
USING PARTIAL-ORDER SEMANTICS
TO AVOID

THE STATE EXPLOSION PROBLEM
IN

ASYNCHRONOUS SYSTEMS

David K. Probst and Hon F. Li
Department of Computer Science

Concordia University
1455 de Maisonneuve Blvd. West

Montreal, Quebec Canada H3G 1M8

ABSTRACT

We avoid state explosion in model checking of delay-insensitive VLSI systems by not
using states. Systems are networks of communicating finite-state nonsequential processes
with well-behaved nondeterministic choice. A specification strategy based on partial
orders allows precise description of the branching and recurrence structure of processes.
Process behaviors are modelled by pomsete, but (discrete) sets of pomeets with implicit
branching structure are replaced by pomtreee, which have finite presentations by
(automaten-like) behavior machines. The latter distinguish both concurrency and
branching points, and define a finite recurrence structure. Safety and liveness checking
are integrated. In contrast to state methods, our methods do not require enumeration
or recording of states. We avoid separate consideration of execution sequences that do
not differ in their partial order, and ensure termination by recording only a small
number of system loop cutpoints -- in the form of system behavior states. In spite of
the name, behavior states are not states.

Keywords delay-insensitive system, model checking, state explosion, partial-order semantics,
branching point, recurrence structure, behavior machine, behavior state.

1. Introduction

There is considerable interest in asynchronous hardware systems, fueled by concerns
about clock distn'oution and component composition in clocked systems [1,3,6,8]. Clearly,
there is considerable conceptual overlap between asynchronous hardware systems and
asynchronous distrll)uted systems. Here, we focus on hardware systems, although we
make our verification assumptions clear, as a first step. towards extending the work to
other application areas. Most theoretical asynchronous systems research is based on a
formal representation strategy that underlies efforts in both verification and synthesis,
and can have a major impact on efficiency (for example, on the time needed for
verification, or on the size of synthesized objects). In:delay-insensitive VLSI systems,
system correctness is independent of delays in both asynchronous circuit components and
transmission media. Both are specified as asynchronous processes. Delay-insen_sitive
systems are modelled as networks of processes that communicate by direct contact.
Since all communication is asynchronous and unbuffered, only local protocols are available
to eliminate undesirable inputs. We avoid state explosion in model checking of
delay-insensitive VLSI systems by not using states. Our specification strategy allows
precise description of the branching and recurrence structure of processes. Processes are
modelled -by pomtrees, which differ from (discrete) sets of pomsets in making implicit
branching structure explicit. Pomtrees have finite presentations by (automaton-llke)
behavior machines that distinguish both concurrency and branching points, and define a

This research was supported by the Natural Sciences and Engineering Research Council
of Canada under grants A3363, A0921 and MEF0040121.

147

finite recUrrence structure. Our slogan is, combine true concurrency with true
nondeterminism -- and a finite recurrence structure -- to achieve efficient algorithmic
processability. Our model checking s t ra tegy is, evaluate graph predicates on a sys tem
pomtree ra ther than s ta te predicates on a system s ta te graph. A small set of loop
cutpoints in a finite presentation of the system pom~ree is discovered during model
checking. The core novelty of our approach is tha t (i) causal i ty is checked directly, and
(ii) behavior s ta tes (which are not s tates) are used only for termination.

2. Abst rac t specification of asynchronous processes

Abst ract specifications define sets of externally-vis~le infinite computational behaviors,
as well as branching points and a finite recurrence structure. Our behaviors are called
complete to emphasize tha t they correspond to some maximal safe use of the process by
an environment. In event structure terms, a complete behavior is a maximal conflict-free
set of events. A process P has a set of input ports I and a set of output ports 0 . A
process action is a (port, token) pair -- in VLSI, tokens correspond to signal (voltage)
transit ions, t I (tO) is the set of input (output) actions, and ~ = t I u tO is the set of
process actions. An event a t an input or output port performs a process action defined
by the value of the token re.ceived or sent. Since the focus in this paper is on systems
with cleanly defined control s ta tes tha t are verified separately, tokens are essentially
colorless. P's input actions are under the exclusive control of P's environment. P's
output actions are under the exclusive control of P. This a symmet ry of control is
central to the model.

Safety properties (invariance properties) specify what the process is allowed to do;
they also specify wha t the environment is allowed te~ do. A safety violation is an
occurrence of a proscrfi~ed input or output event (in automata-theoret ic terms, an
undefined transition). After an input safety violation; a process becomes undefined.
Liveness properties (inevitability properties) specify what the process is required to do; in
our model, they do not specify what the environment is required to do. A liveness
violation is a nonoccurrence of a prescrfi~ed output event. We group liveness properties
into two camps, viz., (1) those related to progress (that is, response), and (2) those
related to fairness of conflict resolution. Symmetric (asymmetric) specification of safety
(liveness) properties has an interesting structuring effect on model checking (the
examination of a special closed network of processes): although safety violations can show
up in any process, liveness violations can only show up in the specification.

2.1. Primitive notions

At the level of (infinite) pomtrees, there are two primitive notions: (1)comple te
behavior (maximal conflict-free set of events), tha t is, any maximal infinite pa th through
the pomtree, and (2) nondeterministic choice between mutual ly exclusive sets of process
actions, by either process or environment, t ha t is, selection of a part icular pomtreo
branch. Complete behaviors are abstractions of infinite executions of the process tha t
(i) correspond to some maximal safe use, and (ii) contain only necessary temporal
precedences between external (interface) events. Concarrent events have no specified
temporal relationship. A behavior "contains" any execution s ta te tha t arises in any
execution abstracted by the behavior. Execution s ta te is affected by the performance of
process actions in the usual way. P is input nondeterminate when P's environment can
choose; P is output nondeterminate when P can choose.

At the level of (finite) behavior machines, there is a third primitive notion:
recurrence (looping) in behavior space. Actually, the major precondition for the
application of our techniques is the existence of a clean, finite recurrence structure.
Behavior machines describe how commands (socket-extended finite pomsets) define
transi t ions between selected pairs of behavior states. The essential use of behavior
s ta tes is to identify cutpoints in loops of computational behaviors. A behavior s ta te
contains all the information in an execution s ta te plus some additional information about
how events in the pas t are temporally related to events in the future. A behavior s ta te
is not a s ta te in the sense tha t recording system execution s ta tes is not sufficient to
discover a finite presentation of the system pomtree.

148

2.2. Pomsets and pomtrees

Pomsets and pomset operations have been studied extensively [4]. A labelled partial
order (Ipo) is a 4-tuple (V, I:, r, p) consisting of (i) a countable set V of events in a
computational behavior, (ii) a finite set 13 of process actions, (iii) a partial order r on V
that expresses the necessary temporal precedences among the events in V, and (iv) a
labelling function p : V -* P. mapping each event v ~ V to the process action ~ e X~ it
performs. In our model, events at the same port in a given behavior are linearly
ordered (concurrent events must be at distinct ports). Since every process has an initial
state in which no events have occurred, and since the partial order r expresses action
enabling (causal dependency among events), F must be well-founded (axiom of finite
causes). Formally, a pomeet (partially ordered multiset) is the isomorphism class of an
Ipo, denoted IV, 13, r, p].

Let p and q be pomsets, and let all partial orders r be written as "<'. We say
that q is a p-pref~c of p when q is obtainable from p by deleting a subset of the events
of p, provided that if event u is deleted and u < v, then v is also deleted. We say
that a is a ,r-prefm of p when a is a finite p-prefix of p. ~r(p) is the set of It-prefixes
of p. We say that q is an augment of p when q differs from p only in its partial
order, which must be a supe~set of that of p. If P is ~ set of pomsets, then ~(P) is u
~(p), p ~ P. Let p = IV, r, I], /~] be a pomset and let V" c V. The pro.iection onto
V" is p" = IV', r', x:, /~'], where r" and ~" are the restrictions of r and p to V'.

We introduce the notion of prefix envelope. Let p be a pomset. Op is the set of
action labels of initial events of p, that is, the set of t~(v) of v in p such that ~u in p
with u < v. If a E ,r(p), then p - a is the projection obtained by deleting the events

in a from p. The envelope of a in p, denoted Ep(a) !, is O(p_ ~). Define inp(a) =

Ep(a) n tl and OUtp(a) = Ep(a) n tO. Ep(a) is the set of process actions that are

concurrently enabled in behavior p after the events of partial execution a. We sketch
the notion of branch point. Consider the following skeleton presentation of a simple

finite pomtree. Let a, #1 and #2 be finite pomsets, with °# I n 0#2 = { }. Lay down

pomset a. Now, both concatenate #1 with set r I of (a, #1) precedences, and

concatenate #2 with set r 2 of (a, #2) precedences. The pomtree contains one copy each

of a, #1 and #2" #1 and #2 are the two branches. Let p and q be the two

(maximal) paths through the pomtree. By construction, a e ~(p), ~(q) is a maximal
(under prefix ordering) common prefix of p and cl. Also'by construction, Ep(a) n Eq(a)

= { }. We say that a is a branch point. If Ep(a), Eq(a) _C tl (tO), then a is an

input (output) branch point. Pomtrees are like computation trees except that arcs are
maximal determinate behavior se~grnents, and vertices are input or output branch points.

2.3. Determinate processes

Fig. I shows a representation of a complete computational behavior p. Process P =
{p) could be a C-element together with an unconnected wire. The use of pluses and
minuses (from rising and falling signal transitions) is partly redundant; once the initial
voltage level of a port has been fixed by a reset transition, each new transition at that
pert is the opposite of the preceding transition. Output port names have been
underlined. The complete behavior is obtained by concatenating infinitely many copies of

this figure, superimposing adjacent (a +, b +, d +) triples. The figure is intended to
iUustrate both maximal safe use and necessary temporal precedence. For example,
process P is a multithreaded process (it has two threads); the environment may elect to
use one thread and not the other. A process with a single thread has essentially only
one use. Necessary temporal precedence is explained below.

149

+ -- +
a a a

d+ ~) _ e +] ~ d - > e -] _ _ ~ d +

Fig. 1 Representation of a complete computational behavior.

The complete behavior precisely descrfbes when the process (environment) is allowed
to perform output (input) actions. In all processes, as illustrated in Fig. 1, the behavior

partial order r in p = IV, r., r, p] is the transitive closure fl + of a nontransitive
successor relation f~ = N u -=, where the output protocol N is a relation from input
events to output events, and the input protocol E is a relation from output events to
input events. In model checking, we use the fact that N (2) is the causal (noncausal)
part of fl, by asymmetry of control. In short, the process (environment) enforces N (~).
We also say that the actions in OUtp(a) [inp(a)] are causally [noncausaUy] enabled at a.

The semantics of successor arrows is as follows. The process may perform an output
action when all of its solid-arrow predecessor events have occurred. The environment
may perform an input action when all of its dashed-arrow predecessor events have
occurred. Violations of the input (output) protocol are called failures (errors) [6]. After
a failure, a process may behave arbitrarily. This means that system pomtrees of
(closed) networks of processes are undefined if there is a failure in any component
process. Brackets are explained momentarily.

2.4. Delay insensit ivity

In general, well-behavedness conditions are motivated by restrictions t ha t allow
asynchronous processes to be used as components of delay-insensitive sys tems [6]. Here,
we present a minimal set of assumptions tha t are used in the model checking approach
of this paper. Assumptions t ha t guarantee delay insensit ivity are distinguished from
more general assumptions -- not shown in this paper -- tha t guarantee the finite-state
character of asynchronous processes, and the bounded-size encoding of behavior s tates .
These general assumptions are what guarantee the existence of a clean, finite recurrence
structure in an asynchronous hardware or software system.

WeU-behavedness conditions

Rule 1 There is no autoconcurrency. Formally, any two events a t the same pert
in p ~ P are separated in fl by at least one event a t some other port.

Rule 2 There is no specified successor relationship either between two input events
or between two output events. Formally, each line in p E P consists of an infinite
sequence of strictly al ternat ing input and output events.

2.5. Progress requirements

We specify progress requirements in a behavior p by bracketing output events.
After par t ia l execution a E ~r(p), a determinate process P = {p} is required to perform
all bracketed output actions in OUtp(a); this subset is denoted reqv(a)._ These actions

mus t be performed eventually, after some arbi t rary but finite delay. To simplify model
checking, from now on we only consider systems in which reqp(~) = OUtp(a); this defines

restricted process theory. We capture this notion in a rule.

Rule 3 In the absence of branching, there is never a choice between performing
and not performing an output action. Formally, if p e P, then all output events in p
are bracketed.

150

2.6. Nondeterminate processes

Branching in an asynchronous process arises in either of two ways. There may be
free choice (in the Petr i net sense) in the environment to apply one of several mutual ly
exclusive access operators, and there m a y be arbi ter choice in the process to respond to
one of several concurrent requests to perform a mutually, exclusive operation on a shared
object. Pomtrees adequately model the branching structure arising from these two
sources. The semantics a t input (output) branch points is straightforward. An input
branch point a defines in(a) = {inj(a) : j E J~, where J indexes the finite input

branching a t a . This is the family of disjoint sets of input actions tha t are
concurrently enabled a t a , respectively, in each of the futures tha t branch from a. An
output branch point a defines ou t (a) ffi {OUtk(a) : k ~ K}, where K indexes the finite

output branching a t a . This is the family of d i s jo in t sets of output actions tha t are
concurrently enabled a t a , respectively, in each of the futures tha t branch from a. The
semantics a t nonbranch points is equally straightforward. I f a is within a determinate
behavior segment, then there is precisely one enabled set. I f a s traddles a branch point,
then the enabled sets are not disjoint.

Consider an output branch point a in restricted process theory. If P advances to
a, then P is required to perform all actions in some out k within finite time.

Explanation is required for arbiter choice, concerning progress requirements at prefLxes of
a. Suppose that output action u is required at # and that, before P performs u, P
advances to a in which u and v are disjunctively required; P may then perform v and
not u. This is an acceptable confusion situation (in the Petri net sense): in an arbiter,
a required output action may become disjunctively required after the receipt of new
input.

2.7. Behavior machines

Behavior machines are finite presentations of pomtrees. A behavior machine
consists of a set of selected behavior states, and a set of commands. A command can
be applied in certain behavior states, and produces a new behavior state. Commands
are essentially finite pomsets with additional machinery to define the nonsequential serial
concatenation -- modulo branching -- of the command to the finite pomtrse generated so
far. One fact of model checking is that components of systems are subject to
nonmaximal safe use, requiring the encoding of behavior states that were not originally
selected; for this reason, we encode all behavior states at specification time. Behavior
machines specify both safety and progress properties; fairness properties must be specified
by a supplementary condition constraining output choice.

Formally, a behavior machine is a set S of selected behavior states (with a
distinguished start state), and a set C of commands. The machine describes the
pess~le state transitions (c takes s to t) produced by each command. For each c E C,
there is a transition relation A(c) on S, where (s, t) E A(c) if conceptual execution of
command c in state s produces state t.

Fig. 2 shows a behavior machine for a C-element. Each command has the form:
behavior state label, socket-extendod finite pomset, behavior state label. In constructing
behaviors, a new command may be applied provided the command prelabel matches the
postlabel of the previous command. Sockets (denoted o) help descrz~e how future
behavior follows past behavior. If there is a successor arrow o -. u, then o is fdled by
some predecessor of u according to a well-defined rule. More precisely, if command c
can follow partial execution a, then there is an injection (produced by simple labelling)
from the set of sockets in c to the set of events in a that can still participate in (new)
successor arrows. By convention, there is an imaginary initialization event * with
postlabel 0. As a presentational device, we make the vertical placement of symbols in
commands significant: a socket is always fdled by an action that appears on the same
horizontal line. For example, in Fig. 2, the unique socket o can be filled by * (first

application of the command) or by c_- (all subsequent applications of the command).
Assume that the default vertical placement of * is 'Yniddle".

151

+ a a ~

O: o I I

"A b

Fig. 2 Behavior machine for a C-element.

Fig. 3 shows a reduced behavior machine for a delay-insensitive arbiter. For
conciseness of presentation, we have included several distinct behavior s ta tes under label
1. The abuse of notation is intentional. Label 1 in Fig. 3 is an equivalence class of
behavior s tates . The two "commands" on the right in Fig. 3 are equivalence classes of
commands. This is explained below. Each of two clients follows a four-cycle protocol,

where (A) = + [- -> a - and (B) = d+[- - > b - are the critical sections. A two-arrow
* J , J

socket t ha t is always filled by • has been suppressed from command 1 (extreme left).
As shown, sockets exist on three horizontal levels. The top o (in command 2) is a lways

filled by a + and the bottom o (in command 3) is a lways filled by b +. Ei ther middle o

can be filled by *, a - or b - , perhaps redundantly.

+] -> a o c- - - a +
J

O: :1 1: o--.~ (A) :1 1: o- . .~ (B) :1

b + o / ' Z ~ d _ -] --> b +
J

Fig. 3 Reduced behavior machine for a delay-insensitive arbiter.

The reduced behavior machine in Fig. 3 groups three distinct behavior s ta tes under
label 1, all corresponding to the same execution state . The three may be distinguished
as: (1.1) no critical-section entry has occurred (both middle sockets become redundant),
(1.2) A's critical-section exit was the most recent (A's middle socket becomes redundant),
and (1.3) B's critical-section exit was the most recent (B's middle socket becomes
redundant). Behavior s ta tes 1.1, 1.2 and 1.3 are output branch points. Behavior s ta tes
1.2 and 1.3 form a complete set of loop cutpoints in the full behavior machine; such a
set is called a dominator set [2,7]. The full behavior machine is easily obtained. It
has four selected behavior states (0, 1.1, 1.2 and 1.3) and seven transitions -- but only
five commands (distinct socket-extended pomsete). For example, behavior state 1.2 has a
self-loop produced by command 2" (command 2 minus its middle socket), and a transition
to behavior state 1.3 produced by command 3.

The simplest way to encode behavior states is to use names of successor arrows.
This is done by recognizing distinct arrows in a behavior machine, and assigning labels.
For a finite-state determinate process P ffi {p}, the behavior state s(a) that corresponds
to partial execution a ~ ~(p) is encoded as the set fl(a, p- a) of successor arrows
with source in a and target in p - a. This encoding strategy works equally well for
finite-state nondeterminate processes. For example, any behavior state of the arbiter can
be encoded by three (small) integers representing the (virtual) successor arrows currently

offered by the past to the future. Thus, behavior state 1.2 is encoded as: a + (b +) is

currently available to enable the next c + (d 2) t ha t appears in any downward pa th

through the pomtree, and a - is currently available to enable the d_ + tha t appears in the
immediately adjacent B branch.

We say tha t two part ia l executions a , ~ E r(P) are execution equivalent, wri t ten a

152

- e /3, when their sets of poss~le futures are equal, tha t is, fp(~) = fp(~) [5]. This is

s tandard pemset (or pomtree) equality, based on lpo isomorphism. Each - e equivalence

class of partial executions is an execution s tate of process P. In the same way, each
-b equivalence class (a ~b ~ when their sets of poss~le socket-extended futures are

equal) is a behavior state of process P. Formally, if a and /~ are prefL~eS of infinite
paths through pomtree P, then a and ~ result in the same behavior state of P precisely
when the two pomtrees P/a and P//~ descending from a and /~ are equal, where P/a and
P//~ have been extended to include the (a, P/a) and (~, P/~) precedences, and
isomorphism now requires matching both event labels and arrow lal)els. In spite of the
name, behavior states are not states.

3. Correct implementation

An implementation may exceed the minimum requirements of the specification. For
example, it may be more l~eral in accepting input and more conservative in producing
output, but only if all progress requirements are satisfied. In model checking, a
straightforward way to define correctness is to use the mirror of the specification as a
conceptual implementation tester [1]. That is, one forms an imaginary closed system by
linking mirror mP of specification P to the implementation -- in the general case, a
network of processes Net --, and then examining certain properties of the resulting
system. In the partial order world, the mirror is formed merely by inverting the
causal/noncausal interpretation of P's successor arrows. Many things may now be
examined. Is there a failure somewhere, causing the system to become undefined? Does
the system just stop, violating fundamental liveness? Is some progress requirement
violated? Is some conflict resolved unfairly? To study the closed system S = mPIP" --
in the general case, S = mPINet -- by partial order methods, we first regroup all
successor arrows (as shown below) to obtain the system causal and noncausal successor
relations. Graph predicates are then evaluated on a system pomtree that has two
distinct successor relations.

In closed system S, each action is attn%uted to precisely two processes as a joint
action of those two processes. System behaviors are projected onto component alphabets
to yield component behaviors. Consider first the trivial case that the implementation is
a process. Conceptual execution of S = mPIP" produces corresponding partial executions
of specification P and implementation P'. These partial executions correspond by
containing the same events, but may not agree on which temporal precedences are
necessary. For a E ~(P) and a" e ~(P3, a ~==~ ~" denotes correspondence. Each a,a"
pair is a "doubly-ordered" finite pomset IV, E, r, r', p]. Corresponding pairs are
produced by conceptual execution of S only as long as no safety or liveness violation is
detected.

Safety checking occurs on two levels. (i) Any action u that is causally but not
noncausally enabled at a,a" is an immediate safety violation. Sets of concurrently
causally enabled actions must be concurrently noncausally enabled. (ii) Moreover, while
visiting event u, each noncausal arrow (t, u) is checked by a (breadth-t'h-st) search for a
supporting chain It, u] of causal arrows. The nonexistence of such a chain is a safety
violation. Liveness checking also occurs on two levels. (i) Any external output action v
that is noncausally but not causally enabled at a,a" is an immediate Uveness violation --
unless v is only disjunctively required (see above). Each set of concurrently causally
enabled external output actions must contain some set of concurrently noncausally enabled
external output actions. (ii) Moreover, while visiting external output event v, each
causal chain It, v] from an external input event t is checked by a "search" for a
matching noncausal arrow (t, v). The nonexistence of such an arrow is a liveness
violation.

We give a state-based definition of correctness for S = mPIP'. First, consider
determinate P and P'. Correctness of safety properties means: Va,a" : a ~=~ a" :
inp(a) C inp,(a') and OUtp(a) _ OUtp,(a3. Correctness of progress properties means: Va,a"

: a ~ a" : reqp(a) c reqp,(a'). In restricted process theory, this reduces to: out(a)p =

153

OUtp,(a') ffi reqp(a) ffi reqp,(a'). Next, extend consideration to nondeterminate P and P'.

In restricted process theory, correctness now means:

VO4Ot" : Ot ~::::~ O~':
Vj 3j" : i n j (a) _ inj,(a~ ^

Vk" ~k : OUtk(~) = OUtk,(a~

(*)

(**)

These subscripts index sets of actions tha t are concurrently enabled a t ~, respectively, in
each of the futures tha t branch from a.

We are now ready for a genuine part ial order view tha t defines correctness without
reference to s tates; in particular, the Va,a" quantifier will be dispensed with. Consider a
pair a , a ' , ~ ~==~ a ' . We regroup the causal and noncausal par ts of fl(a) and fl '(a') to
obtain the system causal and noncausal successor relations. We define the system

causal successor relation ~ = (N ' u ,~)+-, where the superscript denotes t ransi t ive
closure followed by transi t ive reduction. Similarly, we define the system noncausal

successor relation f~ ffi (N u - ~ ') + - . When the implementation is a network Net of

components Pi ' i E I, ~ ffi [(u i N i) u E] + - , and l~ ffi [N u (u i -~i)] + - .

Consider the general case. System pomtree S is undefined if a component fails.
Suppose there is no failure (safety violation) in S. Each event v in S is classified as
an input event in precisely one (say Pi) of the two processes to which the action

performed by event v is attn%uted. From Pi's specification, there is a well-defined

noncausal preset in Pi (say Hi(v) _C Ei) of the Pi action performed by event v. By

definition, each event occurs in S because it is causally enabled. In order tha t P. not 1
"explode", v mus t also be noncausally enabled in Pi" This is equivalent to: (i) Yu

Hi(v) : u E S, and (ii) for each u, there is a chain of causal arrows [u, v]. This is

safety correctness. Some events v tha t are noncausally enabled in S are, from
specification P's point of view, classified as (external) output events. From P's
specification, there is a weU-defined noncausal preset in mP (say mII(v) _C mE) of the
mP action performed by event v. In order tha t (the nonoccurrence of) event v not be a
progress violation, we mus t have: (i) v ~ S, and (ii) there exists a chain of causal
arrows [u, v] iff u E mII(v). Condition (ii) means that , after projection of S on mP,
precisely mII(v) enables the mP action performed by v. Again, v may be only
disjunctively required (see above). This is progress correctness.

4. Model checking

We sketch direct model checking of networks of processes. Given are specification
process P and some number of implementation component processes Pi ' i E I. Network

links map each internal output action of each component process P. to precisely one
1

internal input action of some other component process P. [6]. Each internal event is
J

at t r ibuted to two component processes. Conceptual links map each action of specification
process P, whether input or output, to precisely one action (of the same type) of some
component process Pi" Each external event is at t r ibuted to the specification process and

one component process. External input events are caused by specification process P,
while all other events are caused by some component process P..

1

The verification procedure shares superficial structure with the algorithm in [1].
Let D be a complete set of loop cutpoints (dominator set) for P. We enumerate system
pomtree S recursively. We maintain (1) a s tack to postpone the examination of system
pomtree branches (maximal determinate behavior segments), and (2) a table to detect
cycles in the enumeration of S. Recording the system behavior s ta te each time P

154

advances to some d ~ D (at P command completion) leads to discovery of a loop
cutpoint for each loop in a finite presentation of system pomtres S.

Fig. 4 shows a typical result of applying a P command to a network, here, in its
initial state.

+ .+] ,, I o _ _ _ ~ a - - -+ ~ , u

' / 7 ' /
'] I I-] :0 0 : ~ o i - ~ + - ~, -~-

,
I o _ - 9 c ;', c - ,
1 I

Fig. 4 Direct verification of a network.

Conceptual execution of system S produces n-tuplee <~, a l ' a2 > obtained by

projection of system behavior prefL~es onto processes P and Pi' i ~ I. In the general

case, corresponding partial executions no longer contain the same events. Each # e ~(S)
maps onto a system behavior state, which is the standard vector of behavior states of P
and all Pi" Distinguish a "red" problem and a "green" problem. The red problem is,

identify each maximal determinate behavior segment of system pomtree S. Branch
points of S are scheduled for expansion in the usual way. The green problem is,
identify each maximal behavior prefLx # ~ ~(S) tha t corresponds to a selected behavior
state of specification P. System behavior states of such f s are candidates for entry into
the table. The solution to both problems is, conceptually mark the following events in
the indicated manner: (1)each initial event of each P command emanating from an
input (output) branch point is marked with both a red and a green dot (with a green
dot only), (2) each initial event of each P. command emanating from an output branch 1
point is marked with a red dot only, and (3)each initial event of each P command
emanating from a determinate loop cutpoint is marked with a green dot only.

We move forward cleanly to a branch point of S by deferring visiting any red event
as long as there are nonred events still enabled. Similarly, we move forward cleanly to
a system behavior prefix /~ ~ ~r(S) tha t corresponds to a P rule completion by deferring
visiting any green event as long as there are nongreen events still enabled. I f the
(selected) P behavior state of # has been identified as a loop cutpoint in P, then the
system behavior state of ~ i s entered into the table. If this state is already in the
table, then ~ is not extended further.

Let r : ~(S) -+ ~(P) be the standard projection from system behavior prefixes to
specification behavior prefL~es. Refinement mapping is nontrivial because r has too many
inverse images. The function of green dots is to select only a few "extremal" inverse
images of selected behavior states of P -- to create (potential) table entries. For
example, some P commands terminate in output-branch loop cutpointe. This is the case
for command 1 in the full arbiter behavior machine, with a typical implementation being
a ring of DME elements. Command 1 is applied to this implementation by moving
downward along all paths of system pomtree S to include any event -- tha t is causally

enabled by a + and b + -- up t o but not including any green event (here, c_ + and d_+).
With this implementation, command 1 of P corresponds to a finite initial pomtree prefL~
of S rather than a determinate system behavior segment. In our table, we record the
two system behavior states tha t correspond to the endpoints of the two maximal paths
through this finite system subpomtree.

155

Here is the algorithm summary. Recursively generate the system pomtree S by
extending all system behavior prefixes ~ e r(S) as long as no safety or liveness violation
is detected. Starting from the initial global state, apply P commands to the
implementation by generating all causally enabled events in all poss~le futures up to but
not including any green event. As events are generated, evaluate the graph predicates
discussed in section 3. At P command completion, if the postlabel t in s: c :t belongs
to the dominator set D of P, then record all pairs (t, N), where N is any network
behavior state that corresponds to t by the construction in the previous paragraph. Do
not apply a command with prelabel t to the implementation in network behavior state N
if (t, N) is already in the table. Terminate the algorithm when it is no longer poss~le
to apply any P command.

5. Conclusion

Behavior machines -- finite presentations of pomtrees -- precisely descn%e the
branching and recurrence structure of processes, with benefits for both analysis and
synthesis. Partial-order model checking allows us -- whenever there is a moderate
amount of true concurrency but not an excessive amount of true nondeterminism -- to
avoid the state explosion that frequently haunts verifiers based on state graphs, and
limit any combinatorial explosion to that created by the branching structure of processes.
Loop cutpoint detection in behaviors appears to require behavior states; such states
contain information about how future behavior follows past behavior. Based on an
understanding of the state space, the specifier/designer can create a useful separation of
concerns for the verifier by structuring processes into (i) determinate behavior segments
that are either completed or eliminated during conceptual execution (a pretending
atemicity property), and (ii) input or output branch points. We obtain a dramatic
performance improvement in model checking, and this even though only the specification
process P gets to pretend atemicity.

References

[1] D.L. Dill, 'Trace theory for automatic hierarchical verification of speed-independent
circuits", Ph. D. Thesis, Department of Computer Science, Carnegie Mellon
University, Report CMU-CS-88-119, February 1988. Also MIT Press, 1989.

[2] Z. Manna and A. Pnueli, "Specification and verification of concurrent programs by
V-automata", Prec. of 14th ACM Symposium on Principles of Programming
Languages, January 1987, pp. 1-12.

[3] A.J. Martin, "Compiling communicating processes into delay-insensitive VLSI
circuits", Distrfbuted Computing, Vol. 1, No. 4, October 1986, pp. 226-234.

[4] V.R. Pratt, '2Vlodelling concurrency with partial orders", Int. J. of Parallel Prog.,
Vol. 15, No. 1, February 1986, pp. 33-71.

[5] D.K. Probst and H.F. Li, "Abstract specification of synchronous data types for VLSI
and proving the correctness of systolic network implementations", IEEE Trans. on
Computers, Vol. C-37, No. 6, June 1988, pp. 710-720.

[6] D.K. Probst and H.F. Li, "Abstract specification, composition and proof of correctness
of delay-insensitive circuits and systems", Technical Report, Department of Computer
Science, Concordia University, CS-VLSI-88-2, April 1988 (Revised March 1989).

[7] D.K. Prebst and H.F. Li, 'Tartial-order model checking of delay-insensitive systems".
In R. Hobson et al. (Eds.), Canadian Conference on VLSI 1989, Proceedings,
Vancouver, BC, October 1989, pp. 73-80.

[8] J.v.d. Snepscheut, '~rrace theory and VLSI design", Lect. Notes in Comput. Sci.
200, Springer Verlag, 1985.

