "Not Never" Revisited: On Branching versus Linear Time, Proc.
lOth Annual ACM Syrup. on Principles o f Programming Languages, Austin, pp. 127-140, 1983; also appeared in
3ournal ACM, vol 33, no. 1, pp. 151-178, 1986.

Emerson, E.A., C.L. Lei, Modalities for Model Checking: Branching Time Logic Strikes Back, Proc. 12th Annual
AC]~ Syrup. on Prlnclples o f Programming Languages, New Orles~ns, pp. 84-96, 1985; also appeared in Science o f
Computer Programming, voL 8, pp. 276-306, 1987.

Emerson, E.A., C.L. Lei, Mode]-Cheching in the Propositional Mu-Oalcnius, unpublished manuscript, 1988.

Emerson, E.A., A.P. Sistla, Deciding Pull Branching Time Logic, Information and Control, vol. 61, no. 3, pp.
175-201, 1984; also appeared in Proc. of the 16th Annual ACM Syrup. on Theory of Computing, Washington D.C.,
pp. 14-24, 1984.

Emerson, E.A., T.H. Sadler, J. Srinivasan, Efllcient Temporal Reasoning, Proc. 16th Annual ACM Syrup. on
Principles o f Programmlng Languages, Austin, pp. 166-178, 1989.

Fischer, M.J., R.E. Ladner, Propositional Dynamic Logic of Regular Programs, Journal o f Computer and System
Sciences, voL 18, pp. 194-211, 1979.

Gabbay, D., A. PnueH, S. Shelah, J. Stavi, On the Temporal Analysis of Fairness, Proc. 7th Annual ACM Syrup.
on Principles o f Programmlng Languages, Lug Vegas, pp. 163-173, 1980.

Jalu~aian, F., A.K. Mok, A Graph-Theoretic Approach for Timing Analysis and its Implementation, IEEE Trans-
actions on Computers, vol. C-36, no. 8, pp. 961-975, 1987.

Kozen, D., Results on the Propositional p-Calculus, Proc. 9th Annual International Colloquium on Automata, Lan-
guagee and Programming, LNCS#I40, Springer-Ver|ag, pp. 348-359, 1982; also appeared in Theoretical Computer
Science, voL 27, no. 3, pp. 333-364, I983.

Lichtenstein, O., A. Pnueli, Checking That Finite State Concurrent Programs Satisfy Their Linear Specification,
Proc. 12tb Annual ACM Syrup. on Principles o£ Programming Languages, New Orleans, pp. 97-107, 1985.

Lichteustein, 0., A. Pnueli, L. Zuck, The Glory of The Past, Proc. Conf. on Logics of Programs, Brooklyn, R. Parikh,
editor, LNCS#193, Springer-Verlag, pp. 196-218, 1985.

Manna, Z., P. Wolper, Synthesis of Communicating Processes from Temporal Logic Specifications, ACM Transac-
tions on Programming Languages and Systems, voL 6, no. 1, pp. 68-93, 1984.

Owicki, S., L. Lamport, Proving Liveness Properties of Concurrent Programs, ACM Transactions on Progr~mmlng
Languages and Systems, voL 4, no. 3, pp. 455-495, 1982.

Pnneli, A., The Temporal Logic of Programs, 18th Annual Syrup. on Foundations o f Computer Science, Providence,
pp. 46-57, 1977.

Pnueli, A., R. Itesner, On the Synthesis of a Reactive Module, Proc. 16th Annual ACM Syrup. on Principles of
Programming Languages, Austin, pp. 179-190, 1989.

Pratt, V., A Near-Optimal Method For Reasoning About Action, Journal of Computer and System Sciences, vol
20, no. 2, pp. 231-254, 1980.

J. Sif&kis, personal communication, 1987.

Sistla, A.P., E.M. Clarke, The Complexity of Propositional Linear Temporal Logics, Proc. of the 14th Annual ACM
Syrup. on Theory of Computing, San Francisco, pp. 159-168, 1982; also appeared in Journal ACM, voL 32, no. 3,
pp. 733-749, 1985.

Sistht, A.P., S.M. German, Reasoning With Many Processes, Proc. 2nd Annual Syrup. on Logic in Computer Science,
Ithaca, pp. 138-182, 1987.

Strestt, ILS., Propositional Dynamic Logic of Looping and Converse, Ph.D. Thesis, M/T LOS Technical Report
TR-263, 1981; altemati~ly, see: Propositional Dynamic Logic of Looping and Converse is Elementarily Decidable,
Information and Control, vol. 64, pp. 121-141, 1982.

Vardi M., P. Wolper, Automata Theoretic Techniques for Modal Logics of Programs, Proc. o f the 16th Annual
ACM Syrup. on Theory o f Computing, Washington D.C., pp. 448-456, 1984; also appeared in 3carnal o f Computer
and System Sciences, vol 32, no, 2, pp. 183-221, 1984.

Wolper, P., Temporal Logic Can Be More Expressive, 22nd Annual Syrup. on Fonndations o f Computer Science,
Nashville, pp. 340-348, 1981; also appeared in Information and Control~ voL 56, pp. 72-99, 1983.

Wolper, P., M. Vardi, A.P. Sistla, Reasoning about Infinite Computation Paths, 24th Annual Syrup. on Foundations
o f Computer Science, Tucson, pp. 185-194, 1983.

