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ABSTRACT 

We here discuss an approach which uses the optimal simulation - a kind of teachability rela- 
tion - to enable reasoning about important dynamic properties of a concurrent system. The 
optimal simulation usually involves only a very small subset of the possible behaviours 
generated by the system, yet provides a sufficient information to reason about a number of 
interesting system's properties (such as deadlock-freeness and liveness). In this paper we 
show how the optimal simulation might be used to generate a teachability graph which is 
usually much smaller than the standard teachability graph of the system; however, both 
graphs essentially convey the same information about its dynamic behaviour. 

INTRODUCTION 

High complexity of the design of concurrent programs, such as inherently concurrent com- 
munication protocols, made apparent the need for appropriate formal specification methods, 
and specialised verification techniques enhanced by computer-aided tools for automated ana- 
lysis of concurrent programs. Examples of the verification techniques include algebraic 
transformations of CSP and CCS [Hoa85,HM85]; temporal logic model checkers [CG87, 
CES86]; and invariant methods developed for Petri nets [MS82]. 

The process of verification of dynamic properties of concurrent systems often involves some 
kind of reasoning about the complete state-space of the system, e.g. proving deadlock- 
freeness requires showing that it is not possible to reach a state in which no transition is en- 
abled. Reasoning about the complete state-space of concurrent systems has one serious draw- 
back which is a combinatorial explosion of the state-space. Even a simple concurrent system 
can generate many hundreds or thousands of states. Moreover, the higher the degree of con- 
currency of the system is (the degree of concurrency is roughly the number of sequential sub- 
systems) the faster its state-space becomes unmanageable. To cope with this problem a num- 
ber of sophisticated techniques have been developed, such as induction [Kel76] which em- 
ploys invariants to prove that a property is true in all the states of the system, and reduced 
state-space analysis [Jen87,Va189,God90] in which reasoning about the complete state-space 
is replaced by the analysis of its reduced representation [MR87]. 
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In [JK89] and [JK89a] we discussed a possibility of defining a fully expressive reachabili ty 
relation on the system's histories which would be a 'small '  subset of the complete reachabili ty 
relation. We defined such a reduced reachability relation and called it the optimal simula- 
tion. I t  enables reasoning about a number of dynamic properties of a concurrent system, and 
at the same time requires a minimal computational effort. Optimal simulation has been 
defined in a very general trace-based setting which makes it applicable to different models 
for concurrency, such as Petri nets, CCS, CSP, or automata-based models. 
The reachability graphs of finite-state systems can he regarded as finite representations of 
teachability relations. Since the optimal simulation provides the same information about 
relevant dynamic properties of the system as the full teachability relation [JK89,JK89a], the 
reachability graph of optimal simulation (i.e. its finite representation) and the full reacha- 
bility graph may  be considered as equivalent. The optimal simulation is always a subset of 
the full reachability, hut of course it does not mean that  the reachability graph of optimal 
simulation is always (much) smaller than the full reachability graph. However, we do claim 
that  in the case of concurrent systems exhibiting high degree of concurrency (i.e. those with 
many  sequential components), the teachability graph of optimal simulation is much smaller 
than the full teachability graph. Thus it is advantageous to use optimal simulation as a tool 
to reduce the size of teachability graphs of concurrent systems. 

Unfortunately, as opposed to the full teachability graph, in the general case it is not clear 
how to generate the teachability graph for optimal simulation in an efficient way. In some 
sense this is a negative side-effect of the above mentioned generality of optimal simulation. 
In this paper we will outline how such a graph (as we claim, reduced in the majority of cases) 
can be constructed for Petri nets which can be decomposed onto finite state machines. 
We will not prove here that  optimal simulation is indeed behaviourally equivalent to the full 
reachability, nor justify the construction of the optimal simulation relation. These issues 
have been dealt  with in [JK89] which is widely available (Lecture Notes in Computer  
Science 366), and in [JK89a] which can be sent on request. Proofs of technical resul ts  
presented in this paper can be found in [JK89,JK90]. 
Note that our approach is based on the assumption that  concurrent behaviours (histories) 
can be modelled by causal partial orders. We will represent those partial orders by certain 
equivalence classes of step sequences, generalising the notion of traces of [Maz86]. 

We would like to point out that  the major methodological difference between our approach to 
minimise teachability graphs and those developed in [Jen87,Va189,God90] is that  we do not 
try to minimise (or even deal with) the full reachability graph in an explicit way. All what  we 
are trying to do is to build a reachability graph which represents the optimal simulation rela- 
tion (a subset of full reachability). We then make a claim, based on the general properties of 
optimal simulation, that  in majority of cases, such a graph is much smaller than the original 
full teachability graph. 

1 MOTIVATION 

Execution paths generated by Petri nets can be represented by step sequences - each step 
being a finite set of transitions executed simultaneously. Consider the Petri net in Fig. 1.1. 
Its behaviour might  be briefly described in the following way: All step sequences must  begin 
with transition a. After that  one can simultaneously execute transitions b and c, or execute b 
followed by c, or execute c followed by b. The net generates three step sequences leading to a 
deadlock, n1 --{a}{b,c}, n2 ={aHb}{c} and n3 ={a}{c}{b}. Suppose now tha t  we were about to find 
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Fig. 1.1 

all the deadlocks of the net by following as few step sequences as possible and by selecting 
possibly shortest step sequences. An exhaustive search would include nl, n2 and n3. But we 
may  observe that  all these lead to the same deadlocked marking,  and that  nl is shorter than 
both n 2 and n3. Hence an efficient search should include just one path, hi. 

The above example is an instance of the following general problem: Is there a way of  execu- 
ting a net which is both expressive and efficient? By an expressive execution we mean one pro- 
viding enough information to verify relevant  properties of the system, e.g. liveness or termi- 
nation, whereas by an efficient execution we mean one which requires minimal computa- 
tional effort, e.g., by avoiding execution paths providing redundant information. Referring to 
our example, one may observe that  nl has a straightforward operational interpretation as it 
follows the rule: always choose a maximal  set of independent transitions to be executed next, 
a rule which characterises maxiknally concurrent execution. Employing maximal  concur- 
rency is an attractive idea, both conceptually and from the point of view of implementation. 
Unfortunately, there are cases in which maximally concurrent execution is not sufficiently 
expressive (see [JLKD86] for necessary and sufficient condition where it is). To show this we 
take the net in Fig. 1.2. The maximally  concurrent execution can find only one deadlocked 
marking of the net, by following step sequence pI ={a,b}{d}. The other deadlocked marking, 
which might be reached by following P2 ={b}{c}, is left undetected. 
In [JK89,JK89a] we have defined, by generalising maximally concurrent execution, the op- 
t imal simulation which is both expressive and efficient way of executing the net for verifica- 
tion purposes. Fig. 1.2 shows both the full teachability graph of the net and the reachability 
graph of the optimal simulation. The lat ter  one is smaller, but  because in this case only two 
transitions a and b can be fired concurrently, the difference in size is not significant. How- 
ever, in the case of net in Fig. 1.3, the reachability graph of the optimal simulation is isomor- 
phic to that  in Fig. 1.2, while (as one may easily check) the full teachability graph would 
hardly fit on a single page. 
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SMD NETS AND THE OPTIMAL SIMULATION 
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In our discussion we will use state machine decomposable (SMD) nets which model non- 
sequential systems composed of a number of sequential subsystems which synchronise by 
means of common transitions. SMD can provide semantical basis for more complex Petri nets 
[Rei85] and other models like COSY [LSC81], CCS [HM85], and CSP [Hoa85] (see [Tau89]). 
In the SMD nets, a sequential subsystem is represented by a finite state machine which is a 
triple (Si,Ti,Fi) such that Si and Ti are disjoint finite sets of places and transitions, and 
FiCSi×TiUTiXSi is the flow relation such that  for every tETi there is exactly one s and 
exactly one p satisfying (s,t) E Fi and (t,p) ~ Fi. 
An SMD-net is a tuple N---(FSM1 ..... FSMn,Minit) such that  each FSMi =(Si,Ti,Fi) is a finite- 
state machine, SiNSj= ~ for ixj, and Minit is the initial marking. (Marking is a set of places 
which has exactly one place in common with each Si.) In what  follows we will assume that  N 
is fixed and denote: S--SIU...USn, T=TIU...UTn and F--FIU...UFn. 
For a set oftransit ions A we denote: A* ={s[ ]tEA. (t,s)EF} and *A ={s [ ]tEA. (s,t)~F}. 
Fig. 2.1 shows an SMD net. As usual, places are represented by circles, transitions by boxes, 
the flow relation by arcs, and marking by tokens. 

Let indCT× T be the set of all pairs of transitions (a,b) such that  there is no Ti comprising 
both a and b. Such a and b are interpreted as independent, and only independent transitions 
can be executed simultaneously. 
Let Ind be the set of steps, each step being a non-empty set of mutual ly  independent transi- 
tions, i.e. Ind ={ACT[ A ~ ~ /k Va,bE A. a = b V (a,b)~ ind}. 
For the net of Fig. 2.1 we have ind-- {(a,b),(b,a),(a,c),(c,a)} and Ind = {{a},{b},{c},{d},{a,b},{a,c}}. 
We could have defined N as N---(S,T,F,Minit) for which there are finite s tate  machines  
(Si,Ti,Fi) such that  S--SIU...USn, T=TIU...UTn, F-=FIU...UFn, and Minit is a mark ing  

transition d of the collapsed representation 

r . . . .  

FSMI ~ s 

I I 

' I ! 

FSM2 r 
L . . . . .  

Fig. 2.1 



170 

with exactly one token in each Si (see [Tau89]); however, the 'collapsed' representation - 
N = (S,T,F,Minit) - makes the definition of independent transitions less readable. 

A step sequence, a(Steps, is a sequence of stops a=Al.. .Ak for which there are markings 
Mo,M1,...di/Ik such that  Mo=Minit and for all i, *AiC_MI.I and Mi=(Mi.I-*Ai)UAf. Later we 
will denote mara---Mk. The empty step sequence will be denoted by k. 
For the net of Fig. 2.1 we have {a,b}{c}ESteps and mar{a,b}{c} ={s,r}, but {a,b}~d}fSteps. 

Let - be the least equivalence relation on Steps containing all pairs of non-empty step se- 
quences (a,~) such that  o-- olA o2 and ~ --- olA IA202, where A 1NA2 = ~ and A I UA2 =A. The 
equivalence class of ~ containing step sequence o will be denoted by [a]. Each equivalence 
class H of -- will be called a history, HEHist. For the net of Fig. 2.1 we have 
[{a,b}] = {{a~{b},{b}{a},{a,b}} and Hist = {[k],[{d}],[{a}],[{b}],[(a,b}],[{b}{c}],[{a}{b}{c}]}. 
Step sequences belonging to H can be seen as different realisations of an underlying concur- 
rent  history which itself may be represented by a partial  order. This partial order is the in- 
tersection of all the partial orders induced by the step sequences in H. This is illustrated in 
Fig. 2.2 for history H=[{a}{b}{c}] of the net of Fig. 2.1. Note that  step sequence a={a}{b,c}{a} 
induces a partial order in which the first occurrence of a precedes the occurrences of b and c, 
and the occurrences of b and c are un-ordered and both precede the second occurrence of a. 
Every partial order induced by stop sequences has the following property: its disorder rela- 
tion is transitive. Such orders are sometimes called stratified partial orders. 

The concepts of = and a history H(Hist  are natural  generalisations of similar concepts from 
the theory ofpartial commutative monoids [CF69,Maz86,Zie89]. If  we restricted step sequen- 
ces to just  sequences (intorleavings) in the definition of Hist then we would get exactly the 
classical notion of Mazurkiewicz traces [Maz86] (the name 'trace' is sometimes used [Hoa85] 
to mean 'sequence', so we write 'Mazurkiewicz trace' to avoid any confusion). Our representa- 
tion of a history as a partial order is a natural  generalisation of the result of [Szp30] on the 
representation of partial orders by the set of their linearisations. We represent partial  orders 
by the set of their stratifications. The basic advantage of the approach in [Maz86] is that  a 
causal partial  order may be represented by just  one interleaving. In our case, every history 
may  be represented by just  one step sequence. In particular, we may choose the shortest one, 
i.e. maximally concurrent. This idea will be developed further when the definition of canoni- 
cal step sequence - a very fundamental  concept ofour approach - will be given. 

For every history H, enabled(H) is the set of all steps A such that  oA is a step sequence for at  
least one oEH. I t  turns out that  if o,c0~H and A(enabled(H) then maro=marco, oA~Steps 
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and aA --oA. Hence we can define math to be the marking maro, and Ho[A] to be the history 
[oA]. 

In [JK89,JK89a] we introduced the notion of a simulation which is a kind of reachability re- 
lation on the histories representing a possible mode of executing the net. In this paper we 
will deal only with two simulations, the full and optimal ones. The full simulation is simply 
defined as FULL={(G,H)~Hist×Hist [ 3A. H=Go[A]}. FULL represents the dynamic beha- 
viour of N in a complete way. Its advantage is relatively straightforward definition and natu- 
ral interpretation, its disadvantage is the size of its reachability graph. Even for small nets 
the graph grows beyond any manageable size, making the formal verification of the net 's 
properties extremely difficult. I t  was our goal in [JK89,JK89a] to find possibly smallest  
simulation which could be used for the verification of relevant net properties. As a solution 
we proposed the optimal simulation, OPT. There are three reasons why OPT can be regarded 
as the optimal simulation: 
(1) There are a number  ofbehavioural  properties which are common to FULL and OPT. For 

example, FULL and OPT generate the same sets of deadlocked markings .  I t  is also 
possible to verify liveness using OPT. Indeed, as we claimed in [JK89a], FULL and OPT 
essentially capture the same behavioural properties of the net (a concurrent system, in 
general). 

(2) OPT involves a minimal set of histories, i.e. each proper subset of OPT is less expressive 
than FULL, and it may not be used, e.g., to verify the deadlock-freeness. 

(3) The information about the net is generated in OPT using the shortest step sequences. For 
instance, each deadlocked marking will be generated by following the shortest step se- 
quence leading to it. 

Moreover, there is no other simulation which would satisfy (1)-(3). OPT is defined as follows. 

A step sequence o--Ai...Ak is canonical if  for all i>_2 and aEAi there is bEAi.1 such that  
(a,b)find. Intuitively, in canonical step sequence the execution of transitions is never de- 
layed (no transition can be moved from Ai to Ai.I). I t  can be shown [CF69,JLKD86] that  
every history H contains exactly one canonical step sequence, can(H). To define OPT we first 
introduce an auxiliary reachability relation on histories: CAN={(G~I) ] can(H)-=can(G)A}. 
We also define Histmax to be the set of all histories H whose canonical step sequence ends 
with a maximal step, i.e. ifean(H)--oA and AC_BEenabled([o]) then A =B. 
The optimal simulation OPT is defined as the smallest  subset of CAN such that  for every 
HEHistmax there are histories HI,...J-Ira satisfying: HI =[k], Hm =H, and (Hij'Ii ÷ l )E OPT, for 
all i ~m.  We also denote Histopt---{[k]}U{HI (G,I~EOPT}. For the net of Fig. 2.1 we have 
Histrnax--{[{d}],[{a,b}],[{a,b}{c}]} and OPT---{([Jt],[(d}]),([x],[{a,b}]),([{a,b}],[{a,b}{c}])}. 

3 REACHABILITY GRAPH OFTHE OPTIMAL SIMULATION 

A reachability graph of the full simulation can be defined as: RGFULL----(V,Ares,Minit), 
where V={marH 1 HEHist} is the set of nodes; Arcs ----{(marH,A,marHo[A ]) I A ~enabled(H)} is 
the set of arcs; and Minit is the initial node. 
The above definition is not very useful in the case of the optimal simulation. The reason is 
that  even if G and H two are histories in Hzstopt satisfying marv= matH and (H,Ho[A])E OPT, 
then it does not necessarily follow that  (G,Go[A])E OPT (see [JK90] for an example). Hence 
the construction used to define RGFULL in which histories leading to the same mark ing  were 
assigned the same node of the graph would not work. To guarantee that  (H,Ho[A])~OPT ¢~ 
(G,Go[A ] ) E OPT we strengthen the condition ma rG =marH, as follows. 
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Let VC_CAN comprise all pairs of histories (G,Go[A]) such that  there is a non-empty set 
IC{1 ..... n} satisfying the following (below R = Ui(lSi ,  U= UiE1Ti and V-- 12i~! Ti): 
(3.1) A N U = ~ .  
(3.2) There is tE U-V such that  {t}Eenabled(G). 
(3.3) There is no uE UNV such that'uNRC_ marG, 
The last definition is illustrated in Fig. 3.1. The idea behind V is that  in all continuations of 
G~[A] in CAN the tokens in the subnets FSMi, for iE/, will be 'frozen'. Hence, by (3.2), no such 
continuation can yield a step which is maximal. 
For every history H, let FH be the set of all A such that  (H,Ho[A]) E CAN-V. I t  can be shown 
tha t  if  (HJ-/o[A]) E OPT then A E FH. Hence when generating the reachability graph of OPT in- 
stead of taking enabled(H) as the potential next steps for a history H we can restrict our- 
selves to the (usually much smaller) set FH. What  is, however, more important, FH can be 
used to identify histories with identical continuations in OPT: 
Let - be a relation on histories such that  G - H i f  marG =rnarH and FG = FH. I t  can be shown that  
ifG,HE Histopt and G~H then (G,G~[A ]) E OPT implies (H,Ho[A ] ) E OPT and Go[A ] -Ho[A ]. Hence a 
reachability graph of the optimal simulation RGOPT = (V,Arcs,vinit) can be defined in the fol- 
lowing way: 
(1) V={(rnarH,rH) t HEHistopt}. 
(2) Arcs={((marH, FH),A,(marH.iAI,FH.[AI)) I (H,I-Io[A])EOPT}. 
(3) Vinit ---- (Minit,F[k]). 
The above definition is an operational one, i.e. it can be used to describe an efficient algo- 
r i thm constructing RGOPT. 

Generating reachability graph RGFULL is usually done in a loop which checks the already 
generated nodes and steps 'enabled' at  those nodes (nodes are labelled with markings). I f  
there exists a node labelled by matH and a step A which have not yet  been tried, the algo- 
r i thm generates marking M----marH.[A I. I t  then adds a new node labelled by M and an arc to 
the graph i fM has not yet  been a label; otherwise it  draws an arc to the node labelled by M. 
The algorithm generating RGOPT follows in principle the same pattern. There is, however, 
one essential difference. An arc cannot be accepted as belonging to RGOPT before another 
arc, labelled with a maximal step, is found which can be reached from that  arc. Hence one 
first generates an auxiliary reachability graph in a similar way as it is done for RGFULL and 
then prunes the arcs from which an arc labelled with a maximal step cannot be reached, ob- 
taining RGOPT. A formal description of this algorithm can be found in [JK90]. 

t i 
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To illustrate the last definition we take the net Nk of Fig. 3.2(a). Fig. 3.2(h) shows RGOPT, 
where A ={a}, Bi--{bi}, Ci--{ci} and Di---{bi,ci}. RGOPT has 3k vertices and 3k +5 ares which 
compares favourably with RGFULI, with k2 vertices and 3k2 4-i arcs. 

CONCLUDING REMARKS 

In this paper we presented the idea behind an algorithm generating reachability graph of the 
optimal simulation - a way of executing a system directly generalislng the maximally con- 
current execution [JK89]. Together with the result~ obtained in [JK89] and [JK89a], this 
gives a strong indication that  the graph RGOPT would in general case be much smaller than 
the full teachability graph. Furthermore, the higher the degree of concurrency the system 
exhibits, the more can be gained by using RGOPT instead of RGFULL. There can, however, be 
situations where RGOPT does not have an apparent  advantage over RGFULL. For example, 
RGoPT of a net can be bigger than RGFuLL (see [JKg0]). Another problem can be identified 
by taking the net of Fig. 3.2. If  we remove transition bk and join bk-1 with the place holding a 
token, then although RGOPT for the modified net will be smaller than RGFULL, it will have 
o(k2) nodes and arcs. There are two points to be made which show tha t  problems of such kind 
are less serious than it might look at the first glance. 
Let MAX he the maximally concurrent simulation [JLKD86,JK89], and let RGMAX be its 
reachability graph. (Formally, MAX is the maximal  subset of CAN which only involves his- 
tories from Histrnax.) I t  is not difficult to see tha t  RGMAXC_RGFULL and RGMAxC_RGoPT, as 
well as MAXC_OPTCFULL. Furthermore, OPT is a minimal subset of FULL containing the 
same behavioural information as FULL does and, intuitively, OPT is only 'slightly'  bigger 
than MAX. As the result, RGOPT is only 'slightly' bigger than RGMAx. On the other hand, 
RGMAXC_RGFULL, and the difference between RGMAX and RGFuLL depends strongly on the 
degree of concurrency exhibited by the net. I f  the net  contains only a few concurrent transi- 
tions then the difference between RGMAX and RGFULL is ra ther  small, and in such a case 
RGOPT might  be bigger than RGFULL. When the net contains many  concurrent transitions 
the difference betwe a RGMAX and RGFULL increases dramatically, while RGOPT is still 
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only 'slightly'bigger than RGMAx. This can be well illustrated by taking the nets from Fig. 
1.2 and 1.3. The latter has been obtained from the former by adding two simple concurrent 
subnets. This had no effect on the size of the reachability graph of the optimal simulation, 
while the size of the full reachability graph has increased significantly. 
The problems with the modified net of Fig. 3,2(a) are essentially due to the generality of 
OPT. The optimal simulation has been defined in a pure transition-based setting. In particu- 
lar, the lack of any reference to the states of a concurrent system makes OPT applicable to al- 
most all models for non-sequential computation, but sometimes it may lead to less efficient 
solution as far as the reachability graphs are concerned. Referring to the modified net of Fig. 
3.2(a), by taking into account the particular structure of the states (markings) for this net, 
we may further reduce RGOpT to a graph which has o(k) nodes and arcs and is still equival- 
ent to the full reachability graph. What this clearly demonstrates is that  for specific system 
models, e.g. for those which support the notion of state, it is possible to modify RGOPT in a 
way which takes advantage of some particular properties of that model. RGOPT should not 
therefore be regarded as a complete blueprint for an efficient reduction of the teachability 
graphs, but in some cases as particularly suitable starting point for developing algorithms 
for such a reduction. 

Although in this paper we consider only nets which can be decomposed onto finite state ma- 
chines, our approach can be extended to other kinds of nets and models. In [JKg0], where all 
the proofs are given, we use asynchronous automata of [Zie89] as a model of concurrent sys- 
tem. Moreover, [Tau89] enables a translation of our results to CCS and TCSP. In fact, if the 
behaviour of a concurrent system can be adequately modelled in terms of Mazurkiewicz 
traces [Maz86], then the approach presented above can always be applied. 

Our final comment is that the fusion of our approach with one of the approaches which deal 
explicitly with reachability graphs, as those of [Va189] and [Godg0], is likely to lead to highly 
efficient algorithms for reduced teachability graph generation. 
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