
A Proof Lattice-Based Technique for Analyzing

Liveness of Resource Controllers

Ugo Buy R o b e r t Mol l

Department of Electrical Engineering

and Computer Science
University of Illinois

Chicago, Illinois 00610
E-mail: buy~ uicbert.eecs.uic.ed u

Department of Computer
and Information Science

University of Massachusetts
Amherst, Massachusetts 01003

E-mail: moll~cs.umass.edu

1 Introduction and Background

The automatic synthesis of programs is one of the most challenging activities in computa-

tional logic. Deductive approaches to the synthesis of sequential programs have met with

only limited success, in part because of the relative inadequacy of proposed specification

languages for such programs. That is, specifications often turn out to be less enlightening

and more difficult to construct than the code they specify. This is not the state of affairs

with synchronization code. Desired program properties, such as liveness or freedom from

deadlock, are rdatively easy to include in a specification but are quite difficult to discern

in code. Indeed, it is precisely this feature of concurrent programming that makes auto-

mated program synthesis an attractive goal. In this paper we discuss an aspect of the

automatic synthesis of synchronization code for asynchronous processes.

Our synthesis approach conforms to the following paradigm: 1) first a specification is

written in a nonconstructive specification language; 2) that specification is analyzed in

an attempt to establish that crucial concurrency properties are respected; and 3) if the

concurrency properties of the specifications are established, then Ada code is generated.

Here we report on the most difficult part of this process: establishing that a program

specification has a crucial concurrency property, namely liveness. (Other related aspects

of our proposed approach, such as safety properties and deadlock avoidance, are discussed

elsewhere [1]). By liveness we mean a condition that must be satisfied at some point during

the execution of a program. Liveness contrasts with a safety property, a condition that

must hold continuously throughout program execution.

Underlying our approach to synthesis is a model of a concurrent program in which pro-

cesses communicate by accessing and modifying shared resources. This resource-oriented

model uses temporal logic for specification and analysis. By a process we mean an abstract

state machine defining an active computation. A process computation generally requires

allocation of shared resources. By a synchron~er we mean an abstract state machine that

293

defines a set of encapsulated resources [8]. A synchronizer specification is expressed in

terms of the safety and liveness properties that the synchronizer must satisfy. Our ap-

proach to program specifications is similar to that presented in [8], which, however, does

not address the issue of liveness. Synchronizer liveness is the main focus of this paper.

We believe our approach to synthesis and, in particular, our approach to liveness

analysis can be automated for two reasons. First, by identifying indiscernible synchro-

nizer computation states, we drastically reduce the size of the resulting synchronizer state

space graph. Second, by using this graph to drive the formal analysis of program specifi-

cations, we limit the need for general theorem proving capabilities. At present a partial

implementation has been completed.

This paper is organized as follows. Synchronizer specifications are described in sec-

tion 2. A graph model of synchronizer behavior is discussed in section 3. A proof lattice-

based method for liveness analysis is given in section 4 along with the analysis of the

familiar readers/writers example. Some conclusions are presented in section 5.

2 Synchronizer Specifications

Our specification language is built around the concept of the state of the resources encap-

sulated in a synchronizer. Specifications are formulated in terms of a set of state variables

and a set of operations that can access and modify those variables. Linear-time temporal

logic is used to define the semantics of the constructs appearing in a synchronizer speci-

fication. Thus, a synchronizer specification consists of a set of clauses defining the state

transitions performed by each synchronizer operation. A specification also gives the safety

and liveness conditions governing the execution of synchronizer operations. An example,

the specification of synchronizer buffer from the readers/writers problem, is given in Fig-

ure 1. In this problem a set of reader and a set of writer processes must access a shared

memory area simultaneously. Synchronizer buffer controls access and modifications to the

shared memory on behalf of the reader and writer processes.

The control_resources clause of the specification defines resources read_permission
and write_permission for synchronizer buffer. The clause asserts that, in order for a

reader (or a writer) process to access the shared memory, the resource read_permission (or

write_permission) must be allocated first. Allocation is performed by operations start_read
and start_write. Operations end_read and end_write perform the corresponding dealloca-

tions.

The state_variables clause defines the type and initial value of the variables reader_#
and zvriter_# used by the synchronizer to represent the state of the encapsulated resources.

These two variables track the total number of reader and writer processes that are in the

synchronizer at any point in time. The opera t ions clause declares the operations that

294

Synchronizer Buffer
Cont ro l - resources wrlte-permission a l located_by start_write;

deal located_by end_write;
read.permisslon a l loca ted-by start-read;

deallocated-by end_read;
State_var iables

reader-#: 0..10 i n i t i a l l y 0 ;
writer_#: 0..1 i n i t i a l l y 0 ;

Operations
start_read, start_write, end_read, end_write ;

Operatlon_precondltlons
VsEstart_wrlte: (reader-# = O) A (writer-# = O)
VsEstart_read: (writer_# = O)

Operatlon_state_changes
VsEstart_read: reader.# * - reader-# + 1
VsEstart.wrlte: writer-# * - 1
VeEend-read: reader_# . - reader_# - 1
VeEend_wrlte: writer-# *-- 0

Operatlon_prlorltles
start_wrlte > start-read

Liveness
VsE{start.write, start-read} si~request --~ <>s@terminate

Figure 1: Specification of synchronizer buffer in the readers-writers problem

units outside synchronizer buffer can invoke to perform allocation and deallocation of the

resources encapsulated in this synchronizer. Whenever an operation is invoked, a model

of operation execution is used in which the invocation goes through a sequence of three

phases. In the request phase the operation has been invoked and is waiting to be selected

for execution; in the service phase the operation has been selected for execution and will

be executed next; and in the terminate phase the operation has completed execution. For-

a given invocation o of a synchronizer operation O, the propositions o@request, o@service

and o@terminate are true when o is in the corresponding phase and false otherwise.

The operat lon_precondl t lons clause specifies the conditions to be satisfied in order

for each operation request to be executed. Temporal operators axe not allowed in this

clause. A request for operation start.write can be serviced only if the synchronizer state

satisfies:

(reader_# = 0) ^ (~ t e r _ # = 0)

The operat lon_state_changes clause specifies the changes in the value of the state

variables resulting from the execution of a given operation. Whenever a request for

operation start_read is executed, the value of the state variable reader_# is incremented.

The opera t ion priorit ies clause defines the order in which instances of invocations of

295

different operations are to be considered for service. In synchronizer buffer, operation

start.write has higher priority than operation start_read.

Finally, the Uveness clause specifies that invocations of operations start_read and

start_write must eventually be serviced. As with most temporal logic systems, the for-

mula np asserts that predicate p is true in the current state and any subsequent state.

The formula <)p asserts that p is true in the current state or in some subsequent state.

Linear time temporal logic underlies the computational model of a synchronizer spec-

ification. Thus, time is viewed as a totally ordered sequence of time instants. Each time

instant corresponds to a well-defined synchronizer state (i.e. the assignment of a value to

every synchronizer state variable). In general a synchronizer operation 0 can be invoked

an arbitrary number of times by the units contained in the concurrent program. Each op-

eration invocation o can be in the request phase for an arbitrary (and possibly indefinite)

number of consecutive time instants, while waiting for the appropriate preconditions and

priority conditions to become true. When these conditions become true, invocation o is

enabled, in which case the predicate enabled(o) is true.

When an invoked operation o is selected for execution, o goes into the service phase for

exactly one time instant. At the following instant operation o is in the terminate phase.

At this instant the synchronizer state variables have been modified to reflect the changes

caused by the execution of o. Operation execution in a synchronizer is strictly sequential:

only one operation invocation can be in the service phase at any time instant. Once an

operation request reaches the terminate phase it remains in that phase forever.

3 Graph M o d e l of Synchronizer Behav ior

We model synchronizer behavior using an augmented finite state machine called a Reduced

State Transition Graph or I~STG. This model underhes the proof lattice mechanism we

introduce to establish liveness, and our proof lattice inferences are aimed at identifying

valid transition sequences between the states in an RSTG.

The RSTG of a synchronizer is a graph G = (N, E). Nodes N in this graph represent

sets of synchronizer states and arcs E represent transitions resulting from the execution

of enabled operation requests. Each node N~ is associated with a set of synchronizer

states X~, and each edge Ei is associated with a synchronizer operation O1 and a pred-

icate Pc on the state of the synchronizer, subject to the following conditions. First, the

states associated with the same node are indiscernible in that they enable the same opera-

tions. Second, if El is an edge labeled (Pi, Oi) leading from node Nj to Nk, if operation 01

is executed when the synchronizer is in one of the states associated with Nj, and if pred-

icate Pi is true, then the synchronizer is in a state associated with Nk after O~ has been

executed. Third, state sets associated with distinct nodes are disjoint.

296

((~) ~ start_write
A,B,C , ,,

end_write

end_read if reader_# = 1 start_read

//~2 ~- , ~ start-read (I "~A, B, C if reader_# ~ 8 end_read
if reader_# _>

start-read
end-reac if reader_# = 9

Figure 2: RSTG of synchronizer buffer

!

h - reader_# = 0]
B reader_# ~ 9
C - writer_# -- 0

Construction of an RSTG is carried out in two phases. First, the nodes in the graph

are defined. Each node corresponds to a combinatio~ of truth values of the predicates

appearing in a program specification. Then edges are defined by identifying the operations

that are enabled at each node and by tracking the state transitions caused by the execution

of each enabled operation. The RSTG construction is discussed in detail in [1].

The I~STG for synchronizer buffer is shown if Figure 2, along with the predicate truth

values corresponding to each node. Node 1 corresponds to the initial synchronizer state.

Operations start_read and start_write are enabled in this state, as shown by the edges leav-

ing node 1. Node 2 represents the synchronizer states in which resource read_permission

has been allocated to a number of reader processes that is less than the maximum number-

of readers allowed. Consequently both start-read and end-read are enabled in the states

corresponding to this node. The execution of the former operation leads to node 3 when

the variable reader_# is one short of the maximum reader number; otherwise it leaves

the synchronizer in a state still contained in node 2. Likewise, the execution of operation

end_read can either lead to node 1 or back to node 2, depe~xling on whether variable

readeroi~ is one or greater than one. Node 3 corresponds to the synchronizer state in

which reader_~ equals the maximum number of readers. Only operation end_read is en-

abled in this state, leading to state 2. Finally, node 4 represents the state in which a

writer process is in the synchronizer. Only operation end_write is enabled in this state.

297

reader-f~ = k
k>Ok< lO
s@request

In(~)
reader_f~ = k - 1
s@req~est

InC~) . ~ : 3 In(#,)
-,In(e) i c

In(1) reader_f/= 0

enabled(s)

Figure 3: Proof lattice for operation start_write for I~STG node 2

4 P r o o f Lat t i ce -based Analys is

We now describe our deductive method for estabfishlng the following liveness condition:

Vo e 0 O(o@request -+ <> o@se~ce) (I)

We prove liveness using the notion of a proof lattice. Proof lattices were introduced in

[5] to prove first-order formulas. They were used in [7] to analyze a subset of first-order

temporal logic. A proof lattice is a finite directed acyclic graph in which each node is

labeled with an assertion and such that:

1. There is a single entry node with no incoming edges

2. There is a single exit node with no outgoing edges

3. If a proof lattice node labeled P has outgoing arcs to nodes labded Rt, R2, ... R~,

the following formula holds for the synchronizer:

D (p -+ o(R1 v R, v ... v e~))

Our approach to 1;veness is based on several assumptions. First we assume that the

implementation of a synchronizer uses a fa ir scheduler, that is, a scheduler that does not

ignore an operation invocation that is enabled infinitely often:

n O enabled(o) ~ O oOservice (2)

298

Second, we assume that a resource allocation is always followed by the corresponding re-

source deallocation. This assumption is realistic because deadlock prevention is addressed

independently of the liveness analysis described here [1]. Thus, if operations A and D

allocate and deallocate a given resource, any invocation a of operation A is eventually

followed by an invocation d of operation D:

12(a@request --~ O d@reques 0

Third, we make use of the notion of conformity between a state variable z and a resource R.

We say z is conformal with R if the value of z reflects the number of open allocations

of R (i.e. the number of executions of the operation that allocates R that have not been

followed by matching deallocations). In the buffer example variable reader_# is conformal

with resource read_permission.
The following theorem establishes the validity of the proof lattice-based approach

[1]. The predicate In(Ni) indicates whether the current synchronizer state belongs to an

RSTG node N;.

Fundamental Theorem
Given an operation 0 defined in synchronizer S and an RSTG for S, if for every node N

in the RSTG a proof lattice can be built whose entry node is labeled In(N) A o C ~ e s t
and whose exit node is labeled enabled(o), then the following assertion is true for every

synchronizer state

ffl(o@request --~ E3<>enabled(o))

The conclusion of the theorem is that, under the stated hypotheses, every invocation o

of operation O is enabled infinitely often. In the presence of the fair scheduler assumption,

this guarantees that the liveness condition (1) above is satisfied. Thus, every invocation

of operation O is eventually serviced. Consequently the liveness analysis of synchronizer

operations can be performed by constructing a suitably labeled proof lattice for each

node N in the I~STG of the synchronizer.

Proof lattice construction rules fall into three categories. Rules in the first group tie

proof lattice deductions to RSTG transitions. For example, if an RSTG node N has

arcs leading to nodes N1, ... , Nk, a proof lattice node L labeled ITt(N) has descendants

labeled I~(N1),.. . , I~(Nk).

Rules in the second group are based on axioms of linear-time temporal logic. For

example, suppose there is a proof lattice node L labeled Dp. In this case, predicate p can

be added to the label of any descendant of node L, based on these two axioms of temporal

logic: (up -~ p) and (p -~ <>p).

Rules in the third group reflect the behavior of resource allocation and deallocation

induced by our synchronizer model. As an example, consider the allocation completion
rule. Suppose that a state variable z of synchronizer S is conformal with resource R, which

299

is allocated and deallocated by operations A and D, respectively. Then a proof lattice

node L labeled D-,enabled(A) has a descendant labeled (z = ~), where ~ is the initial value

of z. The validity of this rule is proved by use of the assumption of resource deallocation.

Since operation A is never enabled, eventually all executions of this operation will be

followed by executions of operation D. Roughly speaking, the effects of each execution of

operation A on variable z will eventually be "undone" by the corresponding execution of

operation D. Consequently, variable z will eventually return to its initial value.

A schematic description of a proof lattice for operation sgart_write is given in Figure 3.

This proof lattice is aimed at proving that the operation is eventually serviced, assuming

that it is invoked when synchronizer buffer is in a state corresponding to RSTG node 2.

Thus, the entry node is tabeled by the predicates In(2) and s@request, assuming s is an

invocation of operation st.art_write.
Step (a) is performed by applying the first set of construction rules to the entry node

in the proof lattice. Note that four edges leave node 2 in the RSTG; however, the edges

labeled start.read axe temporarily disabled, because this operation cannot be serviced due

to the pending invocation of higher-priority operation start_write. Consequently, only two

edges are created in the proof lattice, corresponding to the RSTG edges labeled end_read.
Step (b) is performed by applying the second set of rules and temporal logic axiom

(Dp V <)-~p), where p is instantiated to the predicate In(2). So the formula (In(2) -*

(nln(2) v <>'~In(2))) is also valid. Consequently, the node under consideration has two

descendants, one for each of the disjuncts in the temporal logic axiom.

Step (c) is performed by noting that end_read is enabled when In(2) is true, whereas

sLarLread is not enabled. Moreover, these two operations deallocate and allocate resource

read_permission, respectively. Since variable reader_# is conformal with this resource, the

allocation completion rule can be applied to produce a descendant labeled (reader_# = 0).
This predicate is in contradiction with the eaxher assumption DIn(P). As a result, a rule

leading directly to the exit node, whose tabel is enabled(s), can be applied in the following-

proof step (f).

Step (d) is performed by applying a construction rule from the first group. This rule

is similar to the rule applied in step (a); however, here the label of a proof lattice node

has the additional predicate <>-,In(2). The execution of an enabled operation can lead

from node 2 to node I or node 3; however, the edge leading to node 3 is disabled due to

the priority specification. Consequently, the formula (-,In(2) ~ <>In(l)) is valid and a

descendant labeled In(l) is created for the proof lattice node under consideration. Finally,

a rule leading to the exit node can be applied in the step (e), concluding the proof lattice

construction.

The above example has shown the liveness of operation start_write, assuming this

operation is invoked when synchronizer buffer is in a given state subset. Similar proofs

300

have been made for the other synchronizer operations and states, in an effort to complete

the liveness analysis of synchronizer buffer. These proofs have been generally successful.

However, difficulties have arisen in the proof of liveness for operation start-read, which

has a lower priority than operation start_write in the specification of synchronizer buj~er.
Because of this priority condition invocations of start_read may "starve", due to the con-

tinuous presence of starLwrite invocations. To avoid this phenomenon, the specification

of synchronizer buffer could be modified to allow invocations of star~_read and start_write

to be placed in the same FIFO queue. In this case, all the proof lattices for synchronizer

buffer can be constructed successfully, thus establishing the liveness of this synchronizer.

Our approach to liveness analysis has been applied successfully to a variety of tradi-

tional examples in the domain of concurrent programs, such as the producers/consumers,

the sleepy barber [4] and a simplified version of a memory controller. While the full

expressive power of this approach is still under active investigation, a prototype that

parti~.||y automates the proof lattice construction shown here has been implemented [1].

Several features of our approach have made an implementation feasible. Firsts we

have wedded our proof lattice machinery to the B.STG construction. This means that

proof flow is directed by RSTG state transitions, thus controlling the size of the proof

search space. Second, the absence of loop constructs in operation state changes means

that loop invariants need not be generated during proof lattice construction. Third, our

assumptions about the behavior of resource allocation and deallocation simplify proof

lattice construction.

5 Conclusions

In this paper we have briefly sketched the workings of a proposed automatic synthesis

system for synchronization code and we have described one particular crucial feature, a

deductive system for establishing the liveness of synchronizer operations.

We believe our method is automatable, and is even potentially practical, for several

reasons. First of all, the P~STG construction is relatively straightforward. This is crucial

because the RSTG reduces the excessive state information present in system behavior to

a small, tractable body. Second, the absence of temporal operators in the specification of

operation preconditions means that existing theorem provers can be used in the construc-

tion of the RSTG of a synchronizer. Third, our liveness analysis is rather stylized, thus

sidestepping the need to use the full deductive power of a temporal logic system during

proof lattice construction. Finally, proof lattice construction is facilitated by the absence

of loop constructs in operation state transitions, by the absence of temporal operators in

operation preconditions, and by the stated assumptions about the behavior of resource

allocation and deallocation. As a result, only a limited subset of temporal logic has been

301

required to build the proof lattices in the example set considered so far.
We believe that the practicality of the proposed approach is enhanced by the structure

of program specifications. First, our approach to synchronizer specification is close to the
way people think about resources (i.e. in terms of operations performing resource alloca-

tions and deallocations). Second, high-level support is provided, so that specifications can
include such features as operation preconditions and priorities. Third, these properties

are clearly separated in a program specification. We believe that these aspects of our

approach compare favorably with previous work that does not support the specification
of these properties explicitly [2, 6].

R e f e r e n c e s

[I] U. Buy. Automatic Synthesis of Resource Sharing Concurrent Programs, PhD Disser-
tation, Computer Science Department, University of Massachusetts, Amherst, MA,

September 1990.

[2] E. M. Clarke, E. A. Emerson. Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic, Lecture Notes in Computer Science 131, Springer-
Verlag, New York, 1981.

[3] E. W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation of
Programs, Communications of the Association for Computing Machinery, 18, 8, Au-

gust 1975.

[4] E. W. Dijkstra. Cooperating Sequential Processes, Technical Report EWD-123, Tech-

nological University, Eindhoven, The Netherlands, 1965.

[5] L. Lamport. Proving the Correctness of Multiprocess Programs, IEEE Trans. on

Software Engineering, SE-3, 2, March 1977.

[6] Z. Manna, P. Wolper. Synthesis of Communicating Processes from Temporal Logic
Specifications, ACM Transactions on Programming Languages and Systems, 6, 1,

January 1984.

[7] S. S. Owicki, L. Lamport. Proving Liveness Properties of Concurrent Programs, A CM

Transactions on Programming Languages and Systems, 3, 3, July 1982.

[8] K. Ramamritham. Synthesizing Code for Resource Controllers, IEEE Transactions

on Software Engineering, SE-11, 8, August 1985.

