
USING OPTIMAL SIMULATIONSTO REDUCE REACHABILITY G R A P H S

Ryszard Janicki
Department of Computer Science and Systems

McMaster University
Hamilton, Ontario, Canada, L8S 4K1

Maciej Koutny
Computing Laboratory

The University of Newcastle upon Tyne
Newcastle upon Tyne NE1 7RU, U.K.

ABSTRACT

We here discuss an approach which uses the optimal simulation - a kind of teachability rela-
tion - to enable reasoning about important dynamic properties of a concurrent system. The
optimal simulation usually involves only a very small subset of the possible behaviours
generated by the system, yet provides a sufficient information to reason about a number of
interesting system's properties (such as deadlock-freeness and liveness). In this paper we
show how the optimal simulation might be used to generate a teachability graph which is
usually much smaller than the standard teachability graph of the system; however, both
graphs essentially convey the same information about its dynamic behaviour.

INTRODUCTION

High complexity of the design of concurrent programs, such as inherently concurrent com-
munication protocols, made apparent the need for appropriate formal specification methods,
and specialised verification techniques enhanced by computer-aided tools for automated ana-
lysis of concurrent programs. Examples of the verification techniques include algebraic
transformations of CSP and CCS [Hoa85,HM85]; temporal logic model checkers [CG87,
CES86]; and invariant methods developed for Petri nets [MS82].

The process of verification of dynamic properties of concurrent systems often involves some
kind of reasoning about the complete state-space of the system, e.g. proving deadlock-
freeness requires showing that it is not possible to reach a state in which no transition is en-
abled. Reasoning about the complete state-space of concurrent systems has one serious draw-
back which is a combinatorial explosion of the state-space. Even a simple concurrent system
can generate many hundreds or thousands of states. Moreover, the higher the degree of con-
currency of the system is (the degree of concurrency is roughly the number of sequential sub-
systems) the faster its state-space becomes unmanageable. To cope with this problem a num-
ber of sophisticated techniques have been developed, such as induction [Kel76] which em-
ploys invariants to prove that a property is true in all the states of the system, and reduced
state-space analysis [Jen87,Va189,God90] in which reasoning about the complete state-space
is replaced by the analysis of its reduced representation [MR87].

167

In [JK89] and [JK89a] we discussed a possibility of defining a fully expressive reachabili ty
relation on the system's histories which would be a 'small ' subset of the complete reachabili ty
relation. We defined such a reduced reachability relation and called it the optimal simula-
tion. I t enables reasoning about a number of dynamic properties of a concurrent system, and
at the same time requires a minimal computational effort. Optimal simulation has been
defined in a very general trace-based setting which makes it applicable to different models
for concurrency, such as Petri nets, CCS, CSP, or automata-based models.
The reachability graphs of finite-state systems can he regarded as finite representations of
teachability relations. Since the optimal simulation provides the same information about
relevant dynamic properties of the system as the full teachability relation [JK89,JK89a], the
reachability graph of optimal simulation (i.e. its finite representation) and the full reacha-
bility graph may be considered as equivalent. The optimal simulation is always a subset of
the full reachability, hut of course it does not mean that the reachability graph of optimal
simulation is always (much) smaller than the full reachability graph. However, we do claim
that in the case of concurrent systems exhibiting high degree of concurrency (i.e. those with
many sequential components), the teachability graph of optimal simulation is much smaller
than the full teachability graph. Thus it is advantageous to use optimal simulation as a tool
to reduce the size of teachability graphs of concurrent systems.

Unfortunately, as opposed to the full teachability graph, in the general case it is not clear
how to generate the teachability graph for optimal simulation in an efficient way. In some
sense this is a negative side-effect of the above mentioned generality of optimal simulation.
In this paper we will outline how such a graph (as we claim, reduced in the majority of cases)
can be constructed for Petri nets which can be decomposed onto finite state machines.
We will not prove here that optimal simulation is indeed behaviourally equivalent to the full
reachability, nor justify the construction of the optimal simulation relation. These issues
have been dealt with in [JK89] which is widely available (Lecture Notes in Computer
Science 366), and in [JK89a] which can be sent on request. Proofs of technical resul ts
presented in this paper can be found in [JK89,JK90].
Note that our approach is based on the assumption that concurrent behaviours (histories)
can be modelled by causal partial orders. We will represent those partial orders by certain
equivalence classes of step sequences, generalising the notion of traces of [Maz86].

We would like to point out that the major methodological difference between our approach to
minimise teachability graphs and those developed in [Jen87,Va189,God90] is that we do not
try to minimise (or even deal with) the full reachability graph in an explicit way. All what we
are trying to do is to build a reachability graph which represents the optimal simulation rela-
tion (a subset of full reachability). We then make a claim, based on the general properties of
optimal simulation, that in majority of cases, such a graph is much smaller than the original
full teachability graph.

1 MOTIVATION

Execution paths generated by Petri nets can be represented by step sequences - each step
being a finite set of transitions executed simultaneously. Consider the Petri net in Fig. 1.1.
Its behaviour might be briefly described in the following way: All step sequences must begin
with transition a. After that one can simultaneously execute transitions b and c, or execute b
followed by c, or execute c followed by b. The net generates three step sequences leading to a
deadlock, n1 --{a}{b,c}, n2 ={aHb}{c} and n3 ={a}{c}{b}. Suppose now tha t we were about to find

168

Fig. 1.1

all the deadlocks of the net by following as few step sequences as possible and by selecting
possibly shortest step sequences. An exhaustive search would include nl, n2 and n3. But we
may observe that all these lead to the same deadlocked marking, and that nl is shorter than
both n 2 and n3. Hence an efficient search should include just one path, hi.

The above example is an instance of the following general problem: Is there a way of execu-
ting a net which is both expressive and efficient? By an expressive execution we mean one pro-
viding enough information to verify relevant properties of the system, e.g. liveness or termi-
nation, whereas by an efficient execution we mean one which requires minimal computa-
tional effort, e.g., by avoiding execution paths providing redundant information. Referring to
our example, one may observe that nl has a straightforward operational interpretation as it
follows the rule: always choose a maximal set of independent transitions to be executed next,
a rule which characterises maxiknally concurrent execution. Employing maximal concur-
rency is an attractive idea, both conceptually and from the point of view of implementation.
Unfortunately, there are cases in which maximally concurrent execution is not sufficiently
expressive (see [JLKD86] for necessary and sufficient condition where it is). To show this we
take the net in Fig. 1.2. The maximally concurrent execution can find only one deadlocked
marking of the net, by following step sequence pI ={a,b}{d}. The other deadlocked marking,
which might be reached by following P2 ={b}{c}, is left undetected.
In [JK89,JK89a] we have defined, by generalising maximally concurrent execution, the op-
t imal simulation which is both expressive and efficient way of executing the net for verifica-
tion purposes. Fig. 1.2 shows both the full teachability graph of the net and the reachability
graph of the optimal simulation. The lat ter one is smaller, but because in this case only two
transitions a and b can be fired concurrently, the difference in size is not significant. How-
ever, in the case of net in Fig. 1.3, the reachability graph of the optimal simulation is isomor-
phic to that in Fig. 1.2, while (as one may easily check) the full teachability graph would
hardly fit on a single page.

E

{d]

full reachability graph

Fig. 1.2

I

{,~,b}

{d} (c}~

reachability graph
of the optimal

simulation

169

())

d
Pig. 1.3

SMD NETS AND THE OPTIMAL SIMULATION

{a,b,e,~

{d,g] {c~}

reachability graph of
the optimal simulation

In our discussion we will use state machine decomposable (SMD) nets which model non-
sequential systems composed of a number of sequential subsystems which synchronise by
means of common transitions. SMD can provide semantical basis for more complex Petri nets
[Rei85] and other models like COSY [LSC81], CCS [HM85], and CSP [Hoa85] (see [Tau89]).
In the SMD nets, a sequential subsystem is represented by a finite state machine which is a
triple (Si,Ti,Fi) such that Si and Ti are disjoint finite sets of places and transitions, and
FiCSi×TiUTiXSi is the flow relation such that for every tETi there is exactly one s and
exactly one p satisfying (s,t) E Fi and (t,p) ~ Fi.
An SMD-net is a tuple N---(FSM1 FSMn,Minit) such that each FSMi =(Si,Ti,Fi) is a finite-
state machine, SiNSj= ~ for ixj, and Minit is the initial marking. (Marking is a set of places
which has exactly one place in common with each Si.) In what follows we will assume that N
is fixed and denote: S--SIU...USn, T=TIU...UTn and F--FIU...UFn.
For a set oftransit ions A we denote: A* ={s[]tEA. (t,s)EF} and *A ={s []tEA. (s,t)~F}.
Fig. 2.1 shows an SMD net. As usual, places are represented by circles, transitions by boxes,
the flow relation by arcs, and marking by tokens.

Let indCT× T be the set of all pairs of transitions (a,b) such that there is no Ti comprising
both a and b. Such a and b are interpreted as independent, and only independent transitions
can be executed simultaneously.
Let Ind be the set of steps, each step being a non-empty set of mutual ly independent transi-
tions, i.e. Ind ={ACT[A ~ ~ /k Va,bE A. a = b V (a,b)~ ind}.
For the net of Fig. 2.1 we have ind-- {(a,b),(b,a),(a,c),(c,a)} and Ind = {{a},{b},{c},{d},{a,b},{a,c}}.
We could have defined N as N---(S,T,F,Minit) for which there are finite s tate machines
(Si,Ti,Fi) such that S--SIU...USn, T=TIU...UTn, F-=FIU...UFn, and Minit is a mark ing

transition d of the collapsed representation

r

FSMI ~ s

I I

' I !

FSM2 r
L

Fig. 2.1

170

with exactly one token in each Si (see [Tau89]); however, the 'collapsed' representation -
N = (S,T,F,Minit) - makes the definition of independent transitions less readable.

A step sequence, a(Steps, is a sequence of stops a=Al.. .Ak for which there are markings
Mo,M1,...di/Ik such that Mo=Minit and for all i, *AiC_MI.I and Mi=(Mi.I-*Ai)UAf. Later we
will denote mara---Mk. The empty step sequence will be denoted by k.
For the net of Fig. 2.1 we have {a,b}{c}ESteps and mar{a,b}{c} ={s,r}, but {a,b}~d}fSteps.

Let - be the least equivalence relation on Steps containing all pairs of non-empty step se-
quences (a,~) such that o-- olA o2 and ~ --- olA IA202, where A 1NA2 = ~ and A I UA2 =A. The
equivalence class of ~ containing step sequence o will be denoted by [a]. Each equivalence
class H of -- will be called a history, HEHist. For the net of Fig. 2.1 we have
[{a,b}] = {{a~{b},{b}{a},{a,b}} and Hist = {[k],[{d}],[{a}],[{b}],[(a,b}],[{b}{c}],[{a}{b}{c}]}.
Step sequences belonging to H can be seen as different realisations of an underlying concur-
rent history which itself may be represented by a partial order. This partial order is the in-
tersection of all the partial orders induced by the step sequences in H. This is illustrated in
Fig. 2.2 for history H=[{a}{b}{c}] of the net of Fig. 2.1. Note that step sequence a={a}{b,c}{a}
induces a partial order in which the first occurrence of a precedes the occurrences of b and c,
and the occurrences of b and c are un-ordered and both precede the second occurrence of a.
Every partial order induced by stop sequences has the following property: its disorder rela-
tion is transitive. Such orders are sometimes called stratified partial orders.

The concepts of = and a history H(Hist are natural generalisations of similar concepts from
the theory ofpartial commutative monoids [CF69,Maz86,Zie89]. If we restricted step sequen-
ces to just sequences (intorleavings) in the definition of Hist then we would get exactly the
classical notion of Mazurkiewicz traces [Maz86] (the name 'trace' is sometimes used [Hoa85]
to mean 'sequence', so we write 'Mazurkiewicz trace' to avoid any confusion). Our representa-
tion of a history as a partial order is a natural generalisation of the result of [Szp30] on the
representation of partial orders by the set of their linearisations. We represent partial orders
by the set of their stratifications. The basic advantage of the approach in [Maz86] is that a
causal partial order may be represented by just one interleaving. In our case, every history
may be represented by just one step sequence. In particular, we may choose the shortest one,
i.e. maximally concurrent. This idea will be developed further when the definition of canoni-
cal step sequence - a very fundamental concept ofour approach - will be given.

For every history H, enabled(H) is the set of all steps A such that oA is a step sequence for at
least one oEH. I t turns out that if o,c0~H and A(enabled(H) then maro=marco, oA~Steps

a

b

C

b

a

c

C

a a

partial orders induced by stop sequences belonging to history
H : { {a}{b}{c}, {b~a}{c}, {b}{c}{a}, {a,b}{c}, {bile,c} }

Fig. 2.2

b
a •

c

partial order underlying
history H

171

and aA --oA. Hence we can define math to be the marking maro, and Ho[A] to be the history
[oA].

In [JK89,JK89a] we introduced the notion of a simulation which is a kind of reachability re-
lation on the histories representing a possible mode of executing the net. In this paper we
will deal only with two simulations, the full and optimal ones. The full simulation is simply
defined as FULL={(G,H)~Hist×Hist [3A. H=Go[A]}. FULL represents the dynamic beha-
viour of N in a complete way. Its advantage is relatively straightforward definition and natu-
ral interpretation, its disadvantage is the size of its reachability graph. Even for small nets
the graph grows beyond any manageable size, making the formal verification of the net 's
properties extremely difficult. I t was our goal in [JK89,JK89a] to find possibly smallest
simulation which could be used for the verification of relevant net properties. As a solution
we proposed the optimal simulation, OPT. There are three reasons why OPT can be regarded
as the optimal simulation:
(1) There are a number ofbehavioural properties which are common to FULL and OPT. For

example, FULL and OPT generate the same sets of deadlocked markings . I t is also
possible to verify liveness using OPT. Indeed, as we claimed in [JK89a], FULL and OPT
essentially capture the same behavioural properties of the net (a concurrent system, in
general).

(2) OPT involves a minimal set of histories, i.e. each proper subset of OPT is less expressive
than FULL, and it may not be used, e.g., to verify the deadlock-freeness.

(3) The information about the net is generated in OPT using the shortest step sequences. For
instance, each deadlocked marking will be generated by following the shortest step se-
quence leading to it.

Moreover, there is no other simulation which would satisfy (1)-(3). OPT is defined as follows.

A step sequence o--Ai...Ak is canonical if for all i>_2 and aEAi there is bEAi.1 such that
(a,b)find. Intuitively, in canonical step sequence the execution of transitions is never de-
layed (no transition can be moved from Ai to Ai.I). I t can be shown [CF69,JLKD86] that
every history H contains exactly one canonical step sequence, can(H). To define OPT we first
introduce an auxiliary reachability relation on histories: CAN={(G~I)] can(H)-=can(G)A}.
We also define Histmax to be the set of all histories H whose canonical step sequence ends
with a maximal step, i.e. ifean(H)--oA and AC_BEenabled([o]) then A =B.
The optimal simulation OPT is defined as the smallest subset of CAN such that for every
HEHistmax there are histories HI,...J-Ira satisfying: HI =[k], Hm =H, and (Hij'Ii ÷ l)E OPT, for
all i ~m. We also denote Histopt---{[k]}U{HI (G,I~EOPT}. For the net of Fig. 2.1 we have
Histrnax--{[{d}],[{a,b}],[{a,b}{c}]} and OPT---{([Jt],[(d}]),([x],[{a,b}]),([{a,b}],[{a,b}{c}])}.

3 REACHABILITY GRAPH OFTHE OPTIMAL SIMULATION

A reachability graph of the full simulation can be defined as: RGFULL----(V,Ares,Minit),
where V={marH 1 HEHist} is the set of nodes; Arcs ----{(marH,A,marHo[A]) I A ~enabled(H)} is
the set of arcs; and Minit is the initial node.
The above definition is not very useful in the case of the optimal simulation. The reason is
that even if G and H two are histories in Hzstopt satisfying marv= matH and (H,Ho[A])E OPT,
then it does not necessarily follow that (G,Go[A])E OPT (see [JK90] for an example). Hence
the construction used to define RGFULL in which histories leading to the same mark ing were
assigned the same node of the graph would not work. To guarantee that (H,Ho[A])~OPT ¢~
(G,Go[A]) E OPT we strengthen the condition ma rG =marH, as follows.

172

Let VC_CAN comprise all pairs of histories (G,Go[A]) such that there is a non-empty set
IC{1 n} satisfying the following (below R = Ui(lSi , U= UiE1Ti and V-- 12i~! Ti):
(3.1) A N U = ~ .
(3.2) There is tE U-V such that {t}Eenabled(G).
(3.3) There is no uE UNV such that'uNRC_ marG,
The last definition is illustrated in Fig. 3.1. The idea behind V is that in all continuations of
G~[A] in CAN the tokens in the subnets FSMi, for iE/, will be 'frozen'. Hence, by (3.2), no such
continuation can yield a step which is maximal.
For every history H, let FH be the set of all A such that (H,Ho[A]) E CAN-V. I t can be shown
tha t if (HJ-/o[A]) E OPT then A E FH. Hence when generating the reachability graph of OPT in-
stead of taking enabled(H) as the potential next steps for a history H we can restrict our-
selves to the (usually much smaller) set FH. What is, however, more important, FH can be
used to identify histories with identical continuations in OPT:
Let - be a relation on histories such that G - H i f marG =rnarH and FG = FH. I t can be shown that
ifG,HE Histopt and G~H then (G,G~[A]) E OPT implies (H,Ho[A]) E OPT and Go[A] -Ho[A]. Hence a
reachability graph of the optimal simulation RGOPT = (V,Arcs,vinit) can be defined in the fol-
lowing way:
(1) V={(rnarH,rH) t HEHistopt}.
(2) Arcs={((marH, FH),A,(marH.iAI,FH.[AI)) I (H,I-Io[A])EOPT}.
(3) Vinit ---- (Minit,F[k]).
The above definition is an operational one, i.e. it can be used to describe an efficient algo-
r i thm constructing RGOPT.

Generating reachability graph RGFULL is usually done in a loop which checks the already
generated nodes and steps 'enabled' at those nodes (nodes are labelled with markings). I f
there exists a node labelled by matH and a step A which have not yet been tried, the algo-
r i thm generates marking M----marH.[A I. I t then adds a new node labelled by M and an arc to
the graph i fM has not yet been a label; otherwise it draws an arc to the node labelled by M.
The algorithm generating RGOPT follows in principle the same pattern. There is, however,
one essential difference. An arc cannot be accepted as belonging to RGOPT before another
arc, labelled with a maximal step, is found which can be reached from that arc. Hence one
first generates an auxiliary reachability graph in a similar way as it is done for RGFULL and
then prunes the arcs from which an arc labelled with a maximal step cannot be reached, ob-
taining RGOPT. A formal description of this algorithm can be found in [JK90].

t i

! I
I I

. marG

$1 ! $2 S3

A ={a,b}

n=3

z={~}

Fig. 3.1: u is excluded by (3.3)

173

A A

- Bk "~ Bk.t B2 Bt [~ -C2 C~-t r- C~ r"

1 o , \

Dk. 1

Fig. 3.2

To illustrate the last definition we take the net Nk of Fig. 3.2(a). Fig. 3.2(h) shows RGOPT,
where A ={a}, Bi--{bi}, Ci--{ci} and Di---{bi,ci}. RGOPT has 3k vertices and 3k +5 ares which
compares favourably with RGFULI, with k2 vertices and 3k2 4-i arcs.

CONCLUDING REMARKS

In this paper we presented the idea behind an algorithm generating reachability graph of the
optimal simulation - a way of executing a system directly generalislng the maximally con-
current execution [JK89]. Together with the result~ obtained in [JK89] and [JK89a], this
gives a strong indication that the graph RGOPT would in general case be much smaller than
the full teachability graph. Furthermore, the higher the degree of concurrency the system
exhibits, the more can be gained by using RGOPT instead of RGFULL. There can, however, be
situations where RGOPT does not have an apparent advantage over RGFULL. For example,
RGoPT of a net can be bigger than RGFuLL (see [JKg0]). Another problem can be identified
by taking the net of Fig. 3.2. If we remove transition bk and join bk-1 with the place holding a
token, then although RGOPT for the modified net will be smaller than RGFULL, it will have
o(k2) nodes and arcs. There are two points to be made which show tha t problems of such kind
are less serious than it might look at the first glance.
Let MAX he the maximally concurrent simulation [JLKD86,JK89], and let RGMAX be its
reachability graph. (Formally, MAX is the maximal subset of CAN which only involves his-
tories from Histrnax.) I t is not difficult to see tha t RGMAXC_RGFULL and RGMAxC_RGoPT, as
well as MAXC_OPTCFULL. Furthermore, OPT is a minimal subset of FULL containing the
same behavioural information as FULL does and, intuitively, OPT is only 'slightly' bigger
than MAX. As the result, RGOPT is only 'slightly' bigger than RGMAx. On the other hand,
RGMAXC_RGFULL, and the difference between RGMAX and RGFuLL depends strongly on the
degree of concurrency exhibited by the net. I f the net contains only a few concurrent transi-
tions then the difference between RGMAX and RGFULL is ra ther small, and in such a case
RGOPT might be bigger than RGFULL. When the net contains many concurrent transitions
the difference betwe a RGMAX and RGFULL increases dramatically, while RGOPT is still

174

only 'slightly'bigger than RGMAx. This can be well illustrated by taking the nets from Fig.
1.2 and 1.3. The latter has been obtained from the former by adding two simple concurrent
subnets. This had no effect on the size of the reachability graph of the optimal simulation,
while the size of the full reachability graph has increased significantly.
The problems with the modified net of Fig. 3,2(a) are essentially due to the generality of
OPT. The optimal simulation has been defined in a pure transition-based setting. In particu-
lar, the lack of any reference to the states of a concurrent system makes OPT applicable to al-
most all models for non-sequential computation, but sometimes it may lead to less efficient
solution as far as the reachability graphs are concerned. Referring to the modified net of Fig.
3.2(a), by taking into account the particular structure of the states (markings) for this net,
we may further reduce RGOpT to a graph which has o(k) nodes and arcs and is still equival-
ent to the full reachability graph. What this clearly demonstrates is that for specific system
models, e.g. for those which support the notion of state, it is possible to modify RGOPT in a
way which takes advantage of some particular properties of that model. RGOPT should not
therefore be regarded as a complete blueprint for an efficient reduction of the teachability
graphs, but in some cases as particularly suitable starting point for developing algorithms
for such a reduction.

Although in this paper we consider only nets which can be decomposed onto finite state ma-
chines, our approach can be extended to other kinds of nets and models. In [JKg0], where all
the proofs are given, we use asynchronous automata of [Zie89] as a model of concurrent sys-
tem. Moreover, [Tau89] enables a translation of our results to CCS and TCSP. In fact, if the
behaviour of a concurrent system can be adequately modelled in terms of Mazurkiewicz
traces [Maz86], then the approach presented above can always be applied.

Our final comment is that the fusion of our approach with one of the approaches which deal
explicitly with reachability graphs, as those of [Va189] and [Godg0], is likely to lead to highly
efficient algorithms for reduced teachability graph generation.

ACKNOWLEDGMENT
We would like to thank Antti Valmari for his comments on the modified net of Fig.3.2. The
work of the first author was supported by a grant from NSERC No. OGP 0036539. The work
of the second author was supported by ESPRIT BRA 3148 Project DEMON.

REFERENCES

[CF69] Cartier P., Foata D., Problemes combinatoires de communication et rearrange-
ments, Lecture Notes in Mathematics 85, Springer 1969.

[CG87] Clarke E.M., Griimberg 0., Research on Automatic Verification of Finite.State
Concurrent Systems, Ann. Rev. Comp. Sci. 2(1987), 269-290.

[CES86] Clarke E.M., Emerson E.A., Sistia A.P., Automatic Verification of Finite-State
Systems using Temporal Logic Specifications, ACM Transactions on Programm-
ing Languages and Systems 8(1986), 244-263.

[God90] Godefrold P., Using Partial Orders to Improve Automatic Verification Methods,
Proc. of CAV'90, this volume.

[HM85] Hennessy M. and Milner R., Algebraic Laws for Nondeterminism and Con-
currency, JACM 32(1985), 136-161.

[Hoa85] Hoare C.A.R., Communicating Sequential Processes, Prentice-Hall, 1985.

[JLKD86]

[JK89]

[JK89a]

[JK90]

[Jen87]

[Ke176]

[LSC81]

[MS82]

[Maz86]

[MR87]

[Rei85]

[Szp30]

[Tau89]

[Va189]

[Zie89]

175

Janicki R., Lauer P.E., Koutny M., Devillers R., Concurrent and Maximally
Concurrent Evolution of Non-Sequential Systems, Theoretical Computer
Science 43(1986), 213-238.

Janicki R., Koutny M., Towards a Theory of Simulation for Verification of Con-
current Systems, Lecture Notes in Computer Science 366, Springer 1989, 73-88.

Janicki R., Koutny M., Optimal Simulation for Verification of Concurrent Sys-
tems, Technical Report No. 89-05, McMaster University,Hamilton, Ontario,
1989.

Janicki R., Koutny M., On Some Implementation of Optimal Simulations, Tech-
nical Report No. 90-07, McMaster University,Hamilton, Ontario, 1990 (also to
appear in the ACM/AMS DIMACS series).

Jensen K., Coloured Petri Nets, LNCS 254, Springer 1987, pp. 248-299.

Keller R.M., Formal Verification of Concurrent Programs, CACM 19(7), 1976,
371-384.

Lauer P.E., Shields M.W., Cotronis J.Y., Formal Behavioural Specification of
Concurrent Systems without Globality Assumptions, Lecture Notes in Computer
Science 107, Springer 1981, 115-151.

Martinez J., Silva M., A Simple and Fast Algorithm to Obtain All Invariants of
a Generalized Petri Net, Informatik-Fachberichte 52, Springer 1982, 301-310.

Mazurkiewicz A., Trace Theory, Lecture Notes in Computer Science 255,
Springer 1986, 297-324.

Morgan E.T, Razouk R.R., Interactive State-Space Analysis of Concurrent Sys-
tems, IEEE Transactions on Software Engineering 13(10), 1987.

Reisig W., Petri Nets, Springer 1985.

Szpilrajn-Marczewski E., Sur l 'extension de l brdre partial, Fundamenta Mathe-
maticae 16 (1930), pp. 386-389.

Tauber D., Finite Representations of CCS and TCSP Programs by Automata
and Petri Nets, Lecture Notes in Computer Science 369, Springer 1989.

Valmari A., Stubborn Sets for Reduced State Space Generation, Proc.of the 10th
International Conference on Application and Theory of Petri Nets, Bonn, June,
1989.

Zielonka W., Safe Executions of Recognizable Trace Languages by Asynchron-
ous Automata, Lecture Notes in Computer Science 363, Springer 1989.

