
A STUBBORN ATTACK ON STATE
EXPLOSION

(abridged version)
Antti Valmari

Technical Research Centre of Finland
Computer Technology Laboratory

PO Box 201
SF-90571 Oulu

FINLAND

Tel. +358 81 509 111

ABSTRACT
The paper presents the LTL preserving stubborn set method for reducing the
amount of work needed in the automatic verification of concurrent systems with
respect to linear time temporal logic specifications. The method facilitates the
generation of reduced state spaces such that the truth values of a collection of
linear temporal logic formulas are the same in the ordinary and reduced state
spaces. The only restrictions posed by the method are that the collection of for-
mulas must be known before the reduced state space generation is commenced,
the use of the temporal operator "next" is prohibited, and the (reduced) state
space of the system must be finite. The method cuts down the number of states by
utilising the fact that in concurrent systems the nett result of the occurrence of
two events is often independent of the order of occurrence.

1. INTRODUCTION

The automatic verification of temporal properties of finite-state systems has been a topic of
intensive research during the recent decade. A typical approach is to generate the state space
of the system and then apply a model checking algorithm on it to decide whether the system
satisfies given temporal logic formulas [Clarke & 86] [Lichtenstein & 85]. A well known
problem of the approach is that the state spaces of systems tend to be very large, rendering
the verification of medium-size and large non-trivial systems impossible with a realistic
computer. This problem is known as the state explosion problem.

Concurrency is a major contributor to state explosion. It introduces a large number of
execution sequences which lead from a common start state to a common end state by the
same transitions, but the transitions occur in different order causing the sequences to go
through different states. This phenomenon has been recognized long ago and the choice of
a coarser level of atomicity has been suggested as a partial solution (see [Pnueli 86]).
Unforttmately, the power of coarsening the level of atomicity is limited. Consider a system
consisting of n processes which execute k steps without interacting with each other and then
stop. The system has (k+l) n states. Each of the processes of the system can be coarsened to
a single atomic action. Coarsening reduces the number of states to 2 n which is still exponential

157

in the number of the processes [Valmari 88c]. However, it seems intuitively that to check
various properties of the system it would be sufficient to simulate the processes in one
arbitrarily chosen order, thus generating only nk+l states.

To our knowledge the first person to suggest a concurrency-based state space reduction
method potentially capable of changing a state space from exponential to polynomial in the
number of processes was W. Overman [Overman 81]. Overman's work is little known,
perhaps because he considered a very restricted case (the terminal states of systems consisting
of processes which do not branch or loop), and the algorithm he gave as part of his method
for finding certain sets was not efficient enough from the practical point of view. He suggested
also a modified method with a faster algorithm, but the modification destroyed the ability of
changing exponential state spaces to polynomial.

The problems in Overman's approach were effectively solved by Valmari when he presented
the so-called stubborn set method [Valma6 88a, 88b]. The stubborn set method has been
developed in a series of papers [Valmari 88a, 88b, 88c, 89a, 89b]. Originally the method
could be used only to investigate deadlocks but more advanced versions of the method have
been gradually developed in order to verify more properties. The method was initially applied
to ordinary Petri nets but now it is applicable to a rather general model of concurrency, the
variable/transition systems. Two profoundly different versions of the method have been
distinguished: weak and strong. The weak theory is more complicated and more difficult to
implement, but it leads to better reduction results.

The present paper extends the stubborn set method to almost full linear temporal logic m
almost, because the operator "next state" is forbidden. For simplicity, we have chosen to use
the strong stubborn set framework, although with minor ref'mements the results are valid in
the weak theory as well. The theory is developed in Chapter 2. Chapter 3 (not in this abridged
version) discusses how the theory may be implemented and Chapter 4 contains an example.

This paper is a revised and abridged version of a paper with the same name which appeared
in DIMACS Technical Report 90-31, "Workshop on Computer-Aided Verification", Rutgers
University, NJ, USA, June 1990, Volume I.

2. DEFINITIONS AND BASIC THEOREMS

2.1 Variable/Transition Systems
To develop the stubborn set method we look at concurrent systems as systems consisting of
a finite set V of variables and a finite set T of transitions. Each variable v has an associated
set called type and denoted by type(v), and at every instant of time v has a unique value
belonging to its type. Assuming an ordering of V, the Cartesian product of the types of the
variables is the set of syntactic states and is denoted by $. The value of variable v at syntactic
state s is denoted by s(v). There is a partial next state function next from S x T to S which
defines when a transition is enabled and what is the result of the occurrence of an enabled
transition. Transition t is enabled in state s, denoted by en(s,t), iff next(s,t) is defined. If
next(s,t) = s" we say that t may occur at s producing s' and often write s -t--> s'. We often
merge the states between successive transition occurrences and write So-tl--> sl -t2---> ...
-t,---> s, instead of so-h--> s~ ^ sl -t2---> s2 ̂ ... ^ s,.1 -t,--> s,. A sequence like this is called
a finite execution sequence and its length is n. The concatenation of the execution sequences

= So-h--> ... -t,---> s, and p = to-dr---> ... -d,~--~ r,, where s, = !"o is defined by a*p = so
-h---> --- -t,---> s, -d~--> ... -din---> rm. "-'->" is defined by s ---> s' ¢:~ 3 t ~ T: s -t---> s'. "-->*"
is the reflexive transitive closure of "-->". There is a distinguished state so called the initial
state of the system. A variable/transition sy stem or vl t- system is the 5-tuple (V ,T,type,next, s0),
where the components of the 5-tuple are as just explained.

158

Section 4.1 contains a non-trivial example of a v/t-system.

The stubborn set method relies on the analysis of certain relationships between transitions.
Let us define and explain some necessary concepts.

Definition 2.1 Let t, f E T, s a S, V ~ V and T ~ T.

• t is enabled with respect to V at s, denoted by en(s,t,V), iff
3 g a $: en(s ' , t) a V v e V: s'(v) = s(v).

• T is a write up set of t with respect to V, iff for every f a T and s" ~ S
--1 en(s,t ,V) ^ $ - f - -> s" A en(s' , t ,V) =~ t' ~ T.

• t accords with f , denoted by t ~-~ f , iff for every s a S
en(s,t) ̂ en(s,t') =~ 3s', sl, s'1 ~ S: s -t---> sl -f-'-> s'1 ̂ s -f---~ s" -t---~ s'1. []

The intuition behind the def'mition of en(s,t,V) is perhaps best understood by noticing that if
t is not enabled w.r.t. V, then it is necessary to modify the value of at least one variable in V
to enable t. The definition has the following rather obvious consequence: en(s,t) ~=~ en(s,t,V)
~=~ V V ~ V: en(s,t,V).

A write up set of the transition t with respect to the set V of variables is any set of transitions
containing at least the transitions which have the potential of modifying the status of t from
disabled w.r.t. V to enabled w.r,t. V. We do not require the write up set to be the smallest
such set, because minimality is not needed in the theory of stubborn sets and the smallest set
may be difficult to find in practice. For instance, if the specification of transition f contains
a writing reference to a variable in V but has a complicated enabling condition evaluating to
£a.l.se, f does not belong to the smallest write up set of t w.r.t. Vbecause it is never enabled.
However, it may be difficult to see that f can be ruled out. Our definition allows the use of
a write up set which can be easily computed and is an upwards approximation of the minimal
set. Every transition t and subset of variables V has at least one write up set, namely the set
of all transitions T. From now on we assume that a unique write up set is defined for every
(t,V)-pair. We denote it by wrup(t,V).

The definition of according with can be illustrated graphically:

s - f - -> s" s -f---> s'
I I I
t ~ t t $ $ $
s~ s~ -f ~ s'~

According with is a static, symmetric commutativity property of transition pairs. Concurrent
systems typically contain several pairs of transitions according with each other. Let us call
the set of variables tested, read or written by a transition its reference set. Two transitions
accord with each other if their reference sets are disjoint. The same is true even if there are
common variables in the reference sets, as long as the transitions never write to them.
Transitions writing to a fifo queue accord with transitions reading from it, unless there are
other variables in common. Transitions corresponding to different locations in the code of a
sequential process accord with each other independent of to what variables they refer, because
they are never simultaneously enabled.

2.2 Stubborn Sets
We are ready to define semistubborn sets of transitions:

Definition 2.2 Let T ~ T and s ~ S. T is semistubborn at s, iff V t e T:

(1) ~ en(s,t) =~ 3 V ~ V: --1 en(s,t,V) ^ wrup(t ,V)~ T

159

(2) en(s,t) =~ V t' ~ T: t ~-~ t" []

Part (I) of the definition guarantees that a disabled transition belonging to a semistubbom
set can be enabled only by the transitions in the set. Part (2) says that transitions in a semi-
stubborn set accord with outside transitions. It is not difficult to prove that at least the empty
set and the set of all transitions T are semistubbom at every state, thus semistubbom sets
always exist. Furthermore, if a transition outside a semistubbom set occurs, the set remains
semistubbom. This is a justification for the peculiar term semistubborn. The significance of
semistubbom sets is in the following theorem:

Theorem 2.3 Let T ~ T and so ~ $ such that T is semistubbom at so. Let n ~ 1 and

6 = So - t l - o sl - t2-0 ... -t..2--> s..2 - t . .z-o s,~l -t.--> s.

be a finite execution sequence such that tl t~.t ~ T and t. E T. There is the finite
execution sequence

o" = So -t , -o s'0 - h - o s', - t : o ... - t , . : o s ' , - t ,_:o s'~,
where s'wl = s.. []

The theorem can be illustrated graphically, a corresponds to the top and right edges of the
figure, while 0 a corresponds to the left and bottom sides.

so -t~--> s~ - t 2 ~ . . . - t ~ a - o s._2-t._:-> s,~l
I I

s'o - t : -~ s'~ - t 2 ~ . . . - t , . 2 ~ s '~ .2- t~ .~ s',.l
S n

The proof is a straightforward application of the definitions, and can be found in [Valrnari
88b, 8%, 89b].

Theorem 2.3 allows us to move the occurrence of a transition belonging to a semistubbom
set from future to the current state. However, this is of course of no use if no transition in the
semistubbom set is going to occur in the future. This is certainly the case if the set is empty.
Therefore we augment the definition by the requirement that there must be an enabled
transition in the set:

D e f i n i t i o n 2.4 Let T ~ T and s ~ $. T is stubborn at s, iff T is semistubbom at s, and 3 t
T: en(s,t). []

A stubborn set exists exactly when there is an enabled transition, because then the set of all
transitions T is stubborn. However, as will soon become obvious, it is advantageous (but not
mandatory) to use stubborn sets containing as few enabled transitions as possible.

2 .3 R e d u c e d S t a t e S p a c e s

A variable/transition system defines a labelled directed graph called its state space in a natural
way:

D e f i n i t i o n 2.5 The state space of the v/t-system (V,T,type,next,So) is the triple (W~,T),
where

• W = {s~ $1s0 -o*s}

• E = {(s,t,s')~ W × T × W I s - t - - > s ' } []

t60

Let TS be a function from $ to the set of the subsets of T such that FS(s) is stubborn if 3 t
T: en(s,t), and TS(s) = O otherwise. We call the function TS a stubborn set generator. The
stubborn set method uses a stubborn set generator to generate a reduced state space as follows.
The generation starts at So. Assume s has been generated. In ordinary state space generation,
every transition enabled at s is used to generate the immediate successor states of s. In the
stubborn set method, only the enabled transitions in TS(s) are used. If TS(s) contains less
enabled transitions than T, the number of immediate successors is reduced. This often leads
to a reduction in the total number of states. To distinguish between reduced and ordinary
state space concepts we use underlining notation as follows:

• en(s,t) ¢~ en(s,t) ^ t ~ TS(s)

• s - t - - 4 s" ¢ ~ s - t - - ¢ s" ^ t ~ TS(s)

• s--cs" ¢:~ 3 t e TS(s):s-t-->s"

• "--->*" is the reflexive and transitive closure of "---~".

Definition 2.6 Assume a stubborn set generator TS is given. The reduced state space of the
v/t-system (V,T,typemext,so) is the triple (~,E,T), where

• W = { s ~ S Iso--** s}

• ~ = { (s , t , s ') E W x T x W l s - t ~ _ _ _ s ' } []

The definition implies that W ~ W and E ~ E. The ordinary state space is a special case of
a reduced state space, because we may choose TS(s) = T for states with enabled transitions.
However, our goal is to keep the reduced state space small, to save effort in its generation
and the model checking afterwards. Perhaps surprisingly, always choosing the stubbom set
with the smallest number of enabled transitions does not necessarily lead to the smallest
reduced state space [Valmari 88c]. However, it is obvious that if Tt and 7"2 are stubborn and
the set of enabled transitions in 7"1 is a proper subset of the corresponding set of 7"2, then 7"1
is preferable. We say that a stubborn set is optimal if it is the best possible in this respect.
[Valmari 88a, 88b] give a linear and an (under certain reasonable assumptions) quadratic
algorithm for finding almost optimal and optimal stubborn sets, respectively. The linear
algorithm is particularly attractive because its best case complexity is better than linear; if it
finds a stubborn set close to its starting point, it optimises it as much as it can and stops
without investigating the rest of the v/t-system. The linear algorithm is briefly described in
Chapter 3 of the unabridged version.

2.4 Execution Sequences in Reduced State Spaces
This section is devoted to a construction which, given a finite execution sequence of the
system under analysis, finds an execution sequence which is present in the reduced state
space and is, roughly speaking, a permutation of an extension of the former. The construction
is in the heart of most proofs in the stubbom set theory. It proceeds in steps. Each step appends
a transition occurrence to the end of the constructed sequence. The transition occurrence is
either picked and removed from the original sequence, in which ease we say that an original
transition occurrence is consumed, or a fresh new transition occurrence is found for the
purpose. The construction may be continued until the original sequence is exhausted. It may
happen that only fresh transitions are used from some step onwards, in which case the con-
stmction may be continued endlessly.

The construction is presented formally below. ~ is the original finite execution sequence.
The constructed sequence after step i is denoted by ~ and its last state by &. The execution
sequences Ps and a~ correspond to the unconsumed part of the original sequence and the
original sequence appended by the occurrences of the fresh transitions used by the con-
struction, k(i) is the length of p~, that is, the number of still unconsumed transition occurrences.

161

It may be helpful to notice that ~ ' p i exists and its first and last state are the same as the first
and last state of a~. Furthermore, the transition occurrences of ~ 'p~ are the same as the
transition occurrences of ~ , but not necessarily in the same order.

Construct ion 2.7 Let TS be a stubborn set generator and o = so -tl---> ... -t,---> s, be a finite
execution sequence. The states & and execution sequences ~ , ff~and p~= to, i-d1.,'--->... -d~o~'-->
r ~ are defined recursively as follows, k(i) is defined as the length of pi.

• ~o = po = a and ff.o = So = ~ .

• I f k(i) = 0, that is, pi consists of one state and no transition occurrences, the construction
cannot be continued.

• I f k(i) > O, d u is enabled at ro.~, thus TS(ro.i) is stubborn. There are two cases.

(1) P1 contains at least one occurrence of a transition belonging to TS(ro~). We define
k (i) = k(i), ff't = a~ and P'i = Pi.

(2) p~ contains no occurrences of transitions belonging to TS(ro~). By Definition 2.4
TS(ro.~) contains an enabled transition t'~. By (2) of Definition 2.2 t'~ is enabled at
rl,~ ,, r,<0~. We define k'(i) = k(i)+l, dk(o+l , i = t'i, O'i = Oi -tP; --> re<o.i and P'i = Pl
- t i---> rA,(o.i.

By construction, p'~ contains at least one occurrence of a transition belonging to TS(ro ~).
Le t 1 < j(i) < Ig(i) be chosen such that d~ ~ ... dx,>~ ~ ~ TS(ro ~) and dxo ~ • TS(ro~. ~iy
Theorem 2.3 there is the sequence p"~= r0 i -d. , ,--~ i"'0 ~-d~r->' - d , ~'~--> r., i - d , ~ c--~

. , . ~ O , , " ' " ~ , , J (~ ,

• -. -de0~,r--> re0~ ~. By the 0-1) th construction step r01 = ~,. Hence ~i0~ • ~) and we
f i n ' " ' " " may de e ~+z = r o i, ~÷~ = ~ -d/~,~ ~ &+l and oi÷! = o"i. Pi+I is d inned by p i = ro.~

-d;to.i-> Pro- After tliis i:th constru'6tlon step ro.m = r'o.; = &+~. []

In the future we will need the fact that in the above construction d~ = d~+l fo rx = 1
j(O-1. Also the order of transition occurrences in ~+1 Pm is otherwise the same as the order
of transition occurrences in ff,.'p, but either the occurrence of d;{0.~ has moved to a different
location, or a new transition occurrence has been introduced.

2.5 Linear Temporal Logic Preservation Theorem
In this section we state and prove the theorem underlying the linear temporal logic (LTL)
preserving stubborn set method. LTL formulas state properties of infinite sequences of states.
Inf'mite execution sequences of a v/t-system give naturally rise to infinite sequences of states.
We also consider stopping execution sequences which are finite and end at a state without
enabled transitions. As usual, we extract inf'mite sequences of states from stopping execution
sequences by letting the last state repeat forever. We say that the infinite or stopping execution
sequence o satisfies the LTL formula cp iff 9 is a true statement about the infinite sequence
of states extracted from o. We say that ¢p is valid in state s in a given state space, iff there is
no inf'mite or stopping execution sequence a in the state space starting at s such that a satisfies

Let ~ = {qh q~;} be a collection of LTL formulas. We associate with • the set v/s(~) of
visible transit ions:Transit ion t is properly visible, iff there are syntactic states s and s" such
that s-t---> s' and the truth value of at least one state predicate appearing in at least one formula
in • is different at s and s'. vis(O) is a set containing at least the properly visible transitions.
The reason why we allow in vis(ep) the presence of transitions which are not propedy visible
is the same as the reason of allowing the write up set to be an upwards approximation of the
smallest set with the required property. Transition t is visible if t • vis(dO), otherwise t is
invisible. The property we will use in the future is that when an invisible transition occurs
the truth values of the state predicates of the formulas in • do not change.

162

1."
2:
3:
4:

The customer may
follows.

1:
2/:

The LTL preserving stubborn set method works only with stuttering-invariant formulas.
Informally, stuttering-invariance means that the truth value of a formula on an infinite
sequence of states does not change if one or more or even all of the states of the sequence
are multiplicated, where multiplication means the replacement of the state by a positive finite
number of copies of the state. Among the common LTL operators, "next state" (O) and
"previous state" may introduce formulas which are not stuttering-invariant. Formulas con-
taining no other temporal operators than "henceforth" (El), "eventually" (<)), "until" (~/), and
their corresponding past operators and the operators derived from them are
stuttering-invariant (see [Lamport 83]).

We call the sequence of states sosl...sn an elementary cycle, if n > O, So = sn, s~ ~ sl where 0 <
i < j < n.and s~ ~ sm where 0 < i < n. We can now formulate the theorem underlyiiag the LTL
preserving stubborn set method:

Theorem 2.8 Let OI,TCype~ext,so) be a v/t-system and S and (W,E,T) its set of syntactic
states and its state space, respectively. Let • be a collection of stuttering-invariant LTL
formulas such that the domain of the state predicates in the formulas is S. Let TS be a stubborn
set generator and (~,B,T) the corresponding reduced state space such that the following hold:

(1) W is finite

(2) For every s ~ ~ , either
(a) TS(~ contains no enabled visible transitions, or
(b) vis(~) ~ TS(~.)

(3) For every s E W, if there is an enabled invisible transition, then TS(~£) contains an
enabled invisible transition

(4) Every elementary cycle of (~ ,E,T) eontains at least one state s sueh that vis(O) ~ TS(~).

Claim: 9 E • is valid at So in 07~',E,'F) if and only if cp is valid at So in (~ , T) . I1

(For proof see the unabridged version of this paper.)

3. IMPLEMENTATION OF THE METHOD
(This abridged version does not contain Chapter 3.)

4. EXAMPLE

To demonstrate the power of the LTL preserving stubborn set method we consider a version
of the resource allocator system specified in [Pnueli 86]. Our system consists of a resource
aUoeator and n > 2 customers which communicate via 2n Boolean variables r~ and gs, initially
F. The behaviour of customer i is shown below.

r~:=T /* ta *i
when gi ~ goto 3 /* tn */
r~:=F i* t,~ *l
when ~ g~ =~ goto 1 /* t~4 */

use the resource when it is in state 3. The resource alloeator behaves as

when r~ =~ gi := T; goto 2/
when ~ r~ :=~ gi := F; goto 1

The system has (n+l).3 n states (for proof see the unabridged version).

163

4.1 Example System as a V/T-System
The resource allocator system can be seen as a variable/transition system:

V = {A,CI C,,rl rn,gi,. . . ,g,}
A is the state of the allocator and Ci is the state of the i:th customer

T = { tll,t12,t13,t~4,t21 t24 tnl, . . . , t~4,d~l,d12,d21,d22,.. . ,d,l ,d~2}

type(A) = { 1,21,22,...,2n}, type(C~) = { 1,2,3,4} and type(r) = type(g.,) = {F,T}

so(A) = 1 ^ V i: so(C~) = I ^ SO(r/) = so(g) = F

next is too large to be listed here in full. It can be determined from the program code.
For instance, next(s,t12) is defined if s(C1) = 2 ^ s(g:) = T. Ifnext(s,h2) = s" (i.e. s -t12--+
s') then s'(Cm) = 3 ^ V v ~ C1: s'(v) = s(v).

We need an upper approximation to the set { (t,t') e T x 'F I --1 t e-~ t'}. If the sets of variables
referred to by t and t' are disjoint, then t ~ t', because then the occurrence of t does not
directly affect the environment of t" and vice versa. Let ref(v) denote the set of transitions
referring to a variable v. We conclude that the union of ref(v)" for every variable v of the
system is an upper approximation to the set. We continue by investigating how the
approximation can be improved.

w e have ref(A) = {dlt,dt2,d21,d22 d~l,d,a}. Because of the control structure of the resource
allocator, transitions of the form dn are never enabled simultaneously with any other transition
in ref(A). Thus the left hand side of the implication in the definition of"~--~" is never satisfied
and the implication is always true, if t = d0~ and t" E ref(A)-{dn}. Consequently, the corre-
sponding transition pairs (t,t') and (t',t) can be eliminated. A transition seldom accords with
itself, so we choose not to try to eliminate the pairs (d,~,d,O. ~ dil ~-) d~l holds for 1 < i j < n,
because dit c a n disable d,a. As a result, the pairs (d~,d~l) remain. So we have eliminated all
pairs except (dn,dt2) and (clil,di~), where 1 < i,j < n. B~(similar argument all pa!rs except { (t,t)
I t E ref(C)} can be eliminated from the sets re f (C) , as ref(C) = {t/i,ti2,ta,ti4J.

As ref(r) = {t/l,t,~,d/l,d,~}, we have investigated ref(r) 2 except the pairs (t/i,d~) and (d~k,tli),
where j E { 1,3} and k E { 1,2}. Consider the states s enabling both til and dil. We have s(ri)
= T and s(Ci) = s(A) = 1. When t;1 or d~ occurs the only variables whose values may be
changed are ri, g~, C~ and A, so we investigate them only. If s -t~---) s~ and s -d;~--4 s' then
sl(r) = s '(r) = T, sl(g) = s(g), s'(gi) = T, s~(Ci) = 2, s'(Ci) = 1 = s~(A) and s'(A) = 2i. Therefore
en(s~,d~O and en(s',t~O. Let s~ -d~--> s'~ and s" -ti~--) s"~. By computing the values ofr~, gl, C~
and A in s'~ and s"~ we see that s'~ = s"t. Thus ti~ ~ di~. By similar argument it can be shown
that ta ~ dn. Only the pairs (t/~,d,z), (ta,d~0 and their inverses and the pairs of the form (t,t)
were not eliminated from ref(rl) ~. Investigating ref(g~) in the similar way leaves as the total
only the following pairs left:

(t,t), (d~,d~a), (ti~,d,z), (t,~,d,2), (ta,di0, (ti4,da), where I < id" < n and t ~ T.

Also the predicates en(s,t,V) and the sets wrup(t,V) for t E T and for some V ~ V are needed
by the stubborn set method. Consider tn, for example, en(s,tn) holds iff s(CO = 2 ^ s(g~) =
T. Therefore en(s,tn,{C~}) ¢~ s(CO = 2 and en(s,tn,{g~}) ¢:~ s(g0 = T. We may choose
wrup(tn,{C~ }) = {tH }, because it is the only transition whose occurrence can assign 2 to C~.
Similarlywrup(tn,{g~}) = {dH}. Following the same principles we can evaluate en(s,t ,{v})
and define wrup(t,{ v}) for every t E T and v ~ V. All the so defined wrup sets contain exactly
one transition, excluding the sets wrup(di~, {A l) which are all equal to {dn,d22 d,a}.

164

4.2 Reduced State Space of the Example System
Now we construct a reduced state space of the system. We want to know whether the system
guarantees that the resource cannot be used simultaneously by two customers (it does), and
whether a enstomer which has requested a resource eventually uses the resource (not true).
Because of the symmetry of the system the first requirement can be specified by the LTL
formula I--1((C1 ~ 3) v (C2 ~ 3)), where Ci and C2 are the states of customers 1 and 2,
respectively. The second requirement can be encoded as [:3((Ci = 2) =~ O(CI = 3)). The
transitions which can modify the truth values of the state predicates Ci ~ 3 v C2 ~ 3, 6"t = 2
and C1 = 3 are tu, t!2, t13, tz2 and tz~. Thus we choose vis(O) = {tu, t12, t~3, t~, tz3}.

In the initial state So the transitions ta and no other transitions are enabled. If we want to build
a stubborn set TS(s0) around ti~ then we have to take d,~ into the set because --1 ti~ ~ d,~. dn is
disabled, thus we have to find V ~ V such that -~ en(so,d,~,V) and include wrup(d,~,V) to the
set. We can choose V = {A } and wrup (d,~, {A }) = { d~! }. --1 en(so,d~1, { ri }) holds and wrup(dsl, { r~ })
= {ti~}, but tit is already in the set. We can thus stop with the set TS(so) = {ti~,d~,dn}. It is
stubborn and contains exactly one enabled transition, namely ti~. To satisfy Assumption (3)
of Theorem 2.8 it is reasonable to choose the i so that i > 1, and the algorithm in Chapter 3
indeed does so. So only one transition is fired in So, namely til. Call the resulting new state s'.

By applying the above reasoning again one can see that i f j ~ i, {tjl,dj~,d~] is stubborn in s'.
In an attempt to avoid visible transitions, the algorithm in Chapte~ 3 chooses {tja,dja,d~} for
somej >_ 2 and so on until the state sly. such that s12.(A) = s~2.(C1) = 1 and s!2.(Ci) = 2 for 2
< i < n is reached. At this stage we have generated n states.

The enabled transitions at sl2, are tu and da for i > 2. Assumption (3) forces us to include at
least one of d,a, i >_ 2, into TS(sle,). Because --1 dll ~ dja we conclude ~ i >_ 1: d~ ~ TS(s~.).
Intuitively, this reflects the fact that it is essential which customer gets the resource, dn is
disabled and, as before, takes us to tu. That is, also C~ is given the chance to take the resource.
So we have to take all enabled transitions into TS(s~.). In essence, the algorithm gives all
the other customers the chance to take the resource before tn occurs, because the occurrence
of tu modifies the value of the state predicate C1 = 2 in O. The algorithm tries to find out
what earl happen before the state predicate value is modified.

For the continuation of the reduced state space generation see the unabridged version of this
paper. Assumption (4) of Theorem 2.8 is satisfied without further action. The total number
of states generated is 1 ln-6 .

The validity of the formulas 13((C1 ~ 3) v (C~ ~ 3)) and I~((C~ = 2) ~ <>(C~ = 3)) can now
be checked from the reduced state space. The former is true, the latter is not. The reduced
state space is linear in the number of customers, while the ordinary state space is exponential.

5. CONCLUDING REMARKS
We showed how to generate reduced state spaces such that the truth values of LTL formulas
are preserved, provided that the formulas are given before the reduced state space generation
commences and they do not contain the "next state" operator. In the example in Chapter 4
the reduction of the size of the state space is from exponential to linear in the size of the
system. This is a very good result. However, it is currently not known how well the LTL
preserving stubborn set method performs on the average. One may expect that the size of the
reduced state space increases when more and more variables are referred to by the formulas
to be preserved.

165

By the time of the writing of this paper the LTL preserving stubborn set method has not been
implemented. However, a related stubborn set state space reduction method has been
implemented into a tool called Toras [Wheeler & 90]. Toms is being developed in Telecom
Australia Research Laboratories. Among other features, it supports an as yet unpublished
version of the stubborn set method which preserves the failure semantics [Brookes & 84] of
systems. The method differs from the one presented in this paper in that it does not need
Assumptions (1) and (4) of Theorem 2.8. To give an example of the performance of Toms,
a certain version of the n dining philosophers system has 3"-1 states, and the basic stubborn
set method reduces the number to 3n~-3n+2 states. For the 100 philosopher system (,=1047
states) Toms generated the predicted 29 702 states in 20 minutes CPU time on a Sun 3/60
[Wheeler & 90].

ACKNOWLEDGEMENTS
This work has been supported by the Technology Development Centre of Finland (TEKES).

REFERENCES
[Aho & 741 Aho, A. V., Hopcroft, J. E. & Ullman, J. D.: The Design and Analysis of Computer Algorithms.

Addison-Wesley, Reading, Massachusetts 1974, 470 p.
[Brookes & 841 Brookes, S. D., Hoare, C. A. R. & Roscoe, A. W.: A Theory of Communicating Sequential

Processes. Journal of the ACM 31 (3) 1984, pp. 560-599.
[Clarke & 86] Clarke, E. M., Emerson, E. A. & Sisfla, A. P.: Automatic Verification of Finite-State Con-

current Systems using Temporal Logic Specifications. A CM Transactions on Programming Languages
and Systems 8 (2) 1986 pp. 244-263.

[Lamport 83] Lamport, L.: What Good is Temporal Logic? Information Processing '83, North-Holland
pp. 657-668.

[Lichtensteln & 85] Lichtenstein, O. & Pnueli, A.: Checking that Finite State Concurrent Programs Satisfy
their Linear Specification. Proceedings of the Twelfth ACM Symposium on the Principles of Pro-
gramming Languages, January 1985 pp. 97-107.

[Overman 811 Overman, W. T.: Verification of Concurrent Systems: Function and Timing. Ph.D. Dis-
sertation, University of California Los Angeles 1981, 174 p.

[Pnuell 861 Pnueli, A.: Applications of Temporal Logic to the Specification and Verification of Reactive
Systems: A Survey of Current Trends. In: Current Trends in Concurrency, Lecture Notes in Computer
Science 224, Springer 1986 pp. 510-584.

[Valmari 88a] Valmari, A.: Error Detection by Reduced Reachability Graph Generation. Proceedings of
the Ninth European Workshop on Application and Theory of Petri Nets, Venice, Italy 1988 pp. 95- 112.

[Valmari 88b] V almari, A.: Heuristics for Lazy State Generation Speeds up Analysis of Concurrent Systems.
Proceedings of the Finnish Artificial Intelligence Symposium STEP-88, Helsinki 1988 Vol. 2 pp.
640-650.

[Vaimari 88<:] Valmari, A.: State Space Generation: EJ~ciency and Practicality. Ph.D. Thesis, Tampere
University of Technology Publications 55, 1988, 169 p.

[Valrnari 89a] Valmari, A.: Eliminating Redundant Interleavings during Concurrent Program Ven'fication.
Proceedings of Parallel Architectures and Languages Europe '89 Vol 2, Lecture Notes in Computer
Science 366, Springer 1989 pp. 89-103.

[Valmarl $9bi Valmari, A.: Stubborn Sets for Reduced State Space Generation. Proceedings of the Tenth
International Conference on Application and Theory of Petri Nets, Bonn, FRG 1989 Vol. 2 pp. 1-22.
A revised version to appear in Advances in Petri Nets 90, Lecture Notes in Computer Science, Springer.

[Wheeler & 90] Wheeler, G. R., Valmari, A. & Billington, J.: Baby Toras Eats Philosophers but Thinks
about Solitaire. Proceedings of the Fifth Australian Software Engineering Conference, Sydney, NSW,
Australia, 1990 pp. 283-288.

