
Verifying Liveness Properties
By

Verifying Safety Properties
(Extended Abstract)

J e r r y R. B u r c h
School of C o m p u t e r Sc ience
Carneg ie Mel lon Un ive r s i t y

P i t t s b u r g h , P A 15213

Abstract

Conventional techniques for automatically verifying liveness properties of cir-
cuits involve explicitly modeling infinite behaviors with either infinite paths through
a Kfipke structure or with strings in an c#-regulax language. This paper describes
how timed trace structures [2, 3] caxl be used to convert liveness properties (in-
cluding unbounded liveness properties such as strong fairness) to safety properties.
Such properties can then be modeled and verified using only finite traces. No new
algorithms axe needed. All theft is required is a new interpretation of what behav-
iors axe represented by the finite traces. A mapping is defined between timed trace
structures and complete trace structures [5], which contain infinite traces, to show
that this new interpretation makes sense. The method is demonstr~tted on a fair
mutual exclusion circuit.

1 I n t r o d u c t i o n

The primary goal of research in automated circuit verification is to devise algorithms
that check whether circuits enjoy certain desirable properties. It is common to classify
these properties into safe~y and liveness properties. Informally, safety properties state
that nothing bad happens, while liveness properties state that something good happens.

In formalisms that explicitly model time (such as timed trace structures, described
below), it is also possible to express bounded liveness properties. Bounded liveness prop-
erties state that something good happens within a bounded amount of time. This is
in contrast to unbounded liveness properties, which state that something good happens
eventually without specifying a time bound. A bounded liveness property can be viewed
as a form of safety property; conventional methods used to automatically verify safety
properties are also adequate for bounded liveness properties.

There are many systems described in the literature that can automatically verify
unbounded liveness properties. All of these explicitly model behaviors as being infinite:
most often as infinite paths through a Kripke structure or as strings in an w-regular

225

language. This paper describes a method for converting unbounded liveness properties
to bounded liveness properties, and thereby to safety properties. This makes it possible to
verify unbounded liveness properties (such as strong fairness) without explicitly modeling
infinite behaviors. Instead, methods based on prefix-closed trace structures of finite traces
are shown to be adequate. This result adds new insight concerning Black's proof [1] tha t
delay-insensitive fair mutual exclusion cannot be represented using conventional finite
traces.

The method merely requires a new interpretation of the behaviors represented by
t imed trace structures. I t was not necessary to develop new algorithms or modify the
automatic verifier in any way. The method is demonstrated using a simple buffer circuit
as an example. In addition, a mutual exclusion circuit is used to show how strong fairness
properties can be modeled and verified.

Using this method a mapping can be defined from timed trace structures on finite
traces to complete traces structures [5] on infinite traces. Conformation between trace
structures is preserved under this mapping. Thus, the mapping can be used to check
whether a specification properly captures the desired liveness properties.

2 T i m e d Trace Theory

We can only give a short overview of timed trace theory in the space of an extended
abstract; the interested reader may refer to [2] and [3]. The formalism is based on Dill's
trace theory [5, 6]. We begin by describing trace theory, and then show how it can be
extended to include timing information.

In trace theory based verification digital circuits and their specifications are modeled
by trace structures, which are ordered 4-tuples of the form 7" = (I, O, S, F) . The set I
is the set of input wire names of the circuit; O is the set of output wire names. The set
A = I U O is called the alphabet of T. The sets S (the success set) and F (the failure se~)
are regular sets of finite strings, called traces, over the alphabet A. Each trace models a
possible behavior of the circuit by having each symbol in the trace represent a transition
on the corresponding wire.

The S set and the F set are used to give partial specifications. A partial specification
of a device describes requirements for the proper use of the device, and specifies the
behavior of the device given that those requirements are satisfied. In a trace structure,
the set S describes the behaviors of a device when it is used properly. The set F describes
behaviors resulting from improper use. For example, in asynchronous circuits a gate is
typically modeled so that the F set contains all behaviors that cause a hazard and the
S set contains all behaviors that do not cause a hazard.

The set P = S U F is the set of all possible ~races. The S and P sets must be
prefix-closed, and P must be non-empty. For some non-deterministic devices (such as
the vending machine example in [8], which is also discussed in [5]) a given trace can be
both a success and a failure, so the S and F sets need not be disjoint. Also, no circuit
can control its inputs, which is modeled by requiring that P I C P (if A and B are sets
of strings or symbols, then A B = {ab : a E A and bE B}). This is called the receptiveness
requirement.

As an example, consider how a buffer might be modeled by a trace structure T =
(I, O, S, F) . Let b be the name of the input wire of the buffer, and let z be the name of
the output wire. Then I = {b} and O = {x}. Assume that both the input and the output

226

of the buffer are initially low. We define the set of successful behaviors of the buffer to
be those behaviors in which the environment does not cause a hazard. Thus, the set S
of successful behaviors is equal to (bz)*(b + e). If the environment does cause a hazard,
then we do not restrict the ensuing behavior of the circuit, so F = (bx)*bb(b + x)*.

Consider two variations of the above buffer. The first buffer always eventually fires
when it is put in a firable state. The second buffer sometimes might never fire. Both
of these buffers would be modeled by exactly the same trace structure. This shows that
liveness properties cannot be modeled with this form of trace theory.

A composition operation (denoted by %") can be defined on trace structures. Let
To = (-To, O0, So, F0) and :TI - (/I, O1, $1, F1) be trace structures. The composition of To
and ~ is defined when 00 and Oi are disjoint. The set of outputs of the composition is
O0OOi, the set of inputs is (IoUI1)-(OoUOi). Let A0 = IoUO0 and At = I1U01. If
x is a trace in (A0 U A1)*, define the projection x IAo to be the trace formed from x by
removing all symbols not in A0. The S and F sets of the composition are given by

S = {zE(AoUA1)* : XIAo•~O AzIA, ES1},
F = {zE(AoUAI)* : (xlAoeF0 A ZIA, EF1) v

(XIAoE Fo A ,IA, e s~) v
(= IAo e So ^ = IA, • FI)}.

The operation hide is also defined on trace structures. The trace structure denoted
by hide(D)[(/ , O, S, F)] (where D is a subset of O) is equal to (I, 0 - D, S]A', F [A'),
where A' = I O (O - D) and the projection operation is extended to sets of traces in the
normal manner.

A trace structure is said to be failure free when its F is empty. If the composition
of several trace structures is failure free, then the components have been composed in
such a way that each of their environmental requirements has been satisfied. The trace
theory verifier can efficiently check whether the composition of a set of trace structures
is failure free. The S and F sets of trace structures are represented in the verifier with
deterministic finite automata. Checking if the composition of two trace structures is
failure free is done in time linear in the product of the sizes of these automata. If a
composition is not failure free, then usually only a small fraction of the states of the
composition need to be explored before a short error trace can be given.

Let To and :T1 be trace structures. Then, TO conforms ~o 7"1 (written TO _--< ~Tx) if
I0 -- /1 and O0 = Oi and for any trace structure T, the composition of T and T1 being
failure free implies that the composition of 3" and To is failure free. The idea captured
here is that if a circuit works correctly with :T1 as a component, then it works correctly
with T1 replaced by To (up to safety properties). If T0 -< T1 and ~ -< TO, then TO and TI
are conformation equivalent. This means that TO and ~T1 are functionally interchangeable.
There exists a canonical form for trace structures such that two canonical trace structures
are conformational equivalent if and only if they are equal.

A trace structure :T1 can also be used to represent a specification. A circuit To satisfies
the specification :T1 if TO conforms to ~ . Checking that a circuit satisfies a specification
would be very expensive if it required checking the failure freedom of compositions with
all possible trace structures. However, there exists an operation on trace structures,
called mirroring, that makes checking conformation practical. If T = (I, O, S, F) is a
canonical trace structure, then :T M = (O, I, S, A* - (S U F)) is its mirror. If 3" has the

227

cO

Start

Figure 1: Automata that accepts the S set of a 3 /2 rule buffer.

same inputs and outputs as 7", then the composition of q" and 7"M is failure free if and
only if 7"~ conforms 7". Thus, checking if a circuit satisfies a specification only requires
checking if the composition of the circuit with the mirror of the specification is failure
free. This is done in t ime linear in the product of the sizes of the au tomata representing
the circuit and the specification. If there is an error in the circuit, then usually on a
small fraction of the state space needs to be explored before a failure is found. When a
failure is found, a short trace of the transitions that led to the failure is output to the
user.

2 . 1 A d d i n g T i m i n g I n f o r m a t i o n

In standard trace theory, only speed-independent circuits can be represented. However,
trace theory can be extended to allow the representation of a large class of t iming models
for different circuit components. We call the extended theory limed trace theory. The
extension allows traces to contain additional symbols not corresponding to physical wires.
The presence of such a symbol in a trace is interpreted as representing the passage of
some fixed amount of time. (Later in the paper, we describe an alternative interpretation
that allows for the modeling of unbounded liveness properties.) More formally, we allow
trace structures of the form (I ,O, V ,S ,F) , where V is a set of symbols (disjoint f rom
I and O), and where S and F are sets of traces over the alphabet A = I U O U V.
The elements of V do not correspond to any physical wired, so they are called virtual
wire names. In order to give an intuitive explanation of the intended meaning of such
structures, we will consider the case in which V contains a single element, call it ~o.

The presence of a ~, in a trace indicates the passage of a unit of time, call it r . The
trace ~,~x~o represents a single behavior in which a transition occurs on wire x at t ime
To + 2r, where To is the t ime at which the behavior described by the trace began.

Figure 1 is an au tomata describing the S set of a buffer with input b, ou tput z, and
virtual wire ~o. Notice that since S is prefix-closed, all of the states in this au tomata are
accepting states. The F set of this buffer is equal to (S I - S)A*. Interpreted in discrete
time, this buffer clearly has a minimum delay of 2r and a maximum delay of 3r.

Consider a circuit formed using the output of a pulse generator as the input to a buffer
as in Figure 2. The pulse generator has a period of 8v and a 50% duty cycle. Its S set is
described by the au tomata in Figure 3 and its F set is empty. The buffer is the same as

228

P u l s e
G e n .

Figure 2: Example circuit for demonstrating effects of timing assumptions.

Figure 3: Automata that accepts the S set of a pulse generator.

that represented in Figure 1. The trace structure representing the resulting circuit has
an empty F set and its S set is given by the automata in Figure 4. Since the maximum
delay of the buffer is 3r and the pulse generator waits 4r between outputting transitions,
there are never two consecutive b transitions without an x transition in between. This
fact could not be represented with the speed-independent timing model.

It is clear how to modify the buffer in Figure 1 to have a minimum delay of m r and
a maximum delay of n~" for any non-negative integers m and n such that m < n. The
buffer can also be made to have an unbounded maxinmm delay by removing state 4 and
adding a transition on ~ from state 3 back to state 3.

The trace theory verifier has been extended to include virtual wires in this way. Check-
ing that a circuit satisfies a specification has the same complexity as before. Examples
of using the verifier to check the correctness of circuits can be found in [2] and [3].

(
' " Start x x

F

)

Figure 4: Automata representing the behavior of the example circuit in Figure 2.

229

3 Convert ing Liveness to Safety

Let trace structure 7" model a buffer with input b, ou tpu t z, and vir tual wire ~a tha t has
a min imum delay of zero and a max imum delay of one. Normally, the presence of a ~s in
a trace in 7" indicates the passage of a unit of time. For the purpose of converting liveness
properties to safety properties, we propose a different interpretation. A transit ion on b
can be seen as placing an obligation on the buffer to eventually toggle x in response. We
interpret the n th ~s in a trace to mean tha t the buffer has me t all such obligations tha t
the environment placed on it before the (n - 1)th ~3 in the trace. In this interpretat ion,
there need not be a constant, or even bounded, amount of t ime between each ~a.

As an example of how this interpretation can be used to verify liveness properties,
consider verifying tha t two buffers in series conform to a single buffer. Let t race s tructure

model a buffer with input b and output c, and let ~ model a buffer with input c
and output x. Both trace structures have a single vir tual wire ~i, with a min imum
delay of zero and a max imum delay of one. In order to show tha t "2"1 o ~ conforms to
the specification, we compose 7-1 o 7-~ with a constraining trace s tructure C. The trace
structure C has no inputs or outputs, but has vir tual wires ~i and ~ , . The sole purpose of
C is to constrain the transitions on the vir tual wires so tha t there must be at least three
transitions of ~i between any two transitions of ~s- Three is the min imum necessary
to assure tha t the two buffers in series satisfy their obligation to transit ion x before a
transit ion of ~ , . The au tomat ic verifier can be used to show tha t

hide({c, ~i})[T1 o ~ o C] ~ 7".

I f C is chosen badly, then the verifier may incorrectly report tha t the circuit does not
conform to the specification. The user is required to find a C tha t allows the verification
to go through. Regardless of what C is used, however, the verifier will never repor t tha t a
circuit conforms to a specification when in fact it does not. In this sense, the verification
method is conservative.

4 Mapping to C o m p l e t e Traces

In the previous section, we described a specification for a live buffer in te rms of a t imed
trace structure. But it may not be intuitively clear tha t the t imed trace s tructure captures
the properties of a live buffer. This section describes a way of addressing tha t problem.

In [5], Dill describes a version of trace theory, called complete trace theory, where
liveness propert ies are modeled using infinite traces. Dill describes a complete trace
structure tha t is a specification for a live buffer, as a special case of a live gate. I t is easy
to give an intuitive argument tha t this complete trace structure accurately captures the
properties of a live buffer. I f it could be shown that the t imed trace specification for a
live buffer was in some way equivalent to the complete trace specification, tha t would be
strong evidence tha t the t imed trace specification is correct.

One way to do this is to define a mapping • from t imed trace structures to complete
trace structures such tha t

230

and such that the t imed trace specification of the live buffer is mapped by • to the com-
plete trace specification. As an example of why the implication is in only one direction,
let ~ be a buffer with a maximum delay of one and let T2 be a buffer with a maxinmm
delay of two. Both ~rl and Y~ have a mininmm delay of zero, and have one virtual wire
~. In this case ¢(T1) = ¢(~r2), so ~(T~) _ ~(T1). However ~ clearly does not conform
to T1.

The definition of such a mapping ~, and proofs of its properties, are included in the
full version of the paper [4].

5 Fair M u t u a l Exc lus ion E x a m p l e

The verification example above for buffers only deals with a simple kind of liveness
property. In this section to use the verifier to check a strong fairness property, which is
a more difficult kind of liveness property.

The specification for a fair mutual exclusion element has inputs ai and bi and outputs
ao and bo. It requires that any transition on ai be followed by a transition on ao with a
maximnm delay of one, as measured against the virtual wire ~ , . A similar requirement
is placed on bi and bo. Again, this does not represent a bounded response time. The
response time is unbounded since there is not assumed to be a bound on the amount
of time between transitions of ~s. However, this specification can not be satisfied by
any implementation unless it is assumed that the environment will always eventually
release the mutual exclusion element. This assumption is represented by introducing
another virtual wire ~r. After a request is granted by the mutual exclusion element,
the environment must release it with a maximum delay of one, as measured against ~r.
Otherwise, it is a failure. This does not actually bound the time for which a channel
can hold the mutual exclusion element. It simply means that the environment must
constrain ~r so that the mutual exclusion element is released before there are to many
~r transitions. Let q" be the trace structure representing this specification, Also, let
:T1 represent a buffer with input ai and output ao and a maximum delay of one, as
measured against ~ , . Finally, let ~ represent an inverter with input bo and output bi
and a maximum delay of one, as measured against ~r. The automatic verifier can be
used to show that

hide({ bi, bo, ~or })[T o T2] "< ~ .

This is evidence that the formal specification captures the desired informal specification
for a fair mutual exclusion element.

The verifier was used to verify the speed-independent fair mutual exclusion circuit
described in [2]. This involves modeling each component of the circuit as having a
maximum delay of one relative to a virtual wire ~ , and then constraining ~o, relative ~o~
and ~or.

It is straightforward to define a complete trace structure that is a specification for
fair mutual exclusion. The mapping ~ described above maps the t imed trace theory
specification for fair mutual exclusion to such a complete trace specification. This shows
tha t the notion of fair mutual exclusion is accurately modeled by the t imed trace theory
specification.

In [1] Black shows that conventional finite traces cannot model delay-insensitive fair
mutual exclusion. His arguments can be used to show that conventional finite traces

231

cannot model speed-independent fair mutual exclusion if there is no bound on the number
requests granted to one channel before a request is granted to the other channel, as
in the specification above. Black proposed that infinite traces be used to model fair
mutual exclusion. We have shown how trace theory can be modified to model fair mutual
exclusion without introducing infinite traces.

6 C o n c l u s i o n s

We have shown how liveness properties, such as unbounded fairness, can be converted to
safety properties. This makes possible the automatic verification of liveness properties
using finite traces. No new algorithms are needed, just a reinterpretation of the meaning
of timed traces. We showed this new interpretation makes sense by defining a map-
ping ff from timed trace structure to complete trace structures that have infinite traces.
This mapping preserves conformation, and maps specifications in timed trace theory to
specifications in complete trace theory that are more obviously correct.

Unfortunately, tests indicate that the method presented here may not be efficient in
practice. The same fair mutual exclusion circuit that was verified in this paper was veri-
fied more quickly using CTL in [2]. Verifying the circuit with timed traces required that
a much larger state space be explored than was necessary using CTL. Thus, the results
in this paper may be of more theoretical than practical interest. However, there may be
areas of practical application. For example, in machine aided verification techniques like
those in [9], a circuit is proved correct by proving it satisfies an invariant. Previously,
only safety properties could be verified in this way. But the method described here might
be adapted to allow verification techniques based on invariants to also verify unbounded
liveness properties.

R e f e r e n c e s

[1] David L. Black. On the existence of fair delay-insensitive arbiters: Trace theory and
its limitations. Distributed Computing, 1(4):205-225, 1986.

[2] Jerry R. Butch. Combining CTL, trace theory and timing models. In Joseph Sifakis,
editor, Automatic Verification Methods for Finite State Systems, International Work-
shop, Grenoble, France, volume 407 of Lecture Notes in Computer Science. Springer-
Verlag, June 1989.

[3] Jerry R. Burch. Modeling timing assumptions with trace theory. In IEEE Interna-
tional Conference on Compuler Design, October 1989.

[4] Jerry R. Burch. Verifying liveness properties by verifying safety properties. In Robert
Kurshan and Edmund M. Clarke, editors, Computer-Aided Verification, Proceedings
of the 1990 Workshop, volume 3 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1991. To appear.

[5] David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. PhD thesis, Carnegie Mellon University, Pittsburgh, PA 15213,
1988. Also appeared as [7].

232

[6] David L. Dill. Trace theory for automatic hierarchical verification of speed-
independent circuits. In Jonathan Alien and F. Thomson Leighton, editor, Advanced
Research in VLSI: Proceedings of the Fifth MIT Conference. MIT Press, 1988.

[7] David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

[8] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

[9] Jorgen Staunstrup, Stephen J. Garland, and John V. Guttag. Localized verification
of circuit descriptions. In Joseph Sifakis, editor, Automatic Verification Methods
for Finite State Systems, International Workshop, Grenoble, France, volume 407 of
Lecture Notes in Computer Science. Springer-Verlag, June 1989.

