
Memory Efficient Algorithms for the Verification
of Temporal Properties

C. Courcoubetis* M. Vardi P. Wolper§
Inst. of Comp. Sd. IBM Almaden~ Un. de Liege I

of Crete t

M. Ya~unakakis
AT&T Bell Labsll

Abst rac t

This paper addresses the problem of designing memory efficient algorithms for the verifi-
cation of temporal properties of finite-state programs. Both the programs and their desired
temporal properties are modeled as automata on infinite words (Biichi automata). Verifica-
tion is then reduced to checking the emptiness of the automaton resulting from the product
of the program and the property. This problem is usually solved by computing the strongly
connected components of the graph representing the product automaton. Here, we present
algorithms which solve the emptiness problem without explicitly constructing the strongly
connected components of the product graph. By allowing the algorithms to err with a small
probability, we can implement them with a randomly accessed memory of size O(n) bits,
where n is the number of states of the graph, instead of O(r~ log n) bits which the presently
known algorithms require.

1 I n t r o d u c t i o n

Reachability analysis is one of the most successful strategies for analyzing and validating com-
puter protocols. It was first proposed by West [Wes78], and further studied by many researchers
(cf. [Liu89, R.ud8?]. R.eachability analysis is applied to a protocol by systematically exercising
all the protocol transitions. Such analysis can detect syntactical errors such as static deadlock,
unspecified reception, or unezercised code. The simplicity of the strategy lends itself to easy im-
plementation. Indeed, automated reachability analyses detected errors in published standards
such as the X.21 (cf. [WZ78]). The approach is less successful when it comes to protocol verifica-
tion, i.e., verifying that the given protocol achieves its functional specification. This limitation is
due to the fact that a functional specification cannot be directly checked by reachability analysis.
To apply reachability analysis to such a task, one first has to manually translate the functional
specification to a property of the protocol state graph. While this can be done for some specific
specifications (cf. [RW82]), it is not a general approach.

*The work of this author is partially supported by ESPILIT-BILk project SPEC (3096)
tAddross: 36 Dedalou Street, P.O. Box 1385, 71110 Iraklio, Crete, Greece. Emaih courcou@ariadne.uucp
tAddress: Department K55/802, 650 Harry Road San Jose, California 95120*6099, U.S.A. Email:

v~rdiQibm.com
gThe work of this author is partially supported by ESPRIT-BRA project SPEC (3096)
~Address: Institut Montefiore, B28, B-4000 Liege Sart-Tilman, Belgium. Email: pwGmontefiore.ulg.ac.be
nAddress: 600 Mountain Avenue, Murray Hill, New Jersey 07974, U.S.A. Ernail: mihaiis@research.att.com

234

A general approach to protocol verification is to use a theorem-prover for an appropriate
logic. Early systems used to focus on input/output behavior of protocols rather than on ongoing
behavior (cf. [Sun83]), but systems that are based on temporal logic overcame this shortcoming
(cf. [Hai85]). Unfortunately, theorem-proving systems are semi-automated at best, and their
success at dealing with real-life protocols is not as impressive as that of reachability analysis (cf.
[GJL84]).

A new approach that emerged in the 1980's is the so-called model-checking approach [CES86,
CG87, LP85, QS81]. Model checking is based on the idea that verifying a propositional temporal
logic property of a finite-state program amounts to evaluating that formula on the program
viewed as a temporal interpretation. The algorithms for doing this are quite efficient, since
their time complexity is a linear function of the size of the program. As was shown later
in the automata-theoretic approach of [Var89, VW86, Wo189], model checking can be viewed
as an augmented reachability analysis; the model-checking algorithm uses the temporal logic
specification to guide the search of the protocol state space in order to verify that the protocol
satisfies its functional specification. Model checking thus seems to solve one of the limits of
reachability analysis: the inability to automatically verify functional specifications.

Model checking suffers, however, from the same fundamental problem plaguing the reach-
ability-analysis approach: the ability to explore only limited-size state spaces. This problem,
called the state-ezplosion problem, is the most basic limitation of both approaches. It has
been the subject of extensive research both in the context of reachability analysis (el. [Liu89,
Itud87]) and in the context of model checking (el. [CG87]). A recent development [Ho188] has
substantially pushed hack the state-explosion limit for reachability analysis. The main idea
behind this development is that, at the price of possibly missing part of the state space, the
amount of randomly accessed memory necessary for exploring a state space of a given size could
be substantially reduced (essentially from O(nlog(n)) to O(n) for a graph with n states). The
essence of the method is the use of hashing without collision detection.

In this paper, we show that model checking can also benefit from a similar reduction in the
required random memory. This result is obtained by a combination of techniques. We approach
model checking from the automata-theoretic perspective of [Vat89, VW86, Wo189]. This has
the advantage of essentially reducing model checking to teachability analysis, though on a state
space that is the cross product of the original state space with the state space of an automaton
describing the functional specification. It is then possible to adapt techniques inspired by those
of [Ho188] to solve this problem. However, while Holtzmann's technique is suitable for searching
for "bad" states in the state space, model checking involves searching for "bad" cycles. We thus
had to develop some special purpose algorithms that are presented here.

This paper is organized as follows. We first review some background on model checking using
the automata-theoretic approach and define the corresponding graph-theoretic problem. Then,
we discuss the requirements that algorithms for solving this problem have to satisfy. Next we
present our solutions. Finally, we present some extensions and some final remarks.

2 Temporal Logic Verification using Biichi Automata

The model-checking problem we consider is the following. Given a program P described as
a product of finite-state transition systems P~ and a temporal logic formula f , check that all

235

infinite computations of P satisfy f . To solve this problem, we use the following steps:

1. Build the finite-automaton on infinite words for the negation of the formula f (one uses the
negation of the formula as this yields a more efficient algorithm). The resulting automaton
is A-,/.

2. Take the product of the program P = ~ / ~ and the automaton A-,I.

3. Check if the product automaton is non-empty.

The approach we have just outlined has one major advantage over other model-checking
approaches: it does not build the entire state graph for the program (the product of the Pi)
before checking that it satisfies the temporal property f . Indeed, the product 1"I Pi × A.,$ can
be computed in one pass. This can lead to more efficiency for various reasons. In the first place,
the product of P and A.,I only.accepts sequences that do not satisfy the requirement. One
expects few of these (none if the program is correct). It is thus possible that the product of P
and A-,! will have fewer reachable states than P. Furthermore, when building P × A-,I, it is
not necessary to store the whole state-graph. It is sufficient to keep just enough information
for checking that condition 3 above is satisfied. This is exactly what the algorithms we present
in Section 3 will do. The advantages of reducing model checking to a teachability problem are
also investigated in [JJ89], but only for pure safety properties. In that case, it is sufficient to
check that some states are simply reachable and the algorithms we develop in this paper are not
needed.

To be able to describe our algorithms, we need more details about Biichl automata and how
to cheek their emptiness. A B~chi automaton is a tuple A = (~, S,p, So, F) , where

* E is an alphabet,

• S is a set of states,

* p : S × ~ --* 2 s is a nondeterministic transition function,

• So C_ B is a set of starting states, and

• _F C_ S is a set of designated states.

A run of A over an infinite word w = ala2 . . . , is an infinite sequence s0 ,81 , . . . , where
so E 8o and 81 E p(s i - l ,a l) , for all i > 1. A run 8o,sl is acceptlngif there is some designated
state that repeats infinitely often, i.e., for some s E F there are infinitely many i 's such that
sl = s. The infinite word w is accepted by A if there is an accepting run of A over w. The set
of denumerable words accepted by A is denoted L(A).

From the definition of Biichi automata, it is relatively easy to see that a Biichi automaton
is nonempty iff it has some state f E F that is reachable from the initial state and reachable
from itself (in one or more steps) [VW88]. In graph theoretic terms, this means that the graph
representing the automaton has a reachable cycle that contains at least one state in F. In what
follows, we will give a memory-efficient algorithm to solve this problem.

To formalize our verification approach, we define a program P as being a finite-state transi-

tion system consisting of

236

* a state space V,

* a nondeterministic transition function a : V x E -* 2 V (E is the alphabet common to the
program and the automaton for the property A.,l) and

• a set of starting states V0 C_ V.

The accepting runs of P are defined by viewing P as a restricted type of Biichi automaton in
which the set of designated states is the whole set of states V.

According to the definitions above, if A . l = (~,S,p, So, F), the product P x A-, 1 is a Biichi
automaton with

• state set V x S,

• transition function r : V × S --~ 2 v × s defined by (v2,s2) e r((vl ,s l) ,a) iffv2 • ct(Vl,a)
and s2 • p(sl, a),

• and set of designated states V x F.

This product automaton accepts all runs which are possible behaviors of P (accepted by the
automaton P) and violate the formula f (are accepted by the automaton A.,I). Hence we have
reduced the problem of proving that the program P satisfies the formula f to the problem of
checking the emptiness of the Biichi automaton P x A-ft.

It is interesting to note that the product automaton P × A-, 1 has the Bilchi type of acceptance
condition because the acceptance condition for P is the trivial one. In the case in which the
program P is modeled as an arbitrary Biichi automaton, the problem of checking the emptiness
of P x A-,! is different and will be examined in Section 4.

3 Ve r i f i c a t i on A l g o r i t h m s

3.1 Requirements on the Algorithms

We characterize the memory requirements of any verification algorithm as follows. We consider
the data structures used by the algorithm. The total amount of space used by these data
structures corresponds to the total space requirements of the algorithm. The above space can
be divided into memory that is randomly accessed and into memory that is sequentially accessed.
For example, for implementing a hash table we need randomly accessed memory, while a stack

can be implemented with sequentially accessed memory.
As correctly pointed out in [Ho188], the bottleneck in the performance of most verification

algorithms is directly related to ~he amount of the randomly accessed memory these algorithms
require, and is due to the significant amount of paging involved during the execution of the algo-
rithm. Holzmann observed that there is a tremendous speed-up for an algorithm implemented
so that its randomly accessed memory requirements do not exceed the main memory available
in the system (since sequentially accessed memory can be implemented in secondary storage).

The l~asic problem that Holzmann considered is how to perform reachability analysis by
using the least amount of randomly accessed memory. For a graph with n states, his scheme
involves a depth-first search in the graph, where the information about the states visited is
stored in a bit-array of size m as follows. When a new state is generated, its name is hashed

237

into an address in the array; if the bit of the corresponding location is on, then the algorithm
considers that the above state has already been visited; if the bit is of[" then it sets the bit and
adds the state on the stack used by the depth-first search. Since there is no collision detection it
follows that the above search is partial; there is always a possibility that a state will be missed.

The key assumption behind this method, see [Ho188], is that in general one can choose the
value of m large enough and construct a hash function so that the number of collisions becomes
arbitrarily small. Furthermore, since the limiting factor in teachability analysis is usually the
space required by the computation rather than the time required to do the computation, one
could significantly reduce the probability of error by running the algorithm a few times with
different hash functions. Indeed, Holzmann claims that, for most pract/cal applications, choosing
a hash table of size m = O(n) together with appropriate hash functions is sufficient for the effect
of collisions to become insignificant. Is this really so?

To answer this question, let us consider the memory requirements of the general reachability
problem defined as follows. We "assume that the states of the graph G have names from a
name space U. In many applications (for example protocols),]U[is many orders of magnitude
larger than the number n of reachable states of G. In this case, complete teachability analysis
(no missed states whatever the input graph) appears to require O(n log [U]) bits of randomly
accessed memory, and probably can not be done with less memory (unless the names of the
reachable states of G are not randomly selected from U). Indeed, representing each state with
less than log]U[bits amounts to mapping the state space U to a smaller state space. Now, for
any such mapping there will always be subsets of U on which it is not one-to-one and hence on
which complete reachability will not be guaranteed.

The situation is different is one analyses the problem from a probahilistic point of view.
Consider all possible mappings from the set S = {1 n} into the set {1 ,m}. There are
m n such mappings of which m!/(m - n)! are one-to-one. Thus, if one assumes that the mapping
implemented by a hash function is randomly selected, the probability that it is one-to-one (no
collisions) is m!/((m - n)!m '~ which for n << m can be approximated by e -n2/~. This implies
that in the case of a name space U and a graph with n reachable states, we can do partial

teachability (with arbitrarily small probability of missing reachable states) by using O(nlog n)
bits of randomly accessed memory (instead of O(nlog [U D bits for complete reachability) as
follows. First hash the n reachable states into a set 1 , . . . , m with an arbitrarily small probability
of collision. As we have just seen, this is possible if we take m -- O(n2). Then, do complete
reachabillty using the set 1, . . . ,m as the name space for the states.

Holtzmann's technique goes one step further and only uses one bit of randomly accessed
memory per reachable state. This is equivalent to assuming that there exists a hash function
mapping U into 1 , . . . ,m , m = O(n), with a small probability of collisions. As the analysis
above shows, this is not possible if we just assume that the hash function is random. It can
however be possible if the state space U is only of size O(n) or if the set of reachable states has a
particular structure that can be used by the hash function. In these cases, the gain in randomly
accessed memory, size O(n) instead of size O(nlog [U[) is quite significant for large state spaces.

However, this gain in memory use is only obtained for straightforward reachability analysis.

To verify general temporal properties we have to check nonemptiness of the product automaton.
One way to accomplish this is to construct the strongly connected component of the product
automaton state graph and then to check whether one of the strongly connected component con-
tains an accepting state. Unfortunately, we cannot apply ttoltzmann's method to the standard

238

algorithm for constructing the strongly connected components of the graph [AHU74]. Indeed,
although in that algorithm the states of the components axe stored in a stack, it requires access
to information (depth-first and low-link number) about states randomly placed in the stack,
which implies the need of at least O(nlog n) bits of randomly accessed memory. Hence, given
a fixed amount of memory, the size of the problems we could efficiently analyze with the above
algorithm is substantially smaller than the size of the problem that can be analyzed with the
technique of [Ho188].

From the previous discussion the following problem emerges. Assuming that reachability
analysis in graphs of size n can be efficiently done with randomly accessed memory of size O(n),
can we solve the emptiness problem for Biichi automata using only randomly accessed memory
of size O(n)? The answer to this problem is positive and the corresponding algorithms axe
described in the following section.

3.2 T h e Algorithms

In this section we provide algorithms for the following problem.

P r o b l e m 1 (n o n e m p t i n e s s of Biichi a u t o m a t a) Given directed graph G, start node so, dis-
tinguished set of accepting nodes F, determine whether there is a member o f F which is reachable
from so and belongs to a cycle, or equivalently, to a nontrivial strong component.

We make the following representation assumptions. The graph G is given by a successor
function: a function that takes a node as argument and returns an ordered list of its successors.
The set F is specified by a membership routine. We assume that we have a function h mapping
one-to-one every node to an integer in the range 1 , . . . , m.

Algorithm A:
The algorithm consists of two depth-first-searches (DFS's). The two searches can be performed
one after the other, or can be done together in an interleaved fashion. I t is simpler to describe
first the noninterleaved execution. The purpose of the first DFS is to (1) determine the members
of F that axe reachable from so, and (2) order them according to last visit (i.e., in postorder)
as f l , . . . ,fk. 1 The second DFS explores the graph using this ordering; it does not perform k
searches but only one. In more detail, the main data structures axe as follows: a stack S (to hold
the path of DFS from root to current node), a (FIFO) queue Q to hold the reachable members
of F in postorder and a bit-axray M indexed by the hash values 1 m for the "marked" bit
(whether the node has been visited). The two passes share the same structures S and M.

The first DFS is as follows:

1. Initialize: 8 := [so], M := 0, Q := 0.
2. Loop: while S ~ 0 do

begin
v := top(S);
if M[h(w)] = 1 for all w E succ(v)

then begin
pop v from S;
if v E F insert v into Q

1fl is the first postorder reachable accepting state and fk is the last

end

239

end

else begin
let w be the first member of succ(v) with M[h(w)] -- O;
M[h(w)] := 1;
push w into ,q

end

The second DFS is as follows:

1. Initialize: 6" := 0, M := 0.
2. Loop: while O-~ 0 do

begin

f := head(O);
remove f from Q;
push f into S;
while S # 0 do

begin
v := top(S);
if f E succ(v) then halt and return "YES";
if M[h(w)] = I for all w q succ(v)

then pop v from S
else begin

let w be the first member of succ(v) with M[h(w)] = O;
M[h(w)] := 1;
push w into S

end
end

end

The correctness of the algorithm is based on the following claims.

L e m m a 1 Let f l , . . . , f k be the members of O after the first DFS, i.e., the members o f f that
are reachable from so in postorder (fl is the first member of F to be reached in postorder, fk the
last). I f for some pair fi, f j with i < j there is a path from fi to f j , then node fi belongs to a
nontrivial strong component.

Proof: Suppose that there is a path from fl to f j . If no node on this path was marked
before fi, then the DFS would have reached f j from fi, so f j would have come before fl in the
postorder. Thus, some node p on the path was marked before fi. If p comes before fi in the
postorder, then f j also should come before fi in the postorder. Since p was marked before fl,
but comes after fl in the postorder, it must be an ancestor of fi. Thus, fi can reach an ancestor
and therefore belongs to a nontrivial strong component. 13

T h e o r e m 1 If the second DFS halts and returns "YES", then some reachable node o fF belongs
to a nontrivial strongly connected component. Conversely, suppose that some reachable node o f F
belongs to a nontrivial strongly connected component. Then the second DFS will return "YES".

240

Proof: The first part is clear: suppose the second DFS returns "YES" while processing node
fj of Q. Then, it is building a tree with root fj and discovers a back edge to the root f j , and
therefore f j is obviously in a cycle. For the converse, let fj be a reachable member of F that
belongs to a nontrivial strongly connected component and has the smallest index j among all
such members. Consider a path p from fj to itself. We claim that no node of p is reachable
from a f l with a smaller i. For, if some node was reachable, then fl would also reach fj , which
by Lemma 1 contradicts the choice of fj. Therefore, no node of the path p is marked when we
push f j into S in the second DFS, and thus we will find a back edge to the root fj. 13

Note that the creation of both S and Q and access to them in both searches are sequential.
Hence, both can be stored in secondary memory as needed.

So far we analyzed the algorithm under the assumption that the hash function f is perfect.
One of the main features of our algorithm is its behavior in the presence of hash collisions. In
that case, although the algorithm" might erroneously conclude (due to collisions) that the Biichi
automaton does not accept any word, it will never mistakenly conclude that the automaton ac-
cepts some word. In terms of the underlying verification problem, this means that our algorithm
might miss some errors, but will never falsely claim that the protocol is incorrect. Thus, the
algorithm should be viewed more as a systematic debugging tools rather than as a verification
tool.

An alternative is to do away with the queue Q and instead immediately start the second
depth-first search each time a final state is encountered. Once the second search from a state is
finished, the first search is resumed. To do this, one needs a second stack 3'2 and a second bit
array M2 and hence one uses twice as much space as that required by the first algorithm. The
advantage is that if the automaton is found to be nonempty, an accepted word can be extracted
from the stacks $1 and $2. In verification terms, this means that, if the protocol is found to
be incorrect by the algorithm, a sample incorrect path can be produced. This is essential for
debugging to be possible.

4 Extensions and Concluding Remarks

An extension of the verification problem described in Section 2 is the verification of programs
with liveness conditions, see [ACW90]. In this case the program is given in terms of components,
each having it own liveness conditions. Each such component is modeled as a Biichi automaton.
Hence, the product P x A., 1 corresponds to an automaton whose transition table G is the
product of the corresponding transition tables and its acceptance condition is given in terms of
a set of sets of designated states {F1,... ,Fk}. A run is accepting if it repeats some state from
each of these sets infinitely often. Clearly, checking the emptiness of P × A~ 1 is equivalent with
checking for the existence of a strongly connected component in the product transition table
wlfich is reachable from the initial state and intersects all these sets. Let 3' be the state space
of the product transition table. We can construct a Biichi automaton B with k[SI states, such
that the emptiness of B is equivalent with the emptiness of P × A.,y (see for instance [VW86]).

• The graph of B consists of k copies of G with the transitions modified as follows. Consider
the k copies (71 ,Gk of G. For i = 1 , . . . ,k , replace the transitions from every state

f E Fi of Gi by similar transitions to the states in G(irnodk)+l.

241

• The initial states of B are those of one copy of G, say G1.

• The accepting states of B are the states _~ of the copy Gi of G, for some arbitrary i. For
instance we can take .FI C G1.

Hence, if we apply the algorithms of the previous section to 13, we can do verification with

O(klSl) bits of randomly accessed memory.

Another remark is the following. In many applications it is reasonable to assume that the

predecessor function of the graph is given as well. In this case one can use the algorithm in

Section 6.7 in [AHU82] for constructing the strongly connected components of the graph G by

using randomly accessed memory of size O(n). Let Gr be the directed graph corresponding to
G by reversing its edges. This algorithm performs first a DFS on G and numbers the states in

order of completion of the recursive calls (in postorder). This can be implemented by pushing

the states in a stack according to their postorder visit by the DFS; this stack can use sequentially

accessed memory. Then the algorithm performs a DFS on G~ (by using the predecessor function

of G) starting with the state with the highest postorder sequence number (top of stack). This

DFS on Gr must be restricted to the states reached during the first DFS, and uses a hashing

mechanism for marking the states already visited. If the search does not reach all states, the

algorithm starts the next DFS on C~ from the highest-numbered state which has not been
already visited by the previous DFS. This can be easily done by poping the postorder stack

until a state which has not been visited (the corresponding bit in the hash table is zero) is

found. Since each tree in the resulting spanning forest is a strongly connected component, one

can easily check for the properties of each such component while it is being generated.

R e f e r e n c e s

[ACW90] S. Ag~arwal, C. Courcoubetis, and P. Wolper. Adding liveness properties to coupled
finite-state machines. A CM Transactions on Programmin 9 Languages and Systems,
12(2):303-339, 1990.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis
of Computer Algorithms. Addison Wesley, Reading, 1974.

[AHU82] Alfred V. Aho, John E. I-Iopcroft, and Jeffrey D. Ullman. Data Structures and Algo-
rithms. Addison Wesley, Reading, 1982.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244--263, January 1986.

[CG87] E.M. Clarke and O. Griimberg. Avoiding the state explosion problem in temporal
logic model-checking algorithms. In Proe. 6th ACM Symposium on Principles of
Distributed Computing, pages 294-303, Vancouver, British Columbia, August 1987.

[GJL84] R. Grotz, C. Jard, and C. Lassudrie. Attacking a complex distributed systems from
different sides: an experience with complementary validation tools. In Proc. ,~th Work.
Protocol Specification, Testing, and Verification, pages 3-17. North-Holland, 1984.

[Hal85] B.T. Hailpern. Tools for verifying network protocols. In K. Apt, editor, Logic and
Models of Concurrent Systems, 1~ TO IS1 Series, pages 57-76. Springer-Verlag, 1985.

[Ho188]

[JJ89]

[Liu89]

[LP85]

[QSSZ]

[Rud87]

[Rw82]

[SunS3]

 ar89]

[vw86]

[vws8]

[Wes78]

[Wo189]

[wz78]

242

G. Holzmann. An improved protocol reachability analysis technique. Software Practice
and Ezperience, pages 137-161, February 1988.

C. Jard and T. Jeron. On-line model-checking for finite linear temporal logic spec-
ifications. In Automatic Verification Methods for Finite State Systems, Proc. Int.
Workshop, Grenoble, volume 407, pages 189-196, Grenoble, June 1989. Lecture Notes
in Computer Science, Springer-Verlag.

M.T. Liu. Protocol engineering. Advances in Computing, 29:70-195, 1989.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In Proceedings of the Twelfth A CM Symposium on Principles
of Programming Languages, pages 97-107, New Orleans, January 1985.

J.P. QuieUe and J. Sifakis. Specification and verification of concurrent systems in
cesar. In Proc. 5th Int'l Syrup. on Programming, volume 137, pages 337-351. Springer-
Verlag, Lecture Notes in Computer Science, 1981.

H. Rudin. Network protocols and tools to help produce them. Annual Review of
Computer Science, 2:291-316, 1987.

H. Rudin and C.H. West. A validation technique for tightly-coupled protocols. IEEE
Transactions on Computers, C-312:630-636, 1982.

C.A. Sunshine. Experience with automated protocol verification. In Proceedings of
the International Conference on Communication, pages 1306-1310, 1983.

M. Vardi. Unified verification theory. In B. Banieqbal, H. Barringer, and A. Pnueli,
editors, Proc. Temporal Logic in Specification, volume 398, pages 202-212. Lecture
Notes in Computer Science, Springer-Verlag, 1989.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. Syrup. on Logic in Computer Science, pages 322-331, Cambridge,
june 1986.

M.Y. Vardi and P. Wolper. Reasoning about infinite computation paths. IBM Re-
search Report RJ6209, 1988.

C.H. West. Generalized technique for communication protocol validation. IBM J. of
Res. and DeveL, 22:393--404, 1978.

P. Wolper. On the relation of programs and computations to models of temporal
logic. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Proe. Temporal Logic in
Specification, volume 398, pages 75-123. Lecture Notes in Computer Science, Springer-
Verlag, 1989.

C.H. West and P. Zafiropulo. Automated validation of a communication protocol:
the ccitt x.21 recommendation. IBM Journal of Research and Development, 22:60-
71, 1978.

