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Abst rac t  

This paper addresses the problem of designing memory efficient algorithms for the verifi- 
cation of temporal properties of finite-state programs. Both the programs and their desired 
temporal properties are modeled as automata on infinite words (Biichi automata). Verifica- 
tion is then reduced to checking the emptiness of the automaton resulting from the product 
of the program and the property. This problem is usually solved by computing the strongly 
connected components of the graph representing the product automaton. Here, we present 
algorithms which solve the emptiness problem without explicitly constructing the strongly 
connected components of the product graph. By allowing the algorithms to err with a small 
probability, we can implement them with a randomly accessed memory of size O(n) bits, 
where n is the number of states of the graph, instead of O(r~ log n) bits which the presently 
known algorithms require. 

1 I n t r o d u c t i o n  

Reachability analysis is one of the most successful strategies for analyzing and validating com- 
puter protocols. It  was first proposed by West [Wes78], and further studied by many researchers 
(cf. [Liu89, R.ud8?]. R.eachability analysis is applied to a protocol by systematically exercising 
all the protocol transitions. Such analysis can detect syntactical errors such as static deadlock, 
unspecified reception, or unezercised code. The simplicity of the strategy lends itself to easy im- 
plementation. Indeed, automated reachability analyses detected errors in published standards 
such as the X.21 (cf. [WZ78]). The approach is less successful when it comes to protocol verifica- 
tion, i.e., verifying that  the given protocol achieves its functional specification. This limitation is 
due to the fact that  a functional specification cannot be directly checked by reachability analysis. 
To apply reachability analysis to such a task, one first has to manually translate the functional 
specification to a property of the protocol state graph. While this can be done for some specific 
specifications (cf. [RW82]), it is not a general approach. 
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A general approach to protocol verification is to use a theorem-prover for an appropriate 
logic. Early systems used to focus on input/output behavior of protocols rather than on ongoing 
behavior (cf. [Sun83]), but systems that are based on temporal logic overcame this shortcoming 
(cf. [Hai85]). Unfortunately, theorem-proving systems are semi-automated at best, and their 
success at dealing with real-life protocols is not as impressive as that of reachability analysis (cf. 
[GJL84]). 

A new approach that emerged in the 1980's is the so-called model-checking approach [CES86, 
CG87, LP85, QS81]. Model checking is based on the idea that verifying a propositional temporal 
logic property of a finite-state program amounts to evaluating that formula on the program 
viewed as a temporal interpretation. The algorithms for doing this are quite efficient, since 
their time complexity is a linear function of the size of the program. As was shown later 
in the automata-theoretic approach of [Var89, VW86, Wo189], model checking can be viewed 
as an augmented reachability analysis; the model-checking algorithm uses the temporal logic 
specification to guide the search of the protocol state space in order to verify that the protocol 
satisfies its functional specification. Model checking thus seems to solve one of the limits of 
reachability analysis: the inability to automatically verify functional specifications. 

Model checking suffers, however, from the same fundamental problem plaguing the reach- 
ability-analysis approach: the ability to explore only limited-size state spaces. This problem, 
called the state-ezplosion problem, is the most basic limitation of both approaches. It has 
been the subject of extensive research both in the context of reachability analysis (el. [Liu89, 
Itud87]) and in the context of model checking (el. [CG87]). A recent development [Ho188] has 
substantially pushed hack the state-explosion limit for reachability analysis. The main idea 
behind this development is that, at the price of possibly missing part of the state space, the 
amount of randomly accessed memory necessary for exploring a state space of a given size could 
be substantially reduced (essentially from O(nlog(n)) to O(n) for a graph with n states). The 
essence of the method is the use of hashing without collision detection. 

In this paper, we show that model checking can also benefit from a similar reduction in the 
required random memory. This result is obtained by a combination of techniques. We approach 
model checking from the automata-theoretic perspective of [Vat89, VW86, Wo189]. This has 
the advantage of essentially reducing model checking to teachability analysis, though on a state 
space that is the cross product of the original state space with the state space of an automaton 
describing the functional specification. It is then possible to adapt techniques inspired by those 
of [Ho188] to solve this problem. However, while Holtzmann's technique is suitable for searching 
for "bad" states in the state space, model checking involves searching for "bad" cycles. We thus 
had to develop some special purpose algorithms that are presented here. 

This paper is organized as follows. We first review some background on model checking using 
the automata-theoretic approach and define the corresponding graph-theoretic problem. Then, 
we discuss the requirements that algorithms for solving this problem have to satisfy. Next we 
present our solutions. Finally, we present some extensions and some final remarks. 

2 Temporal Logic Verification using Biichi Automata 

The model-checking problem we consider is the following. Given a program P described as 
a product of finite-state transition systems P~ and a temporal logic formula f ,  check that all 
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infinite computations of P satisfy f .  To solve this problem, we use the following steps: 

1. Build the finite-automaton on infinite words for the negation of the formula f (one uses the 
negation of the formula as this yields a more efficient algorithm). The resulting automaton 
is A-,/. 

2. Take the product of the program P = ~ / ~  and the automaton A-,I. 

3. Check if the product automaton is non-empty. 

The approach we have just outlined has one major advantage over other model-checking 
approaches: it does not build the entire state graph for the program (the product of  the Pi) 
before checking that it satisfies the temporal property f .  Indeed, the product 1"I Pi × A.,$ can 
be computed in one pass. This can lead to more efficiency for various reasons. In the first place, 
the product of P and A.,I  only.accepts sequences that  do not satisfy the requirement. One 
expects few of these (none if the program is correct). It is thus possible that the product of P 
and A-,! will have fewer reachable states than P.  Furthermore, when building P × A-,I, it is 
not necessary to store the whole state-graph. It  is sufficient to keep just enough information 
for checking that  condition 3 above is satisfied. This is exactly what the algorithms we present 
in Section 3 will do. The advantages of reducing model checking to a teachability problem are 
also investigated in [JJ89], but  only for pure safety properties. In that case, it is sufficient to 
check that  some states are simply reachable and the algorithms we develop in this paper are not 
needed. 

To be able to describe our algorithms, we need more details about Biichl automata and how 
to cheek their emptiness. A B~chi automaton is a tuple A = (~,  S,p,  So, F) ,  where 

* E is an alphabet, 

• S is a set of states, 

* p : S × ~ --* 2 s is a nondeterministic transition function, 

• So C_ B is a set of starting states, and 

• _F C_ S is a set of designated states. 

A run of A over an infinite word w = ala2 . . . ,  is an infinite sequence s0 ,81 , . . . ,  where 
so E 8o and 81 E p(s i - l ,a l ) ,  for all i > 1. A run 8o,sl . . . .  is acceptlngif there is some designated 
state that  repeats infinitely often, i.e., for some s E F there are infinitely many i 's such that  
sl = s. The infinite word w is accepted by A if there is an accepting run of A over w. The set 
of denumerable words accepted by A is denoted L(A). 

From the definition of Biichi automata, it is relatively easy to see that  a Biichi automaton 
is nonempty iff it has some state f E F that is reachable from the initial state and reachable 
from itself (in one or more steps) [VW88]. In graph theoretic terms, this means that  the graph 
representing the automaton has a reachable cycle that contains at least one state in F.  In what 
follows, we will give a memory-efficient algorithm to solve this problem. 

To formalize our verification approach, we define a program P as being a finite-state transi- 

tion system consisting of 
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* a state space V, 

* a nondeterministic transition function a : V x E -* 2 V (E is the alphabet common to the 
program and the automaton for the property A.,l) and 

• a set of starting states V0 C_ V. 

The accepting runs of P are defined by viewing P as a restricted type of Biichi automaton in 
which the set of designated states is the whole set of states V. 

According to the definitions above, if A .  l = (~,S,p, So, F), the product P x A-, 1 is a Biichi 
automaton with 

• state set V x S, 

• transition function r : V × S --~ 2 v × s  defined by (v2,s2) e r((vl ,s l ) ,a)  iffv2 • ct(Vl,a) 
and s2 • p(sl, a), 

• and set of designated states V x F. 

This product automaton accepts all runs which are possible behaviors of P (accepted by the 
automaton P) and violate the formula f (are accepted by the automaton A.,I). Hence we have 
reduced the problem of proving that the program P satisfies the formula f to the problem of 
checking the emptiness of the Biichi automaton P x A-ft. 

It is interesting to note that the product automaton P × A-, 1 has the Bilchi type of acceptance 
condition because the acceptance condition for P is the trivial one. In the case in which the 
program P is modeled as an arbitrary Biichi automaton, the problem of checking the emptiness 
of P x A-,! is different and will be examined in Section 4. 

3 Ve r i f i c a t i on  A l g o r i t h m s  

3.1 Requirements on the Algorithms 

We characterize the memory requirements of any verification algorithm as follows. We consider 
the data structures used by the algorithm. The total amount of space used by these data 
structures corresponds to the total space requirements of the algorithm. The above space can 
be divided into memory that is randomly accessed and into memory that is sequentially accessed. 
For example, for implementing a hash table we need randomly accessed memory, while a stack 

can be implemented with sequentially accessed memory. 
As correctly pointed out in [Ho188], the bottleneck in the performance of most verification 

algorithms is directly related to ~he amount of the randomly accessed memory these algorithms 
require, and is due to the significant amount of paging involved during the execution of the algo- 
rithm. Holzmann observed that there is a tremendous speed-up for an algorithm implemented 
so that its randomly accessed memory requirements do not exceed the main memory available 
in the system (since sequentially accessed memory can be implemented in secondary storage). 

The l~asic problem that Holzmann considered is how to perform reachability analysis by 
using the least amount of randomly accessed memory. For a graph with n states, his scheme 
involves a depth-first search in the graph, where the information about the states visited is 
stored in a bit-array of size m as follows. When a new state is generated, its name is hashed 
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into an address in the array; if the bit of the corresponding location is on, then the algorithm 
considers that the above state has already been visited; if the bit is of[" then it sets the bit and 
adds the state on the stack used by the depth-first search. Since there is no collision detection it 
follows that the above search is partial; there is always a possibility that a state will be missed. 

The key assumption behind this method, see [Ho188], is that in general one can choose the 
value of m large enough and construct a hash function so that the number of collisions becomes 
arbitrarily small. Furthermore, since the limiting factor in teachability analysis is usually the 
space required by the computation rather than the time required to do the computation, one 
could significantly reduce the probability of error by running the algorithm a few times with 
different hash functions. Indeed, Holzmann claims that, for most pract/cal applications, choosing 
a hash table of size m = O(n) together with appropriate hash functions is sufficient for the effect 
of collisions to become insignificant. Is this really so? 

To answer this question, let us consider the memory requirements of the general reachability 
problem defined as follows. We "assume that the states of the graph G have names from a 
name space U. In many applications (for example protocols), ]U[ is many orders of magnitude 
larger than the number n of reachable states of G. In this case, complete teachability analysis 
(no missed states whatever the input graph) appears to require O(n log [U]) bits of randomly 
accessed memory, and probably can not be done with less memory (unless the names of the 
reachable states of G are not randomly selected from U). Indeed, representing each state with 
less than log ]U[ bits amounts to mapping the state space U to a smaller state space. Now, for 
any such mapping there will always be subsets of U on which it is not one-to-one and hence on 
which complete reachability will not be guaranteed. 

The situation is different is one analyses the problem from a probahilistic point of view. 
Consider all possible mappings from the set S = {1 . . . . .  n} into the set {1 . . . .  ,m}. There are 
m n such mappings of which m!/(m - n)! are one-to-one. Thus, if one assumes that the mapping 
implemented by a hash function is randomly selected, the probability that it is one-to-one (no 
collisions) is m!/((m - n)!m '~ which for n <<  m can be approximated by e -n2/~. This implies 
that in the case of a name space U and a graph with n reachable states, we can do partial 

teachability (with arbitrarily small probability of missing reachable states) by using O(nlog n) 
bits of randomly accessed memory (instead of O(nlog [U D bits for complete reachability) as 
follows. First hash the n reachable states into a set 1 , . . . ,  m with an arbitrarily small probability 
of collision. As we have just seen, this is possible if we take m -- O(n2). Then, do complete 
reachabillty using the set 1, . . .  ,m as the name space for the states. 

Holtzmann's technique goes one step further and only uses one bit of randomly accessed 
memory per reachable state. This is equivalent to assuming that there exists a hash function 
mapping U into 1 , . . . ,m ,  m = O(n), with a small probability of collisions. As the analysis 
above shows, this is not possible if we just assume that the hash function is random. It can 
however be possible if the state space U is only of size O(n) or if the set of reachable states has a 
particular structure that can be used by the hash function. In these cases, the gain in randomly 
accessed memory, size O(n) instead of size O(nlog [U[) is quite significant for large state spaces. 

However, this gain in memory use is only obtained for straightforward reachability analysis. 

To verify general temporal properties we have to check nonemptiness of the product automaton. 
One way to accomplish this is to construct the strongly connected component of the product 
automaton state graph and then to check whether one of the strongly connected component con- 
tains an accepting state. Unfortunately, we cannot apply ttoltzmann's method to the standard 



238 

algorithm for constructing the strongly connected components of the graph [AHU74]. Indeed, 
although in that algorithm the states of the components axe stored in a stack, it requires access 
to information (depth-first and low-link number) about states randomly placed in the stack, 
which implies the need of at least O(nlog n) bits of randomly accessed memory. Hence, given 
a fixed amount of memory, the size of the problems we could efficiently analyze with the above 
algorithm is substantially smaller than the size of the problem that can be analyzed with the 
technique of [Ho188]. 

From the previous discussion the following problem emerges. Assuming that reachability 
analysis in graphs of size n can be efficiently done with randomly accessed memory of size O(n), 
can we solve the emptiness problem for Biichi automata using only randomly accessed memory 
of size O(n)? The answer to this problem is positive and the corresponding algorithms axe 
described in the following section. 

3.2 T h e  Algorithms 

In this section we provide algorithms for the following problem. 

P r o b l e m  1 ( n o n e m p t i n e s s  of  Biichi  a u t o m a t a )  Given directed graph G, start node so, dis- 
tinguished set of  accepting nodes F, determine whether there is a member o f F  which is reachable 
from so and belongs to a cycle, or equivalently, to a nontrivial strong component. 

We make the following representation assumptions. The graph G is given by a successor 
function: a function that takes a node as argument and returns an ordered list of its successors. 
The set F is specified by a membership routine. We assume that we have a function h mapping 
one-to-one every node to an integer in the range 1 , . . . ,  m. 

Algorithm A: 
The algorithm consists of two depth-first-searches (DFS's). The two searches can be performed 
one after the other, or can be done together in an interleaved fashion. I t  is simpler to describe 
first the noninterleaved execution. The purpose of the first DFS is to (1) determine the members 
of F that axe reachable from so, and (2) order them according to last visit (i.e., in postorder) 
as f l , . . .  ,fk. 1 The second DFS explores the graph using this ordering; it does not perform k 
searches but only one. In more detail, the main data structures axe as follows: a stack S (to hold 
the path of DFS from root to current node), a (FIFO) queue Q to hold the reachable members 
of F in postorder and a bit-axray M indexed by the hash values 1 . . . . .  m for the "marked" bit 
(whether the node has been visited). The two passes share the same structures S and M. 

The first DFS is as follows: 

1. Initialize: 8 := [so], M := 0, Q := 0. 
2. Loop: while S ~ 0 do 

begin 
v := top(S); 
if M[h(w)] = 1 for all w E succ(v) 

then begin 
pop v from S; 
if v E F insert v into Q 

1fl is the first postorder reachable accepting state and fk is the last 
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end 

else begin 
let w be the first member of succ(v) with M[h(w)] -- O; 
M[h(w)] := 1; 
push w into ,q 

end 

The second DFS is as follows: 

1. Initialize: 6" := 0, M := 0. 
2. Loop: while O-~ 0 do 

begin 

f := head(O); 
remove f from Q; 
push f into S; 
while S # 0 do 

begin 
v := top(S); 
if f E succ(v) then halt and return "YES"; 
if M[h(w)] = I for all w q succ(v) 

then pop v from S 
else begin 

let w be the first member of succ(v) with M[h(w)] = O; 
M[h(w)] := 1; 
push w into S 

end 
end 

end 

The correctness of the algorithm is based on the following claims. 

L e m m a  1 Let f l , . . . , f k  be the members of O after the first DFS, i.e., the members o f f  that 
are reachable from so in postorder (fl is the first member of F to be reached in postorder, fk the 
last). I f  for some pair fi, f j  with i < j there is a path from fi to f j ,  then node fi belongs to a 
nontrivial strong component. 

Proof: Suppose that  there is a path from fl to f j .  If no node on this path was marked 
before fi, then the DFS would have reached f j  from fi, so f j  would have come before fl in the 
postorder. Thus, some node p on the path was marked before fi. If  p comes before fi in the 
postorder, then f j  also should come before fi in the postorder. Since p was marked before fl, 
but  comes after fl  in the postorder, it must be an ancestor of fi. Thus, fi can reach an ancestor 
and therefore belongs to a nontrivial strong component. 13 

T h e o r e m  1 If  the second DFS halts and returns "YES", then some reachable node o fF  belongs 
to a nontrivial strongly connected component. Conversely, suppose that some reachable node o f F  
belongs to a nontrivial strongly connected component. Then the second DFS will return "YES". 
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Proof: The first part is clear: suppose the second DFS returns "YES" while processing node 
fj  of Q. Then, it is building a tree with root fj and discovers a back edge to the root f j ,  and 
therefore f j  is obviously in a cycle. For the converse, let fj be a reachable member of F that 
belongs to a nontrivial strongly connected component and has the smallest index j among all 
such members. Consider a path p from fj to itself. We claim that no node of p is reachable 
from a f l  with a smaller i. For, if some node was reachable, then fl would also reach fj ,  which 
by Lemma 1 contradicts the choice of fj. Therefore, no node of the path p is marked when we 
push f j  into S in the second DFS, and thus we will find a back edge to the root fj. 13 

Note that the creation of both S and Q and access to them in both searches are sequential. 
Hence, both can be stored in secondary memory as needed. 

So far we analyzed the algorithm under the assumption that the hash function f is perfect. 
One of the main features of our algorithm is its behavior in the presence of hash collisions. In 
that case, although the algorithm" might erroneously conclude (due to collisions) that the Biichi 
automaton does not accept any word, it will never mistakenly conclude that the automaton ac- 
cepts some word. In terms of the underlying verification problem, this means that our algorithm 
might miss some errors, but will never falsely claim that the protocol is incorrect. Thus, the 
algorithm should be viewed more as a systematic debugging tools rather than as a verification 
tool. 

An alternative is to do away with the queue Q and instead immediately start the second 
depth-first search each time a final state is encountered. Once the second search from a state is 
finished, the first search is resumed. To do this, one needs a second stack 3'2 and a second bit 
array M2 and hence one uses twice as much space as that required by the first algorithm. The 
advantage is that if the automaton is found to be nonempty, an accepted word can be extracted 
from the stacks $1 and $2. In verification terms, this means that, if the protocol is found to 
be incorrect by the algorithm, a sample incorrect path can be produced. This is essential for 
debugging to be possible. 

4 Extensions and Concluding Remarks 

An extension of the verification problem described in Section 2 is the verification of programs 
with liveness conditions, see [ACW90]. In this case the program is given in terms of components, 
each having it own liveness conditions. Each such component is modeled as a Biichi automaton. 
Hence, the product P x A., 1 corresponds to an automaton whose transition table G is the 
product of the corresponding transition tables and its acceptance condition is given in terms of 
a set of sets of designated states {F1,...  ,Fk}. A run is accepting if it repeats some state from 
each of these sets infinitely often. Clearly, checking the emptiness of P × A~ 1 is equivalent with 
checking for the existence of a strongly connected component in the product transition table 
wlfich is reachable from the initial state and intersects all these sets. Let 3' be the state space 
of the product transition table. We can construct a Biichi automaton B with k[SI states, such 
that the emptiness of B is equivalent with the emptiness of P × A.,y (see for instance [VW86]). 

• The graph of B consists of k copies of G with the transitions modified as follows. Consider 
the k copies (71 . . . .  ,Gk of G. For i = 1 , . . . ,k ,  replace the transitions from every state 

f E Fi of Gi by similar transitions to the states in G(irnodk)+l. 
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• The initial states of B are those of one copy of G, say G1. 

• The accepting states of B are the states _~ of the copy Gi of G, for some arbitrary i. For 
instance we can take .FI C G1. 

Hence, if we apply the algorithms of the previous section to 13, we can do verification with 

O(klSl) bits of randomly accessed memory. 

Another remark is the following. In many applications it is reasonable to assume that the 

predecessor function of the graph is given as well. In this case one can use the algorithm in 

Section 6.7 in [AHU82] for constructing the strongly connected components of the graph G by 

using randomly accessed memory of size O(n). Let Gr be the directed graph corresponding to 
G by reversing its edges. This algorithm performs first a DFS on G and numbers the states in 

order of completion of the recursive calls (in postorder). This can be implemented by pushing 

the states in a stack according to their postorder visit by the DFS; this stack can use sequentially 

accessed memory. Then the algorithm performs a DFS on G~ (by using the predecessor function 

of G) starting with the state with the highest postorder sequence number (top of stack). This 

DFS on Gr must be restricted to the states reached during the first DFS, and uses a hashing 

mechanism for marking the states already visited. If the search does not reach all states, the 

algorithm starts the next DFS on C~ from the highest-numbered state which has not been 
already visited by the previous DFS. This can be easily done by poping the postorder stack 

until a state which has not been visited (the corresponding bit in the hash table is zero) is 

found. Since each tree in the resulting spanning forest is a strongly connected component, one 

can easily check for the properties of each such component while it is being generated. 
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