
T H E M O D U L A R F R A M E W O R K OF C O M P U T E R - A I D E D V E R I F I C A T I O N

Gil Shurek and Orna Grumberg
Compfiter Science Department, The Technion

Haifa 32000, Israel
E-address: orna@techsel (BITNET), orna@sel.technion.ac.il (CSNET)

1. INTRODUCTION

Temporal logic model checking procedures have been proven to be a feasible approach
to automatic verification of relatively small finite-state systems. As the expressive power of
temporal logic makes it adequate for specifying properties of reactive systems and as interest-
ing examples are typically those of concurrent and distributed systems, it seems natural to con-
sider the applicability area of automatic model checking as that of reactive finite-state con-
current systems. This context, however, exposes the major disadvantage of model checkers,
which is their global nature. By this we mean that only a complete system can be verified to
meet its temporal specifications. This globality, on the one hand, induces the "state explosion
problem" and, on the other hand, prevents the realization of the "pre-verified component
methodology", presented below.

The state explosion problem arises in systems composed of many loosely coupled
components. The size of such a system may grow as the product of the sizes of its components.
Thus, space requirement might become too large for a model checking procedure to be appli-
cable. Obviously, state explosion affects the time-complexity as well.

The pre-verified component methodology refers to the verification of systems containing
an already verified component, that avoids redoing the component's proof. When verifying a
specific system, it should be possible to exploit the pre-verification of the component. As a
result, the average verification time-complexity over the set of systems containing this pre-
verified component should be reduced.

It seems natural to consider the use of compositional reasoning as a solution to the state
explosion problem. Exploiting the modular structure of a system, a compositional verification
method applies model checking procedures to individual components, to'check properties from
which the specification of the global system is deduced. The consguction of the global system
is avoided, and thus space requirements are reduced. Hopefully time-complexity is reduced as
well. The desirability of using pre-verified components raises the need for our method to be
modular too. By this we mean that it should be possible to apply a verification procedure to an
individual component when no specific environment is available. The difference between com-
positionality and modularity lies in the amount of information that the verification procedure
has about one component when verifying the other. In a compositional approach complete
knowledge about the environment may be used, while in the modular approach no information
about the actual environment is available. Note that our terminology adapts the terms

215

"compositionality" and "modularity", yielding notions that differ slightly from the traditional
o n e s .

This paper presents a modular, semi-automatic method for the verification of finite-state
programs with temporal logic specifications. The purpose of this work, however, goes beyond
the search for a technical solution to modular verification. The additional goal is to gain a
wider understanding of the modular framework. In a related work [SO90] we discuss motiva-
tion, solutions, solutions' properties, and evaluation criteria in that context, e.g.:
• An obvious quality of a global model checker that should be preserved in a modular pro-
eedure is the ability to verify arbitrary properties of a distributed system, not being restricted to
properties of single components within the compound system.
• Modular procedures have no knowledge about the environment. Hence, applying the
checking procedure to one component, an assumption on the behavior of the environment is
often necessary in order to deduce a global property. Assumptions and their effect on the
verification process are thoroughly discussed in [SG90].

Following the previous discussion, this work is a search for a partially automated modu-
lar verification procedure supported by a model checking procedure, for reactive, finite-state
distributed systems. The systems are modeled by finite structures described as state-transition
graphs, where asynchronous actions have an interleaving semantics. We assume that
specifications are given by propositional temporal logic formulas that are interpreted over the
computation tree of the system's transition graph.

Several works on compositional techniques for reasoning about reactive concurrent sys-
tems established the background for our research: ~85],[J87], and [CLM89]. As we regard

the "Assume- Guarantee" paradigm [P85] to be the preferable modular scheme, we begin with
an exploration of its underlying mechanism. This is done by presenting a deductive proof sys-
tem scheme (AG) which is an abstraction of that paradigm. Considering a further abstraction
(the AGS) we claim that, such paradigms essentially manipulate infinite sets of models. The
main difficulty in implementing an AG-like scheme as a semi-automatic procedure, is identified
to be the need to represent these sets so that they can be handled automatically.

We present an AG-like proof system scheme, denoted AGM, in which a set of models is
represented by a single model. In this scheme assumptions are expressed by finite state-
transition structures, while the specifications are given in a temporal language. The scheme
defines complete proof systems, in which soundness depends on conditions that should be
satisfied in an actual framework (i.e., an actual model of computation and a temporal
language). Implementations of this scheme as semi-automatic procedures are based on an
automatic model checker that is not necessarily modular.

We show how a proof system can be derived from the AGM scheme. As the model of
computation we choose a simplified version of CCS [M80] which describes asynchronous
communicating systems. The specification language is a sublanguage of CTL* (CTL~) which
is more expressive than LTL. In CTL'_.E negation is restricted to the atomic propositions and the
E ("there exists") path quantifier is eliminated. A generalized version ofAGM (AGM*) can be
realized in this framework. The AGM* enables simultaneous use of partial information on both
components of the distributed system. In AGM*, verification can be viewed as state-reduction
of the global model without construction of the model. The reduction is relative to the property
to be verified (as opposed to minimization which guarantees semantic equivalence of models).
Proof systems derived from the AGM and the AGM* schemes can be implemented as semi-
automatic procedures for modular verification. Properly used, these procedures enable the use

216

of pre-veritied components, and guarantee reduced memory requirement and even improved
time complexity, compared to a global model checker.

In Section 2 we describe the AG and AGS proof system schemes. In Section 3 the AGM
and its generalized version AGM* are presented. Section 4 presents the actual proof system
derived from these schemes. In [SG90] this section includes an application of that proof sys-
tem to a program.

2. T H E AG AND AGS SCHEMES

2.1 The AG Proof System Scheme

The AG deductive proof system scheme presented in this section should be viewed as an
abstraction of Pnueli's assume-guarantee paradigm [P85].

Let L be a logic used as a reasoning and specification language for distributed systems.
Let M be a set of models, containing component models and composed models, for which ' I1'
denotes the composition operation. Each composed model m is accompanied with a fixed
decomposition into two component models mA, ms, such that m = ma I1 ms. For a component
model m ¢ M, C~t[m] denotes the set of all models in M of the form mA II ms, for which mA is

m O.e., CAIrn] = {mA Ilms ! ma = m}). Cs[m] is defined similarly.
For ¢pl,q~z ~ L, the notation ¢Pl ~ q~z, i E {A,B} means that every model in Ci[m]

Cdm]
which satisfies qh, satisfies <P2 as well. Thus, q~ is the consequence of ¢Pl in Ci[m]. I

citm]
is a proof system that validates L formulas in C~[m]. The soundness of this system is defined
as: Vqh,q~z ~ L [<Pt I------C~[m] ¢P2 =~ ¢Pl ~ q~] • When qh -= true, the definition results in

1 q~z =* I q~z which means that if q~ is provable in I then q~z is true in the
Ct{,n] C~{,n] Cdm]

composition of m with any environment.

Given the proof systems I and I we present below a set of AG proof systems
c, ttma] Cs[m~]

(one for each model m 1 II m2). The proof system I for the verification of L-formulas
A G ' - m I lira2

in the composed model ml II m 2 is defined as follows:

Axioms:

C~[ml] Ca[ms]

Inference rules:

I (p I (p
AG-ml llm2 AG-mt llm2

(pl----- ~ r0 I---.-- ~
C~[md ca[rod

I 'tl/ I V
AG-m I llm 2 AG,-m I llm 2

The soundness of AG-ml II m2 is defined as: V~ ~ L [I V ~ ml II m2 ~ V].
A G - m I lien 2

217

Theorem 1: Given sound proof systems I and I , I is sound.
CA[ml] CB[ra2] Aa-ra I l i ra 2

The AG-m111 m2 is a scheme for a proof system, capable of verifying properties of the
distributed system m l II m2, without being restricted to the behavior of a single component in
the context of the global system. Moreover, it can be considered modular according to our ter-
minology. Examining a typical AG proof, its modularity can be observed:

I ¢p., q~. I - - - - - q~.-1 "" ' qh ~ q)
CA[,nt] Cm[,n=] CA[,nt]

We are interested in a semi-automatic implementation of the AG scheme, where the user is
required to supply ("guess") the sequence of assumptions (p, to qh and the validation in
CAirn1] and in Cn[m2] is done automatically. The ml proof-block is the set of proof stages in
which 1 . is applied. When assumptions are given, the m I proof block can be carried out

CA[rod
without having to consider any specific "m2". Given a component model m~, if the proof-
block consisting of all I stages can be carried out successfully with respect to I ,

ca[] c~,[~]
then m 1 proof-block can be completed to a full AG proof, deducing rn 1 I1 ml ~ (p.

2.2 The AG-sets (AGS) Proof System Scheme

In this section we present another proof system scheme, AG-sets (AGS), which is an
abstraction of AG, meant to explore the underlying mechanisms of AG. In AGS, sets of models
are used directly as the reasoning language (similar to the Semantic Model of [AL89]). How-
ever, we still assume temporal specification. Therefore, an inference rule that derives L formu-
las (from a previously "derived" model set) is necessary. Defined below is an AGS proof
system for ml lira2.

gs[ml II mz] is a set of model sets, defined inductively by:
Atoms ("axioms"):

{c i C~C,t[m~]} u {C I

Closure operations ("inference rules"):

C ~ gs[ml lira2]

C ~ C ¢'~ CA[ml]

C" ~ gs[ml lira2]

The inference rule:

q) e L

C ~ gs[ml llm2]

C

C ~ CB[mz] }

C ~ gs [ml II m 2]

C ~ C n CB[m2]

C'~ 8s[ml IIm2]

AGS-mI lira2

218

Theorem 2: AGS-ml II m 2 is sound and complete.

Noticing that both AG and AGS basically manipulate potentially infinite sets of models,
leads us to identify the major obstacle to the implementation of AG. In AG, sets of models are
represented either by themselves (CAIrn1] and Cn[m2]) or by L-formulas (i.e., q) defines and
represents the set of all models satisfying q)). The lack of uniform representation for these
sets forces AG implementations (e.g., [J87]) to provide conversion procedures (which are, in
general, cumbersome and time-consuming) to enable constructive manipulation of model sets.
In AGS we abstract away from the representation problem. The AGS proof system is theoretic
and has no explicit representation for sets. This system is not intended to be implemented
directly, but to inspire the definition of other proof system schemes.
In the next section we present an AGS-like proof system, in which sets are represented in a
way they can be handled constructively.

3. THE AG-MODELS (AG]~ SCHEMES

3.1 The AGM Proof System Scheme

The AGM is an AGS-like proof system scheme, in which the basic elements handled by
the deductive procedure are models (i.e., finite state-transitlon structures). These basic ele-
ments are used to represent the potentially infinite sets of models, discussed in the previous
section. The AGM proof system is a modular model checking system for finite state distributed
system, based on their decomposition into two components.

Let M be a model domain consisting of component models mi and composed models m,
which may differ syntactically. Let Z be an alphabet and let Z= denote the alphabet associ-
ated with the model m. Zm consists of state labels and/or transition labels. Let II denote a
composition operator that applied to two component models mi, mj results in a composed
model m, i.e., m =ms llmj. Also, let Iz denote a restriction transformer, that applied to a
composed model results in a component model with alphabet set restricted to Z.

Let L be a temporal language interpreted over the domain of models M. Let L(Z)
denote the set of formulas in L defined over the set of atomic propositions in Z. We assume
(for the semantics of L) that if q~ ef L (Zm) then m l~ q).

Let ~ denote a Preorder (reflexive and transitive relation) defined over M, which has
the following semantic property: mA ~ m,~ implies that all L formulas that are satisfied in
mA, are satisfied in m~ (i.e., ff mA _~ mB than Vcp e L, mA ~ ¢p ~ mB b ¢p).

Let I denote a proof system for checking the satisfaction of L formulas in M
MC

models (i.e., a model checker).
The AGM definition inherits the structure of the AGS definition, where inference rules which
do not deduce temporal formulas, are referred to as closure operations. Defined below is an
AGM proof system for mt H m2.

gm[mx][m2] is a set of models, defined inductively by:

Atoms : {re'lira2 I m ' ~ ml} u {ml Itm" I m " 3 m2 }

closure operations :

219

ml IIm" ~ gm[ml IIm2]

m" "i (rnl I I m " ~ ,

m'llm 2 ~ gin[m1 lira2]

m" 3_ (~"m2~r..,

m'llm2 ~ gm[ml IIm2] ml lira" ~ gm[ml lira2]

The inference rule :

m E gm[ml tim2]

<p ~ L(~-,n)

M C

I q>
A O M - m I l i r a 2

The soundness of the AGM scheme depends on the following conditions (regarding the
language, the models domain, the composition operator, the restriction transformer and the
semantic preorder) :

Soundness Conditions :
1. For all m', ma, mn component models in M, if ma _3 mn then mA II m' _J m~ II m' .
2. For all m', mA, mn component models in M, if m A 11 m" _3 rnB II m" then

(ma II m')lz~ _3 (mB II m')lz,¢ •
3. ForaUma, m~ componentmodelsinM, ((ma l lmB~) l lmB _3 mA ltmB .

When the composition operator is not commutative the dual conditions are required as well.

Theorem 3: Given that the soundness conditions are fulfilled then:
3.1 Using a sound proof system I , ~ is sound.

MC A G M - m I l i r a a

3.2 Using a complete proof system I ~ , ~ is complete.
MC AGM-..m I l i r a a

C o m m e n t : Systems which are composed of more than two components, can be handled by
AGM-like schemes.

3.1.1 Evaluation

The AGM scheme is capable of verifying any property of the global distributed system,
which is expressible in L. Examining a typical AGM-ml Ilm 2 proof, verifying that
ml IIm2 ~ ¢p, its modularity can be observed. Regarding the state explosion problem, this

proof system is feasible as long as the size of the structures representing the assumptions is
significantly less than the size of the components' models. Applying the pre-verified com-
ponents methodology, feasibility depends on the assumptions strength. As "greater" (3)
structures make weaker assumptions, the AGM enables the user to weaken the suppfied
assumptions provided that the knowledge needed for the verification of the temporal
specification is preserved.

3.1.2 Resemblance to tile AGS Scheme

In the AGM scheme, a single model of a composed system represents an AGS basic ele-
ment: a set of models. The model represents the set of composed models in M which are

220

smaller with respect to the semantic relation 7 (i.e., m represents a set of models in which
every formula satisfied by m is valid). The "greater" model can be viewed as holding partial
information about the "small" one. Thus, the preorder between two basic elements of the AGM
is analogous to the subset relation between AGS sets. The task of combining partial knowledge
about the checked system with full information about one of the components, which is carried
out by the intersection operator in the AGS scheme, is achieved here by applying the composi-
tion operator itself (aided by the restriction transformer).

3.1.3 Implementation

A computer-aided implementation of the AGM proof system is expected to carry out
automatically the following actions: a. Models composition, b. Applying the restriction
transformer, c. Verifying the satisfaction of L formulas in M models, d. Verifying the
preorder between models.
It is not difficult to imagine implementable definitions of a composition operator and a restric-
tion transformer which make tasks a. and b. algorithmic. To automate task c. , a global
model checker can be applied. The only task which is not clearly decidable even for the
finite-state ease is the verification of the semantic preorder (task d.). Any useful implementa-
tion of the AGM system should suggest a semantic preorder which is syntactically identified by
an efficient algorithm.

In section 4. we suggest an implementation of AGM system in which all four tasks are
algorithmically handled. As can be seen there, the need for a decidable preorder affects the
choice of the temporal specification language.

3.2 The AGM* Proof System Scheme

Setting stricter soundness conditions, the AGM* which is a generalized version of AGM,
can be defined. The AGM" enables simultaneous use of partial information on both com-
ponents of the distributed system. Using this scheme it is possible to conduct a proof, along
which only the knowledge that is essential for the verification of the final specification is
preserved.

gm*[ml II mz] :

Atoms: { ma llmn I mA 3- ml , mB 3_ mz }
Closure operation :

re,me gm [m111m2]

m'll m" e gm*[m 1 II mz]

The inference rule :

221

m ~ gm*[ml Ilmz]

(p E L(~'.m)

I m~cp
MC

I q~
AGM*-ra I lira 1

In the case where "smaller" (-I) models can often be represented by smaller structures,
the AGM* enables further reduction in the size of the structures handled by the proof system
(in comparison with AGM). Thus, further reduction in time and space complexity is achieved.

4. ASYNCHRONOUS COMMUNICATING SYSTEMS

4.1 The Model of Computation

We use here a simple computation model for distributed systems. The components of
these systems are asynchronous processes, that communicate through synchronized actions.
This model is similar to the CCS model [M80]. Our version is restricted to one application of
the composition operation (i.e., every model of a compound system is composed of two pro-
cess models). In this version, compound models are syntactically guaranteed to be deadlock
free, i.e., when a composed system is verified using this type of models, all the deadlocked
sub-structures of the computation tree of the system are ignored.

4.2 The Specification Language

Defined below is a propositional temporal logic which is a sublanguage of CTL* ICES1].
Let 2; be the disjoint union of AP~ and ACz. The language CTL*~(~) is defined as the smallest
set of state formulas such that:
(1) IfA E APz, thenA and --~ are state formulas.
(2) If q) and ~ are state formulas, then ¢p v ~ and ¢p A ~/are state formulas.
(3) If ¢p is a path formula, then Acp is a state formula.
(4) If ¢p is a state formula, then ¢p is a path formula.
(5) If (p and ~ are path formulas, then ¢p v ~, ¢p A ~, ¢p U ~/, Xcp and Gcp are path formulas.

Note that in CTL*e negations are applied only to atomic formulas. Thus, the path
quantifier E ("for some computation path") is eliminated semantically from CTL*_e. The
semantics of CTL'-.e(Em) is defined in the usual way, with respect to the Kripke structure Km
[HC77], generated from the (process or system) model m by ignoring the model's transition
labels.
The satisfaction of a state formula 9 E CTL*_E(2;) in a model m (with So the initial state),
denoted m ~ ¢p, is defined by :

(1) If ¢p E CTL*-e(Zm) then m ~ (p iff m,s o ~ ¢p.

(2) If ¢p a CTL'-e(Zm) then m ~ ¢p.

We say that one language is more expressive then the other if there exists a formula in
the one that does not have an equivalent formula in the other. Let ~ denote "more expres-
sive" and let CTL_e be CTL c~ CTL~. Comparing CTL*E with CTL*, CTL and LTL

222

[CG87] we get the following lemma :

L e m m a 3: (a) CTL* ~ CTL* E ; (b) CTL*-E ~ CTL_E ; (e) CTL*_e ~ LTL.

We can now choose a model checking procedure 1 , needed in our modular proof
uc

systems (AGM and AGM*). As CTL*e is a sub language of CTL* there is a model checking
algorithm which is exponential in the size of the specification and linear in the size of the
Kripke structure (i.e., O(2'*. I (I S I+ I R I))) [EL85]. One may prefer to restrict the specifications
to CTL_e, gaining a linear model checking algorithm (i.e., O(I ¢pl (I S I+ IR1))) ICES86].

4.3 The Preorder

The choice of CTL~e as a specification language is motivated by a unique semantic qual-
ity: The validity of CTL*e formulas is preserved over "pruned" computation trees. A descrip-
tion of this property is presented below. In this context, we view the semantics of CTL~e as
defined over computation trees. The originating transition graphs (if exist) of these trees are
omitted. Let T be a computation tree, and ¢p ~ CTL*-e be a temporal formula. T,v ~ ¢p denotes
that 9 is satisfied at node v in T. A branching node in T is a node that has at list two
immediate descendants. Eliminating a subtree of T rooted at v, such that v is an immediate des-
cendant of a branching node, is defined as pruning T at v.

Theorem 5: If T" is generated by pruning T at nodes which are descendants of v, then
k/cp~ CTL*_.e [T,v~cp ~ T',v~cp].

Long [I,89] defined a syntactic preorder over Kripke structures, which partially identifies
the pruning relation of their computation trees. Basically, we adopt his relation as our choice
of the required semantic preorder _3 . Assimilated in our system, the definition is enhanced to
encompass more cases for which the semantic property holds, including more cases for which
the pruning relation holds. In addition, it is modified to consider transition labels and to verify
the containment of the atomic proposition sets.

Let m=(AC, AP,S,R,so,L) and m'=(AC',AP',S',R',s'o~") be either both process
models, or both system models, such that AP ~ AP' . A sequence of relations F i , such that
Vi > 0 /7/ ~ Sx S ' , is defined as follows:

For all s E S, s ' ~ S"
1, s F o s' iff L (s) = L'(S') c~ AP.
2. sFn+, s" iff -

2.1 s F . s'.

2.2 Vg 1 e S', for all action oc [s'---~g 1 ==~ 3sl ~ S [s a >s I ^ sl Fn s'1]].

F ~ S × S " is defined by: For all s e S , g e S ' , s F s " iff Vi>O s F i s'.

Let m = (AC, AP,S,R,so,L) and m = (AC',AP ,S ,R ,s'o,L). The relation > over the model
domain M is defined as follows:
r e > m " i f f -

i. m and m" are either both process models, or both system models.

ii. AP ~ AP' .

iii. s 0 F s ' 0 .

Theorem 6: t f ml >m2 then for every Y., and for every formula ~p~ CTL*e(E),
ml ~ ¢P ~ m2 ~ ¢p.

223

There is an algorithm to verify that two models are preordered, which is polynomial-
time in their size. Using > as the required syntactically-identified semantic preorder, note that
"greater" (>) models are, in general, expressed by smaller structures. The implications of this
property were previously discussed.

Theorem 7: The AGM (and AGM*) soundness conditions are satisfied by the model of com-
putation, the language CTL~, and the preorder ~ .

Establishing that, the presentation of a semi automatic model checking system derived from
these schemes, is completed. In [SG90] we apply these proof rules to a program.

REFERENCES

[AL89] M. Abadi and L. Lamport, "Composing Specifications", REX Workshop on Step-
wise Refinement of Dislributed Systems: Models, Formalisms, Correctness, Mook,
May !989.

[CE81] E.M. Clarke, and E.A. Emerson, "Synthesis of Synchronization Skeletons for
Branching Time Temporal Logic", Proc. of Workshop on Logic of Programs,
Yorktown-Heights, 1981.

ICES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla, "Automatic Verification of Finite-
State Concurrent Systems using Temporal Logic Specifications", ACM Transac-
tions on Programming Languages and Systems 8, 2, pp. 244-263, 1986.

[CG87] E.M. Clarke, O. Grumberg, "Research on automatic verification of finite-state con-
current systems", Annual Reviews of Computer Science, Vol. 2, 269-290, 1987
(J.F. Traub, editor).

[CLM89] E.M. Clarke, D.E. Long, and K.L. McMillan, "Compositional Model Checker".
Proc. of the 4th IEEE Symp. on Logic in Computer Science, Asilomar, June 1989.

[EL85] E.A. Emerson, and C. Lei, "Modalities for Model Checking: Branching Time
Strikes Back", 12th Symposium on Principles of Programming Languages, New
Orleans, La., January 1985.

[HC77] G.E. Hughes, and MJ. Creswell, "An introduction to Modal Logic", London:
Methuen, 1977.

[J87] B. Josko, "MCTL - An Extension of CTL for Modular Verification of Concurrent
S~stems". Workshop on Temporal Logic, (H. Barringer, ed.) University of Man-
e ester, April 1987, LNCS 398, pp. 165-187.

[L89] D.E. Long, Private communication.

[M80] R. Milner, A Calculus of Communicating Systems, Springer Lecture Notes on
Computer Science, Vol. 92, 1980.

[P85] A. Pnueli, "In Transition from Global to Modular Temporal Reasoning about Pro-
grams". Logics and Models of Concurrent Systems, (K. Apt, ed.), Vol. 13 of
NATO ASI Series F: Computer and System Sciences, Springer-Verlag, 123-144,
1985.

[SG90] G. Shurek and O. Grumberg, "THE MODULAR FRAMEWORK OF
COMPUTER-AIDED VERIFICATION Motivation, Solutions, and Evaluation
Criteria", Workshop on Computer-Aided Verification, Rutgers, NJ., June 1990, to
appear in ACM/AMS DIMACS series.

