
Computer Assistance for

D.A. Carrington
Key Centre for Software Technology

Department of Computer Science
University of Queensland

Program Refinement

K.A. Robinson
Department of Computer Science

University of New South Wales

Abstract

This paper explores the role for mechanised support for refining specifications
to executable programs. The goal of refinement is to achieve the translation from
specification to implementation without the introducing errors. The refinement
calculus provides a set of rules for developing procedural programs from abstract
specifications. A prototype editor for the refinement calculus is described that was
constructed using the Cornell Synthesizer Generator. Based on our experiences,
desirable features for future tools are suggested.

1 In troduc t ion

Software development requires a process to transform an abstract specification into
an executable substitute, that is, a computer program that exhibits the required be-
haviour. The transformation process is often referred to as refinement and normally
requires a sequence of steps. These steps represent the design decisions leading to the
choice of algorithms and of data representations. Formalizing the refinement process
is important to establish the correctness of the product. A program is eo~ree~ if it~ is
a satisfactory implementation of the original specification. Correctness may be estab-
lished by testing (almost always infeasible), by constructlng a program proof (usually
difficult if attempted after the program has been constructed), or by using a refinement
strategy that ensures that each step in the development process maintains the original
requirements.

The starting process for refinement is a specification. A major function of a specifica-
tion is to assist communication between the developer and the client with the objective
that both parties understand the intended behaviour of the product to be created.

There is growing acceptance of the benefits of formal specification methods that
avoid the ambiguity of natural language. The objective of the specification is to define
vJhat is required of the product and not how it is to be achieved. A specification language
should encourage precision, conciseness, and abstraction. It is also desirable to be able
to manipulate the specification and prove properties or consequences of the specification.
In this way, confidence in the specification as an accurate reflection of the requirements
can be established. Unless the specification is expressed in a formal notation, i t is not
possible to have a systematic method of verifying that an implementation is correct.

313

Mathematical specification techniques using predicate logic, such as the Vienna Def-
inition Method (VDM) [1,7] and Z [6,16] describe program behaviour as a relation be-
tween the input and output states. This allows us to capture the essential behavioural
characteristics of a system or algorithm without concern for the implementation. Such
specifications have the desirable properties listed above but are not suitable for express-
ing the concrete algorithms and data structures of the executable program. VDM also
incorporates refinement techniques and is one of the few sustained research efforts to
tackle this problem.

Having produced a specification that is considered to meet the informal require-
ments, we want to be able to refine the specification by changing the data structures
and introducing programming language constructs until we have an implementation: an
executable substitute. The aim of a formal refinement methodology is to ensure that at
all times the refinement is in some essential way consisieni with the initial specification.
There are considerable advantages from using uniform notation throughout the refine-
ment process. At the very least, it avoids the difficulties associated with converting
between notations. There are two possible approaches: adding programming language
elements to a specification language, or adding specification constructs to a program-
ming language. Whichever approach is taken, it is crucial to have a formal semantics
that encompasses the extended language. The refinement calculus method adopts the
approach of adding specification to a programming language with the extended language
defined using Dijkstra's weakest pre-condition semantics [3]. Section Two provides an
overview of the refinement calculus and the specification statement on which it is based.

As well as ensuring that the final program is a correct implementation of the initial
specification, the refinement steps also provide an excellent design history by document-
ing the choices made during the development. In that sense, the refinement calculus
provides a more rigorous version of the development style that Knuth [8] calls li~era~e
programming. In section Three, we consider suitable roles for tools to assist in the
application of the refinement calculus.

Section Four reviews a prototype refinement editor, a tool for developing programs
from specifications based on the rules of the refinement calculus. Based on our experi-
ences with this tool, we make some suggestions for future tools.

2 T h e r e f i n e m e n t ca lcu lus

The refinement calculus developed by Morgan and Robinson [11,12,9] provides a rigor-
ous technique for deriving an executable program from an abstract specification. The
essential ingredients of the calculus are

• a programming language (with a formal semantics) that we use as our target
language. We presume that thi s language can be executed on a computer. We
follow Dijkstra and use both a guarded command language and a weakest pre-
condition semantics. It should be noted that any programming language could
be used, provided that it is given a weakest pre-condition semantics. In our work
we denote the weakest pre-condition of S with respect to R by the functional
application of S to R, i.e.

314

a specification construct that is abstract i.e. it must allow the specification of pro-
grams without being restricted by implementation concerns that are present in any
real programming language. Our formal semantics must include the specification
construct.

a formal definition of the notion of specification transformation, that we call re-

2.1 A specification cons t ruc t

The specification statement [10] captures the essential behaviour of a program or part
of a program, without concern for implementation issues. It is denoted

G: [Pre / Post]
and denotes a program that, executed in a state satisfying Pre, will terminate in a state
satisfying Post while modifying only variables in ~ (where ~ is a subset of the program
variables ~'). Pre is a predicate in ~" while Post is a predicate in ~" and g0 where the
decorated variables v'0 refer to the corresponding values in the initial state.

The weakest pre-condltion for ~-. [./)re / Post] to terminate in a state satisfying
R must be at least as strong as Pre and every program state that satisfies Post must
also satisfy R. The formal definition is

where E[~ \ ~] is the expression E with all free occurrences of each of the variables in ~"
replaced by the respective expression in ~'. We assume that the ~'0 are local to Post
and hence are not contained in R; otherwise, a further renaming is required to avoid
confusion.

Two syntactic variations are

• ~: [Post] where the implicit pre-condition is 3 (~ .Pos~)[~o\~l,_ the weakest

condition for the existence of a program state satisfying Post.
I if): [Pre ~ I f Post I where I is a predicate in ~ that is invarlant, i.e. it i s t rue in

both the initial and the final state. It is a shorthand for z~ : [Pre A I l I A Post].

We introduce an example that is used subsequently to illustrate some refinement
rules. The example is very simple and is chosen to demonstrate the principles involved.
We wish to implement Min(b, N, m) that computes the minimum value in the array
b[0..N - 1], passing back the result in m. This is represented by the following specifi-
cation statement: 1

Min(b,N, ra) ~ m: [N > 0 / P o s t] where Post ~- V31i:i : O..NO"N - 1:1 tara =<_ b[i])b[i])

1We use vertical stacking of conjuncts to denote conjunction.

315

2.2 Refinement

With the refinement calculus, the development of a program is a process of replacing
specification statements by other programming constructs using the rules of the calculus
to perform the transformations. To ensure that the resulting program is a valid imple-
mentation of the initial specification, we require an ordering between specifications that
captures the idea that one specification ($~) may be replaced by another (Sj) in any
context. This ordering is denoted Si _ Sj. If in all initial states in which -qi does not
abort, the set of final states of Sj is contained in the set of final states of Si, then we
say Si is refined by Sj. The formal definition uses weakest pre-conditions:

& __: s# i~ (s~ R) ~ (s~ R) for an R

Based on this concept of refinement, we can depict the design process as the sequence

S0_~ Sl _E... E S~

where So is the initial specification and S~ is our executable program.

2.3 Refinement example

The rules of the refinement calculus express valid transformations of specifications.
Many of the rules have an associated applicability condition that specifies when the
rule may be used. Rather than attempting to supply a comprehensive set of rules, we
give an example refinement. Consult [9] or [11] for exposition of the refinement rules.

A little contemplation of the specification statement for Min suggestsr t h ~ we need~,
an additional variable to control the computation. The construct]L var t . s]
introduces new variables 2 2 into the program state inside the block delimited by the
symbols [and] . Applying the appropriate rule to our example, we get

Introducing an intermediate predicate we refine the inner specification to a sequential
composition.

- - [. de-compositionJ

where I ~= ": O..j -- 1 . rn = b[i]

: 0..j - z . ~ < b[i])/

• [> then ~ , i" ~¢ 0 / I] = ,~, i := b[Ol,1 {A,,~,m~,~ ~,~d~c~o,}.
We intend to refine the second component to a loop, so we have to choose a set of

guards {Bi} and a variant function. We choose a single guard (j ~ N) observing that

I A j = N ~ P o s t

2In this example, and in the discussion in general, we ignore the type of variables. Introducing typed
variables adds a set membership constraint to the pre- and post-conditions.

316

and N - j as our variant function to establish termination. Then

re, j : [I / Pos,]
Edoj ~ N ~m,j : [j ~ N / I / N - j <N--jo] od {Dointrodnaion}

It is obvious that the simplified postcondltion, j > jo, of the imbedded specification
can be satisfied by incrementing j , so we use the weakest prespecification rule to re-
fine to a sequential composition in which the second component is. a specification that
increments j .

I-ra,j: j C N A I >jo [/\/+11 -- ~ pr~speciJica~ion ~

The second component refines to the assignment j := j -t- 1 and the first component is
simplified, refined by deleting "the variable j from the window and then reorganized to
reveal an invariant component as follows:

re,j: [j ~ N AI / (j jo)[/,./+,l]

:t i : O..j ° m = b[i]
- - r e , j : j C N ^ I ¥ i : O . j ° m < b[i])

j + l > j o

/ 1
V (i : O..j . m <_ bli]) J

j : 1. < b[q) <

The final specification above is now refined four ways:

1. to the guarded command ra _< b[j] ~ skip {Sk/p in*rodnaion};
2. to the guarded command ra >__ bL~] - . ra := b[j] {Guarded command in~rodnaion};
3. to the union of the two guarded commands { Union introduction};
4. to an if-statement containing that union {If introduction}.

m- 3 (i : 0 . . j - - 1 • m = ~lil) V (i : 0 . . j - 1 . m < ~lil m < Hi]

~, <_ bli] -~ s k i ~ ~, > b[/] -~ m :-- HJ]" m < ~lJ'] -~ s k l p i f
m _< blj] --, s k i p

m _> b[j]--+ m := b[j] U
m _> b[~] --~ m := b[j]

fi

317

Assembling the refinements we get the following program:

[va j . m,j := hi01,1;
d o j ~ N "~

i f m < b~] --. skip

fl;
j : = j - k l

od

]1
The preceding example dealt exclusively with procedural refinement. The refinement

calculus also contains rules for data refinement where abstract types in a program are
replaced by more concrete types. For more details see [12].

3 Tool rx)les

The refinement calculus is intended to improve the quality of the software development
process. However applying the calculus involves many small steps where each step may
require the computation of a new specification and/or the checking of an applicability
condition associated with a rule. While most of these are very straight-forward, there
is scope for errors to be introduced by the number of steps.

From this observation we envisage two major roles for refinement calculus tools:

• correctly applying the rules of the refinement calculus as directed by the tool user,
and

• recording the sequence of refinement steps in a software development.

The first role requires establishing that the applicability condition associated with each
rule is satisfied whenever it is used and performing the computations of the calculus.
We do not expect to automate software development; our aim is to provide systematic
support. Thus the human designer retains the initiative in the design process with the
tool playing the careful assistant role with responsibility for confirming the viability of
each refinement step. Since the proof obligation of each step is a lemma in the first order
predicate calculus, we cannot expect automatic confirmation of all steps. While some
are easy to prove, many rely on domain knowledge. Some form of interactive proof
editor seems necessary. This approach to tools for software development is not new;
Floyd [4] predicted it and many people since have adopted this style for co-operative
interaction. Perhaps the best known work is the programmer's apprentice project at
MIT [15,17].

The recorded design history based on the refinement steps is a valuable artifact of the
design process. A tool simplifies the task of capturing this information systematically
and accurately. The design history can serve several purposes:

• to explain and document the current design

• for future modification by incremental changes to part of the refinement sequence

• for re-use in different contexts

318

4 A prototype refinement editor

A prototype refinement editor [2] has been built as an interactive tool for the refinement
calculus. It was constructed using the Synthesizer Generator [13,14] which generates
language-based editors from descriptions of an abstract syntax and display represen-
tation. Attribute grammars are used to incorporate context-sensitive constraints and
incremental re-evaluation algorithms to ensure that a consistent document exists after
each editing operation.

The development of a prototype was simplified by using parts of Bill Pugh's pv
demonstration editor supplied with the Synthesizer Generator distribution. The pv
editor is a preliminary program verification editor for Dijkstra's guarded command
language. The editor generates verification conditions and incorporates an interactive
simplifier for proving them. Using pv, programs are entered statement by statement
with the verification conditions confirming the correctness of the program.

Our refinement editor manipulates similar objects but the development style is quite
different. From pv we have been able to use the basic structures for predicates, predicate
simplification and expression substitution for computing weakest pre-conditions. We
also chose the same domain of discourse: integer arithmetic with either simple or array
variables. The prototype is restricted to procedural refinement.

The abstract syntax for the refinement editor represents the refinement process as
a tree with the initial specification as the root node and each edge corresponding to
a refinement step. When the refinement is complete, the leaf nodes correspond to
constructs of the executable programming language. Proof subtrees are attached to
nodes to verify the applicability condition of each refinement rule. Some of these can be
immediately simplified but there is the capability for user interaction for more difficult
c a s e s .

The refinement rules of the calculus are provided as transformation commands that
act on selected nodes in the tree by extending the tree with an additional refinement step.
The Synthesizer Generator displays a sub-window of valid transformation commands
whose contents depend on the current edit selection.

The editor uses two display unparsing schemes to present two views of the program
under development:

• the primary view is a linear exposition of the refinement steps based on a top-down
depth-first traversal of the tree.

• the alternative view is a consolidation of the refinement tree to extract the "final"
program. This displays only the leaf nodes. Parts of the program that are not
fully refined are displayed as specification statements.

The editor user can dynamically choose either view for independent subtrees so partial
compression or expansion is possible.

4.1 Experiences

While our first refinement editor is very rudimentary, it has provided considerable insight
into the challenge of building support tools for the refinement calculus: Basing the
support tool on the editing paradigm has been a good idea since it encourages an

319

exploratory style where the user investigates refinements, deleting those that are not
successful. We have used it to explore the refinement of many small programming
examples and we are enthusiastic about the potential of the approach.

As an illustration, after using the editor to develop the Min example, we investigated
how easily it could be modified to compute Max instead. The necessary editing changes
were to

1. the initial specification (which then propagated through the complete refinement
tree),

2. the guards within the if command(or equivalently the guarded statements), and
3. the intermediate predicate used to create the first sequential composition.

The last step was required because this predicate was entered by hand rather than
by computation based on the goal post-condition. It would certainly be feasible to
incorporate rules to transform predicates in this manner. This example highlights the
benefits of recording the design steps and having the capability to incrementally modify
individual steps and observe the consequences. Entering information once and then
propagating it wherever it is required is convenient compared to performing refinements
by hand where there is potential for transcription errors.

There are, of course, shortcomings with the prototype in the scope of problems that
can be tackled and with performance. The Synthesizer Generator provides a realis-
tic prototype very quickly and effectively but we encountered some limitations in the
flexibility of the user interface.

5 Future tools

In future research into tools for the refinement calculus we plan to investigate the
following issues:

N o t a t i o n If the use of the predicate calculus is to be successful, we need to abbreviate
our pre- and post-conditions. The normal way to do this is by defining names
(possibly parameterized) for subcomponents of the predicates. Any more sub-
stantial tool needs this capability but must also be able to manipulate predicates
that contain such abbreviations without requiring complete expansion. The work
of Griffin [5] is of interest here.

In t e rac t ive proof techniques A realistic refinement editor will rely heavily on some
form of interactive theorem prover for first-order predicates. The ability to ma-
nipulate predicates is crucial to the viability of a refinement tool. Also necessary
are methods to establish and use theories about

• program objects - - both abstract data types used in specifications such as
sets and sequences and the concrete data types of our programming language.

• problem domain knowledge

U s e r In te r face The user interface for a refinement tool is extremely important. How
to present the developing refinement sequence and provide facilities for navigating

320

though and modifying that sequence is a significant challenge. Some of the prob-
lems are similar to those addressed by hypertext systems and we are interested to
see if we can use results from that research. The user of a refinement tool needs
to focus on different concerns at different stages of the refinement task. Once a
refinement step has been established by verifying the applicability of the rule, the
proof is normally of little concern and need not be displayed. By comparison,
during the proof construction, we are unlikely to be interested in the refinement
path leading to this proof.

D a t a re f inement Extending our work to include data refinement will require a slightly
different approach. Instead of focusing on the refinement of a single specification,
data refinement is distributed over a larger scope and requires the transformation
of each component of the scope. The transformations are driven by an abstraction
invariant that relates the concrete variables to the abstract ones.

S t o r a g e and re t r ieval We see a need to go beyond a monolithic design document for
each program. If the potential for reusing the design history is to be achieved,
more flexible methods of storage and (particularly) retrieval are required. The
possible application of object-oriented data base technology will be investigated.

Calcu lus rules The refinement calculus rules are not an inviolate set. There is a
common core of rules which will be augmented and extended by new rules as
experience with the calculus grows. Future tools should make it easy to add new
rules and package derived rules (combinations of more basic rules). This provides
potential difficulties as a refinement sequence is dependent on the rules used in
its development. It may be necessary to store the rules used with each refinement
sequence.

6 Conclusions

The development process is at least as important as the product, the executable software,
since it serves to document the design and provides a method for checking the correctness
of the program (with respect to the initial specification). The refinement calculus is
a formal method for refining specifications. Applying the calculus effectively requires
computer-based support to manage the many steps from the initial abstract specification
to the final executable program. In the paper we have summarized our experiences with
tool support for the refinement calculus and made suggestions about goals for future
tools.

7 Acknowledgements

We gratefully acknowledge the influence and inspiration of the research on specification
at the Programming Research Group, Oxford University. The refinement calculus was
developed during Ken Robinson's study leave at PRG in 1985/86. Special thanks are
owed to Carroll Morgan for his collaboration on the development of the refinement
calculus.

This research is partially supported by an Australian Research Council grant.

321

References

[1] D. Bjorner and Jones C.B. Formal Specification and Software Development.
Prentice-Hall International, 1982.

[2] D.A. Carrington and K.A. Robinson. A prototype program refinement editor. In
Australian Software Engineering Conference, pages 45-63. ACS, 1988.

[3] Edsgar W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[4] R.W. Floyd. Toward interactive design of correct programs. In IFIP, pages 7-10,
1971.

[5] T.G. Griffin. Notational Definition and Top-Down Refinement for Interactive Proof
Development Systems. PhD thesis, Dept. of Computer Science, Cornell University,
1988.

[6] I.J. Hayes, edit;or. Specification Case Studies. Prentice-Hall International, 1987.

[7] C.B. Jones. Systematic Software Development using VDM. Prentice-Hall Interna-
tional, 1986.

[8] D.E. Knuth. Literate programming. The Computer Journal, 27(2):97-111, 1984.

[9] Carroll Morgan. Programming from Specifications. International Series in Com-
puter Science. Prentice-Hall, 1990.

[10] C.C. Morgan. The specification statement. ACM Transactions on Programming
Languages and Systems, 10(3):403-419, July 1988.

[11] C.C. Morgan and K.A. Robinson. Specification statements and refinement. IBM
Journal of Research and Development, 31(5):546-555, September 1987.

[12] C.C. Morgan, K.A. Robinson, and P. Gardiner. On the refinement calculus. Tech-
nical Report PRG-70, Programming Research Group, 8-11 Keble Road, Oxford
OXt 3QD, UK, 1988.

[13] T.W. Peps and T. Teitelbaum. The Synthesizer Generator. Springer-Verlag, 1989.

[14] T.W. Reps and T. Teitelbaum. The Synthesizer Generator Reference Manual.
Springer-Verlag, third edition, 1989.

[15] C. Rich and H.E. Shrobe. Initial report on a LISP programmer's apprentice. IEEE
Transaction on Software Engineering, 4(6):456--467, 1978.

[16] J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall International,
1989.

[17] R.C. Waters. The programmer's apprentice: Knowledge based program editing.
IgEE Transaction on Software Engineering, 8(1):1-11, 1982.

