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Abstract 

This paper explores the role for mechanised support for refining specifications 
to executable programs. The goal of refinement is to achieve the translation from 
specification to implementation without the introducing errors. The refinement 
calculus provides a set of rules for developing procedural programs from abstract 
specifications. A prototype editor for the refinement calculus is described that was 
constructed using the Cornell Synthesizer Generator. Based on our experiences, 
desirable features for future tools are suggested. 

1 In troduc t ion  

Software development requires a process to transform an abstract specification into 
an executable substitute, that is, a computer program that exhibits the required be- 
haviour. The transformation process is often referred to as refinement and normally 
requires a sequence of steps. These steps represent the design decisions leading to the 
choice of algorithms and of data representations. Formalizing the refinement process 
is important to establish the correctness of the product. A program is eo~ree~ if it~ is 
a satisfactory implementation of the original specification. Correctness may be estab- 
lished by testing (almost always infeasible), by constructlng a program proof (usually 
difficult if attempted after the program has been constructed), or by using a refinement 
strategy that ensures that each step in the development process maintains the original 
requirements. 

The starting process for refinement is a specification. A major function of a specifica- 
tion is to assist communication between the developer and the client with the objective 
that both parties understand the intended behaviour of the product to be created. 

There is growing acceptance of the benefits of formal specification methods that 
avoid the ambiguity of natural language. The objective of the specification is to define 
vJhat is required of the product and not how it is to be achieved. A specification language 
should encourage precision, conciseness, and abstraction. It is also desirable to be able 
to manipulate the specification and prove properties or consequences of the specification. 
In this way, confidence in the specification as an accurate reflection of the requirements 
can be established. Unless the specification is expressed in a formal notation, i t  is not 
possible to have a systematic method of verifying that an implementation is correct. 
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Mathematical specification techniques using predicate logic, such as the Vienna Def- 
inition Method (VDM) [1,7] and Z [6,16] describe program behaviour as a relation be- 
tween the input and output states. This allows us to capture the essential behavioural 
characteristics of a system or algorithm without concern for the implementation. Such 
specifications have the desirable properties listed above but are not suitable for express- 
ing the concrete algorithms and data structures of the executable program. VDM also 
incorporates refinement techniques and is one of the few sustained research efforts to 
tackle this problem. 

Having produced a specification that is considered to meet the informal require- 
ments, we want to be able to refine the specification by changing the data structures 
and introducing programming language constructs until we have an implementation: an 
executable substitute. The aim of a formal refinement methodology is to ensure that at 
all times the refinement is in some essential way consisieni with the initial specification. 
There are considerable advantages from using uniform notation throughout the refine- 
ment process. At the very least, it avoids the difficulties associated with converting 
between notations. There are two possible approaches: adding programming language 
elements to a specification language, or adding specification constructs to a program- 
ming language. Whichever approach is taken, it is crucial to have a formal semantics 
that encompasses the extended language. The refinement calculus method adopts the 
approach of adding specification to a programming language with the extended language 
defined using Dijkstra's weakest pre-condition semantics [3]. Section Two provides an 
overview of the refinement calculus and the specification statement on which it is based. 

As well as ensuring that the final program is a correct implementation of the initial 
specification, the refinement steps also provide an excellent design history by document- 
ing the choices made during the development. In that sense, the refinement calculus 
provides a more rigorous version of the development style that Knuth [8] calls li~era~e 
programming. In section Three, we consider suitable roles for tools to assist in the 
application of the refinement calculus. 

Section Four reviews a prototype refinement editor, a tool for developing programs 
from specifications based on the rules of the refinement calculus. Based on our experi- 
ences with this tool, we make some suggestions for future tools. 

2 T h e  r e f i n e m e n t  ca lcu lus  

The refinement calculus developed by Morgan and Robinson [11,12,9] provides a rigor- 
ous technique for deriving an executable program from an abstract specification. The 
essential ingredients of the calculus are 

• a programming language (with a formal semantics) that we use as our target 
language. We presume that thi s language can be executed on a computer. We 
follow Dijkstra and use both a guarded command language and a weakest pre- 
condition semantics. It should be noted that any programming language could 
be used, provided that it is given a weakest pre-condition semantics. In our work 
we denote the weakest pre-condition of S with respect to R by the functional 
application of S to R, i.e. 
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a specification construct that is abstract i.e. it must allow the specification of pro- 
grams without being restricted by implementation concerns that are present in any 
real programming language. Our formal semantics must include the specification 
construct. 

a formal definition of the notion of specification transformation, that we call re- 

2.1 A specification cons t ruc t  

The specification statement [10] captures the essential behaviour of a program or part 
of a program, without concern for implementation issues. It is denoted 

G: [Pre / Post] 
and denotes a program that, executed in a state satisfying Pre, will terminate in a state 
satisfying Post while modifying only variables in ~ (where ~ is a subset of the program 
variables ~'). Pre is a predicate in ~" while Post is a predicate in ~" and g0 where the 
decorated variables v'0 refer to the corresponding values in the initial state. 

The weakest pre-condltion for ~-. [ ./)re / Post ] to terminate in a state satisfying 
R must be at least as strong as Pre and every program state that satisfies Post must 
also satisfy R. The formal definition is 

where E[~ \ ~] is the expression E with all free occurrences of each of the variables in ~" 
replaced by the respective expression in ~'. We assume that the ~'0 are local to Post 
and hence are not contained in R; otherwise, a further renaming is required to avoid 
confusion. 

Two syntactic variations are 

• ~:  [Post] where the implicit pre-condition is 3 ( ~  .Pos~)[~o\~l,_ the weakest 

condition for the existence of a program state satisfying Post. 
I if): [Pre ~ I f  Post I where I is a predicate in ~ that is invarlant, i.e. it i s t rue in  

both the initial and the final state. It is a shorthand for z~ : [ Pre A I l I A Post ]. 

We introduce an example that is used subsequently to illustrate some refinement 
rules. The example is very simple and is chosen to demonstrate the principles involved. 
We wish to implement Min(b, N, m) that computes the minimum value in the array 
b[0..N - 1], passing back the result in m. This is represented by the following specifi- 
cation statement: 1 

Min(b,N, ra) ~ m: [N > 0  / P o s t  ] where Post ~- V31i:i : O..NO"N - 1:1 tara =<_ b[i])b[i]) 

1We use vertical stacking of conjuncts to denote conjunction. 
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2.2 Refinement  

With the refinement calculus, the development of a program is a process of replacing 
specification statements by other programming constructs using the rules of the calculus 
to perform the transformations. To ensure that the resulting program is a valid imple- 
mentation of the initial specification, we require an ordering between specifications that 
captures the idea that one specification ($~) may be replaced by another (Sj) in  any 
context. This ordering is denoted Si _ Sj. If in all initial states in which -qi does not 
abort, the set of final states of Sj is contained in the set of final states of Si, then we 
say Si is refined by Sj. The formal definition uses weakest pre-conditions: 

& __: s# i~ (s~ R) ~ (s~ R) for an R 

Based on this concept of refinement, we can depict the design process as the sequence 

S0_~ Sl _E... E S~ 

where So is the initial specification and S~ is our executable program. 

2.3 Refinement example  

The rules of the refinement calculus express valid transformations of specifications. 
Many of the rules have an associated applicability condition that specifies when the 
rule may be used. Rather than attempting to supply a comprehensive set of rules, we 
give an example refinement. Consult [9] or [11] for exposition of the refinement rules. 

A little contemplation of the specification statement for Min suggestsr t h ~  we need~, 
an additional variable to control the computation. The construct ]L var  t . s ] 
introduces new variables 2 2 into the program state inside the block delimited by the 
symbols [ and ] .  Applying the appropriate rule to our example, we get 

Introducing an intermediate predicate we refine the inner specification to a sequential 
composition. 

- -  [. de-compositionJ 

where I ~= ": O..j -- 1 .  rn = b[i] 

: 0..j - z .  ~ < b[i])/ 

• [ > then ~ , i"  ~¢ 0 / I ]  = ,~, i  := b[Ol,1 {A,,~,m~,~ ~,~d~c~o,}. 
We intend to refine the second component to a loop, so we have to choose a set of 

guards {Bi} and a variant function. We choose a single guard (j ~ N) observing that 

I A j = N ~ P o s t  

2In this example, and in the discussion in general, we ignore the type of variables. Introducing typed 
variables adds a set membership constraint to the pre- and post-conditions. 
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and N - j  as our variant function to establish termination. Then 

re, j :  [ I  / Pos,] 
Edoj  ~ N ~m,j :  [j ~ N / I /  N - j  <N--jo] od {Dointrodnaion} 

It is obvious that the simplified postcondltion, j > jo, of the imbedded specification 
can be satisfied by incrementing j ,  so we use the weakest prespecification rule to re- 
fine to a sequential composition in which the second component is. a specification that 
increments j .  

I-ra,j: j C N A I  >jo [/\/+11 --  ~ pr~speciJica~ion ~ 

The second component refines to the assignment j := j -t- 1 and the first component is 
simplified, refined by deleting "the variable j from the window and then reorganized to 
reveal an invariant component as follows: 

re,j: [j ~ N AI / (j jo)[/,./+,l] 

:t i : O..j ° m = b[i] 
- - r e , j :  j C N ^ I ¥ i : O . j  ° m < b[i]) 

j + l > j o  

/ 1 
V ( i :  O..j .  m <_ bli]) J 

j :  1. < b[q) < 

The final specification above is now refined four ways: 

1. to the guarded command ra _< b[j] ~ skip {Sk/p in*rodnaion}; 
2. to the guarded command ra >__ bL~ ] - .  ra := b[j] {Guarded command in~rodnaion}; 
3. to the union of the two guarded commands { Union introduction}; 
4. to an if-statement containing that union {If introduction}. 

m- 3 ( i  : 0 . . j - -  1 • m = ~lil) V ( i  : 0 . . j -  1 .  m < ~lil m < Hi] 

~,  <_ bli] -~  s k i ~  ~,  > b[/] -~  m :-- HJ]" m < ~lJ'] -~  s k l p  i f  
m _< blj] --,  s k i p  

m _> b[j]--+ m :=  b[j] U 
m _> b[~] --~ m :=  b[j] 

fi  
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Assembling the refinements we get the following program: 

[va  j .  m,j := hi01,1; 
d o j  ~ N "~ 

i f  m < b~] --. skip 

fl; 
j : = j - k l  

od 

]1 
The preceding example dealt exclusively with procedural refinement. The refinement 

calculus also contains rules for data refinement where abstract types in a program are 
replaced by more concrete types. For more details see [12]. 

3 Tool rx)les 

The refinement calculus is intended to improve the quality of the software development 
process. However applying the calculus involves many small steps where each step may 
require the computation of a new specification and/or the checking of an applicability 
condition associated with a rule. While most of these are very straight-forward, there 
is scope for errors to be introduced by the number of steps. 

From this observation we envisage two major roles for refinement calculus tools: 

• correctly applying the rules of the refinement calculus as directed by the tool user, 
and 

• recording the sequence of refinement steps in a software development. 

The first role requires establishing that the applicability condition associated with each 
rule is satisfied whenever it is used and performing the computations of the calculus. 
We do not expect to automate software development; our aim is to provide systematic 
support. Thus the human designer retains the initiative in the design process with the 
tool playing the careful assistant role with responsibility for confirming the viability of 
each refinement step. Since the proof obligation of each step is a lemma in the first order 
predicate calculus, we cannot expect automatic confirmation of all steps. While some 
are easy to prove, many rely on domain knowledge. Some form of interactive proof 
editor seems necessary. This approach to tools for software development is not new; 
Floyd [4] predicted it and many people since have adopted this style for co-operative 
interaction. Perhaps the best known work is the programmer's apprentice project at 
MIT [15,17]. 

The recorded design history based on the refinement steps is a valuable artifact of the 
design process. A tool simplifies the task of capturing this information systematically 
and accurately. The design history can serve several purposes: 

• to explain and document the current design 

• for future modification by incremental changes to part of the refinement sequence 

• for re-use in different contexts 
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4 A prototype  refinement editor  

A prototype refinement editor [2] has been built as an interactive tool for the refinement 
calculus. It was constructed using the Synthesizer Generator [13,14] which generates 
language-based editors from descriptions of an abstract syntax and display represen- 
tation. Attribute grammars are used to incorporate context-sensitive constraints and 
incremental re-evaluation algorithms to ensure that a consistent document exists after 
each editing operation. 

The development of a prototype was simplified by using parts of Bill Pugh's pv 
demonstration editor supplied with the Synthesizer Generator distribution. The pv 
editor is a preliminary program verification editor for Dijkstra's guarded command 
language. The editor generates verification conditions and incorporates an interactive 
simplifier for proving them. Using pv, programs are entered statement by statement 
with the verification conditions confirming the correctness of the program. 

Our refinement editor manipulates similar objects but the development style is quite 
different. From pv we have been able to use the basic structures for predicates, predicate 
simplification and expression substitution for computing weakest pre-conditions. We 
also chose the same domain of discourse: integer arithmetic with either simple or array 
variables. The prototype is restricted to procedural refinement. 

The abstract syntax for the refinement editor represents the refinement process as 
a tree with the initial specification as the root node and each edge corresponding to 
a refinement step. When the refinement is complete, the leaf nodes correspond to 
constructs of the executable programming language. Proof subtrees are attached to 
nodes to verify the applicability condition of each refinement rule. Some of these can be 
immediately simplified but there is the capability for user interaction for more difficult 
c a s e s .  

The refinement rules of the calculus are provided as transformation commands that 
act on selected nodes in the tree by extending the tree with an additional refinement step. 
The Synthesizer Generator displays a sub-window of valid transformation commands 
whose contents depend on the current edit selection. 

The editor uses two display unparsing schemes to present two views of the program 
under development: 

• the primary view is a linear exposition of the refinement steps based on a top-down 
depth-first traversal of the tree. 

• the alternative view is a consolidation of the refinement tree to extract the "final" 
program. This displays only the leaf nodes. Parts of the program that are not 
fully refined are displayed as specification statements. 

The editor user can dynamically choose either view for independent subtrees so partial 
compression or expansion is possible. 

4.1 Experiences 

While our first refinement editor is very rudimentary, it has provided considerable insight 
into the challenge of building support tools for the refinement calculus: Basing the 
support tool on the editing paradigm has been a good idea since it encourages an  
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exploratory style where the user investigates refinements, deleting those that are not 
successful. We have used it to explore the refinement of many small programming 
examples and we are enthusiastic about the potential of the approach. 

As an illustration, after using the editor to develop the Min example, we investigated 
how easily it could be modified to compute Max instead. The necessary editing changes 
were to 

1. the initial specification (which then propagated through the complete refinement 
tree), 

2. the guards within the if command(or equivalently the guarded statements), and 
3. the  intermediate predicate used to create the first sequential composition. 

The last step was required because this predicate was entered by hand rather than 
by computation based on the goal post-condition. It would certainly be feasible to 
incorporate rules to transform predicates in this manner. This example highlights the 
benefits of recording the design steps and having the capability to incrementally modify 
individual steps and observe the consequences. Entering information once and then 
propagating it wherever it is required is convenient compared to performing refinements 
by hand where there is potential for transcription errors. 

There are, of course, shortcomings with the prototype in the scope of problems that 
can be tackled and with performance. The Synthesizer Generator provides a realis- 
tic prototype very quickly and effectively but we encountered some limitations in the 
flexibility of the user interface. 

5 Future  tools  

In future research into tools for the refinement calculus we plan to investigate the 
following issues: 

N o t a t i o n  If the use of the predicate calculus is to be successful, we need to abbreviate 
our pre- and post-conditions. The normal way to do this is by defining names 
(possibly parameterized) for subcomponents of the predicates. Any more sub- 
stantial tool needs this capability but must also be able to manipulate predicates 
that contain such abbreviations without requiring complete expansion. The work 
of Griffin [5] is of interest here. 

In t e rac t ive  proof techniques A realistic refinement editor will rely heavily on some 
form of interactive theorem prover for first-order predicates. The ability to ma- 
nipulate predicates is crucial to the viability of a refinement tool. Also necessary 
are methods to establish and use theories about 

• program objects - -  both abstract data types used in specifications such as 
sets and sequences and the concrete data types of our programming language. 

• problem domain knowledge 

U s e r  In te r face  The user interface for a refinement tool is extremely important. How 
to present the developing refinement sequence and provide facilities for navigating 
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though and modifying that sequence is a significant challenge. Some of the prob- 
lems are similar to those addressed by hypertext systems and we are interested to 
see if we can use results from that research. The user of a refinement tool needs 
to focus on different concerns at different stages of the refinement task. Once a 
refinement step has been established by verifying the applicability of the rule, the 
proof is normally of little concern and need not be displayed. By comparison, 
during the proof construction, we are unlikely to be interested in the refinement 
path leading to this proof. 

D a t a  re f inement  Extending our work to include data refinement will require a slightly 
different approach. Instead of focusing on the refinement of a single specification, 
data refinement is distributed over a larger scope and requires the transformation 
of each component of the scope. The transformations are driven by an abstraction 
invariant that relates the concrete variables to the abstract ones. 

S t o r a g e  and  re t r ieval  We see a need to go beyond a monolithic design document for 
each program. If the potential for reusing the design history is to be achieved, 
more flexible methods of storage and (particularly) retrieval are required. The 
possible application of object-oriented data base technology will be investigated. 

Calcu lus  rules  The refinement calculus rules are not an inviolate set. There is a 
common core of rules which will be augmented and extended by new rules as 
experience with the calculus grows. Future tools should make it easy to add new 
rules and package derived rules (combinations of more basic rules). This provides 
potential difficulties as a refinement sequence is dependent on the rules used in 
its development. It may be necessary to store the rules used with each refinement 
sequence. 

6 Conclusions 

The development process is at least as important as the product, the executable software, 
since it serves to document the design and provides a method for checking the correctness 
of the program (with respect to the initial specification). The refinement calculus is 
a formal method for refining specifications. Applying the calculus effectively requires 
computer-based support to manage the many steps from the initial abstract specification 
to the final executable program. In the paper we have summarized our experiences with 
tool support for the refinement calculus and made suggestions about goals for future 
tools. 
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