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A novel process algebra is presented; algebraic expressions specify delay-insensitive circuits in terms of 
voltage-level transitions on wires. The approach appears to have several advantages over traditional 

state-graph and production-rule based methods. The wealth of algebraic laws makes it possible to 
specify circuits concisely and facilitates the verification of designs. Individual components can be 
composed into circuits in which signals along internal wires axe hidden from the environment. 

0 Introduction 

A circuit is connected to its environment by a number of wires. If the circuit functions correctly 

irrespective of the propagation delays in these wires, the circuit is called delay-insensitive. Delay- 

insensitive circuits are attractive because they can be designed in a modular way; indeed no timing 

constraints have to be satisfied in connecting such circuits together. As a result of the latest Turing 

Award Lecture [13], the design of delay-insensitive circuits has drawn renewed interest. 

The design of delay-insensitive circuits is made difficult by the need to consider situations in 

which a signal (voltage-level transition) has been transmitted at one end of a wire but has not yet 
been received at the other end. The algebraic notation presented in this paper may be helpful in the 

following ways: 

*The full version of this paper appears in the ACM/AMS DIMACS series and as Technical Report WUCS-89-54, 
Dept. of C.S., Weshington Univ., St. Louis, MO. 
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1. The functional behaviour of primitive delay-insensitive components can be captured by alge- 

braic expressions. 

2. All possible behaviours of the circuit that  results when such components are connected together 

can be determined by symbolic manipulation. 

3. The algebra facilitates the precise specification of the circuit that the designer has to build, 

including obligations to be met by the environment. 

4. The algebra supports verification of the design against the specification. 

The algebra is based upon Hoare's CSP notation [7]. It adapts the theory of asynchronous 

processes [8, 9] to the special case of delay-insensitive circuits. The possibilities of transmission 
interference and computation interference, characterized by Udding [14, 15], are faithfully modelled 

in the algebra; the designer is able to reason about these errors, and so avoid them. Underpinning 

the algebra is a denotational semantics similar to those given in [2, 9]; the semantics is compatible 

with the failures-divergences model of CSP [1, 7]. 

Our approach complements that taken by Martin [10, 11] to the design of delay-insensitive circuits. 

Martin's approach, however, is more general in that he makes use of components that are not delay- 

insensitive, namely his isochranic forks. We have discovered that  it is possible to understand many of 

Martin's circuits by treating the isochronic fork, together with one of the gates to which it connects, 

as a single primitive delay-insensitive component. (Ebergen [5], on the other hand, has investigated 

how components that are sensitive to delay can be synchronised to form delay-insensitive circuits.) 

The remainder of this paper provides a step-by-step introduction to the algebra. We also prove, 

as a case study, some of Martin's nontrivial circuit designs to be algebraically correct. Similar 

verifications have been done by Dill [3, 4]. His verifications, however, are performed at the semantics 

level rather than at the syntactic/algebraic level. Algebraic calculations are arduous but humanly 

feasible, as well as mechanisable, and seem to avoid a state explosion. 

1 Basic Notions  and Operators 

A process is a mathematical model at a certain level of abstraction of the way in which a delay- 

insensitive circuit interacts with its environment. Typical processes are P and Q. A circuit receives 

signals from its environment on its input wires and sends signals to its environment on its output 

wires. Thus with each process are associated an alphabet of input wires and an alphabet of output 

wires. These alphabets are finite and disjoint. Typical names for input wires are a and b; typical 

names for output wires are c and d. The time taken by a signal to traverse a wire is indeterminate. 

In the remainder of this section and section 2, we consider processes with a particular alphabet 

I of input wires and a particular alphabet O of output wires. 

The process P is considered to be "just as good" as the process Q (P _C Q) if no environment, 

which is simply another process, can when interacting with P determine that it is not interacting 
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with Q. (This is the refinement ordering of CSP [1, 7], also known as the must ordering [6].) Two 

processes are considered to be equal when they are just as good as each other. 

The refinement ordering is intimately connected with nondeterministic choice. The process PnQ 
is allowed to behave either as P or as Q. It reflects the designer's freedom to implement such a 

process by either P or Q. (Thus N is obviously commutative, associative and idempotent.) Now 

P R Q -- Q exactly when P C_ Q. 

A wire cannot accommodate two signals at the same time; they might interfere with one another 

in an undesirable way. This and any other error are modelled by the process .k (Bottom or Chaos). 

The environment must ensure that  a process never gets into such a state. The process .1_ is considered 

to be so undesirable that  any other process must be an improvement on it: 

L a w 0 .  P C . I _  

It follows that N has _[_ as a null element. 

We shall mostly be concerned with recursively-defined processes. The meaning of the recursion 

pX.F(X) is the least fixpoint of F .  Its successive approximations are .1_, F(.I_), F(F(±)), etc. All 

the operators that we shall use to define processes are continuous (and therefore monotonic); all 

except for recursion are distributive (with respect to nondeterministic choice). 

In earlier approaches to an algebra for delay-insensitive circuits, cf. [14, 2, 5], a particular input 

signal is allowed only when this is explicitly indicated, and otherwise is assumed to lead to interfer- 

ence. This is in contrast with the algebra presented here: an input need not result in interference 

even though the possibility of such an input has not been made explicit in the algebraic expression. 

This follows the approach taken in [9] and is more convenient in algebraic manipulation, even though 

at first it may appear less natural. 

Thus we write a?; P to denote a process that  must wait for a signal to arrive on a E ] before it 

can behave like P.  It is quite permissible for the environment to send a signal along any other input 

wire b. Such a signal is ignored at least until a signal is sent along a (or a second signal is sent along 

b causing interference). 

A process that waits for input on a and then for input on b before being able to do anything is 

actually just waiting for inputs on both a and b, their order being immaterial: 

Law 1. a?; b?; P = b?; a?; P 

Complementary to input-prefixing a?; P is output-prefixing c!; P ,  where c q O. This is a process 

that outputs on c and then behaves like P. The environment may send a signal on any input wire 

even before it receives the signal on c; whether or not it  can do so safely depends on P. 

Two outputs by a process on the same wire, one after the other, is unsafe because of the danger 

of the two signals interfering with one another before they reach the environment. Also, since any 

output of a process may arrive at the environment an arbitrary time later, the order in which outputs 

are sent is immaterial. Therefore, we have the following two laws: 

Law 2. c!; c!; P -- ± 
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Law 3. c!; d!; P = d!; d;  P 

E x a m p l e  0 Law 2. allows us to prove that  d;  2- = 2-. This should not be surprising: the process 

d;  2. behaves like 2- after it has output on e; a wholly undesirable state results even before the output 

has reached the environment. 

c!; ± 

-- { Law 2. } 

c!; c[; d;  .L 

= { Law 2. } 

2- 

Finally, as in CSP, prefixing is distributive (with respect to nondeterministic choice). For both input 

and output-prefixing we have the law 

Law 4. z; (P  l-1 Q) = (x; P)  I'l (z; Q) 

E x a m p l e  1 We are now in a position to specify a number of elementary delay-insensitive compo- 

nents, v/z. the Wire, the Fork, and the C-element. 

Consider a circuit with one input wire a and one output wire c. In response to each signal on a, the 

circuit should produce a signal on c. The precise behaviour of this circuit is given by the following 

algebraic expression: 

pX. a?; el; X 

which we shall refer to as the process W because it can be readily implemented by a wire. Now 

unfolding the recursion, we have that W = a?; c[; W. As in CSP, this equation itself uniquely defines 

W because its right hand side is guarded. 

Next consider the process, with one input wire a and two output wires c and d, defined by the 

equation F = a?; c!; d[; F.  This models the behaviour of a fork. 

Finally, the Muller C-element repeatedly waits for inputs on wires a and b before outputting on c. 

It is defined by C = a?; b?; c[; C. 

When we introduce the after operator in the next section, it will become clear that the above 

expressions do indeed correctly specify the components. 

A more general form of input-prefixing is input-guarded choice. Such a choice allows a process to 

take different actions depending upon the input received. The choice is made between a number of 

alternatives of the form a? --* P .  For S a finite set of alternatives, the guarded choice [S] selects one 

of them. An alternative a? -* P can be selected only if a signal has been received on a. The choice 

cannot be postponed indefinitely once one or more alternatives become selectable. 

Choice with only one alternative is no real choice at all: 
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Law 5. [aT -~ P] = aT; P 

The environment cannot safely send a second signal along an input wire until the first signal has 

been acknowledged. Thus the result of sending two signals on a to the process a?; aT; P is 3- rather 

than P.  The process is as useless as a choice with no alternative: 

Law 6. aT; a?; P = a?; [ ] = [ ] 

If two alternatives are guarded on a, then either may be chosen after input has been supplied on 

a. Indeed, the designer has the freedom to implement only one of the two. This is captured in the 

following law, where the symbol n separates the various alternatives: 

Law 7. [aToP o aT ~ Q  o S] 
[a? -~ (P n Q) o S] 
[a?-~ e o s in [a? - ,  Q o s] 

E x a m p l e  2 With the above law we can prove the following absorption theorem. An alternative 

guarded on a is absorbed by a? --* 3-: 

[a? --, 3_ 0 a? --, P 0 S] 

{ combining alternatives using Law 7. } 

[a? --+ ( ±  n e )  o s] 

{ _L is the null element of n } 

[a? - ,  ± o S] 

Until a process acknowledges receipt of an input signal, a second signal on the same wire can result 

in interference. So, for So and $1 sets of alternatives, we have 

Law S. [a? -~ [Sol o S,] = [a? -~ b? -~ ± o &] o s,] 

E x a m p l e  3 As a matter of fact, we can replace 3- in Law 8. by any process P.  

b? ~ [a? -~ 3- o So] n SU 

= { absorption law derived in Example 2 } 

[a? -~ [a? -~ ± o a? - .  P o &] o s~] 

= { Law 8. } 

b? - *  In? - *  P o So] o s,] 

Indeed, if i t  is unsafe for the environment to send a signal along a particular input wire, it remains 

unsafe at least until an output has been received. Therefore, we also have the following absorption 

law. 
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L a w g .  [a?-- ,  .I. 0 b?--* [a?--* P 0 So] 0 S~] = {a?--* .I. 0 b?--+ [Sol D ,5'11 

E x a m p l e  4 With the input-guarded choice we can model somewhat more interesting delay- 

insensitive components, such as the Merge, the Selector and the Declsion-Wait element. 

The Merge is a circuit with two input wires a and b and one output wire c. In response to a signal 

on either a or b, it will output on e: 

M = [a? --* d;  M 0 b? --* c!; M] 

We shall discover, in the next section, that this definition implies that it is unsafe for the environment 

to supply input on both a and b before receiving an output on e. 

The Selector is a circuit with one input wire a and two output wires c and d. Upon reception of an 

input it outputs on one of the two wires: 

S = [a? --. d; S o a? --. d!; S] 

Actually, in this case there is no need to use guarded choice. By Laws 5. and 7., an equivalent 

formulation is S = a?; ((c!; S) n (d!; S)). 

Finally, we can define the Decision-Wait element (2 x 1 in this case}. It expects one input change in 

its row and one input change in its column. It produces as output the single entry which is indicated 

by the two changing inputs - there are two entries in this case: 

DW -- Jr0? -* [7"17 ~ .L O c? --~ eO!; DW] 
O r l ?  ~ [r0? --* .L O c? --* el!; DW] ] 

(A C-element can be viewed as a 1 x 1 Decision-Wait element.) 

2 M o r e  A d v a n c e d  C o n s t r u c t s  This section has been omitted. 

3 Composition 

In this section we define a parallel composition operator. With it we can determine the overall 

behaviour of a circuit from the individual behaviour of its components. I t  is understood that  if the 

output wire of one component has the same name as the input wire of another, then these wires are 

supposed to be joined together; any signals transmitted along such a connection axe hidden from the 

environment. The parallel composition operator is fundamental to a hierarchical approach to circuit 

design. It permits an initial specification to be decomposed into a number of components operating 

in parallel, and each of these components can be designed independently of the rest. 

The simplicity of the laws enjoyed by parallel composition is one of the main attractions of our 

algebra. Indeed, in [14] certain restrictions had to be placed on processes before their composition 

could even be considered; and in [2] the fixed-point definition of parailel composition was rather 

unwieldy. 
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Parallel composition is denoted by the infix binary operator II. All the operators we have met 

so far do not affect the input and output alphabets of their operands; so, for example, in the 

nondeterministic choice P FI Q, we insist that the input alphabet of P is the same as that of Q, and 

declare that it is the same as that of P I'1 Q. In the parallel composition P tl Q, however, the input 

alphabet of P should be disjoint from that of Q; likewise, the output alphabet of P should be disjoint 

from that of Q. (These rules prohibit fan-in and fan-out of wires; the explicit use of Merges and 

Forks is required.) The input alphabet of P II Q then consists of those input wires of each process P 

and Q which are not output wires of the other. Similarly, the output alphabet of P H Q consists of 

those output wires of each process which are not input wires of the other. 

Parallel composition is commutative. It is also associative, provided we ensure that a wire named 

in the alphabets of any two processes being composed is not in the alphabets of a third process. If 

one process in a parallel composition is in an undesirable state, then the overall state is undesirable: 

Law 28. P II _L = .L 

When an output-prefixed process c!; P is composed with another process Q, the output is transmitted 

along c. Depending on whether or not c is in the input alphabet of Q, the signal on c is sent to Q or 

to the environment: 

P II (Q/c?) if c is in the input alphabet of Q 
Law 29. (c!; P) II Q = c!; (P  II Q) otherwise 

It remains only to consider parallel composition of guarded choices. The following law specifies the 

alternatives in the resulting guarded choice. 

Law 30.  [So] II IS,] = IS], 
where S is formed from the alternatives in So and S1 in the following way. For each alternative 

in So of the form skip -.-, P, we have skip --, (P II [$1]) in S. For each alternative in So of the 

form a? --* P with a not in the output alphabet of [$1], we have a? --, (P  I[ [$I]) in S. The 

alternatives in $1 contribute to the alternatives in S in a similar way. 

Example  5 If one component is able to send a signal that it is unsafe for the other to receive, 

then their parallel composition is .L. 

(~!; P)II [~? ~ i o s] 

= { internal communication on a, Law 29. } 

e II [a? - ,  .L D S]/~? 

= { Example ?? and .L null element of parallel composition, Law 28. } 

_L 

Example  6 We compute a number of simple compositions in this example. Although the resulting 

behaviours are well-known, it has never previously been possible to give a straightforwargl algebraic 

derivation. 
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Consider first connecting two wires Wo and I4"1 together. Let Wo = a?; b!; Wo and W1 = b?; c!; W1. 

Then, in their parallel composition, signals on b are hidden from the environment. 

Wo II wl 

= { definitions of Wo and W1 } 

(a?; b!; Wo) 1I (b?; c!; W,) 

= { one choice is no choice and parallel composition through guarded choice, Law 30., using 
that b is internal } 

a?; ((b!; Wo) 11 (b?;d; WaD 

--- { internal communication on b, Law 29. } 

a?; (w0 I1 (b?;d; W,)/b?) 

= { after through prefixing } 

a?; (Wo U [b? - .  l o ~kip - ,  c!; w,]) 

= { substituting for Wo, and applying Law 30., parallel composition through guaxded choice, 

using that b is internal } 

a?; [ a? - ,  ((b!; Wo) II [b? - ,  .L 0 ,,~p --, c!; I4:1]) 
0 skip --, (Wo II (c!; Wg) ] 

= { one choice is no choice and absorption as in Example 3 } 

a?; [ ~ p  - .  (w0 II (c!; w,))] 

= { one choice is no .choice and external communication with Law 29. } 

a?;c!;(Wo U W~) 

Since this recursion is guarded, we conclude that Wo 11 w, = w .  

A more interesting example is the composition of a "one-hot" C-element and a Fork in the 

following way. The C-element is specified by C = a?; b?; d; C and the Fork by F = c?; a!; ~; F. This 

is a circuit involving feedback. 

c/a? II 

= { Example ?? and definition of F } 

[a? - ,  J. o b? - ,  c!; C] II (c?; a!; d!; F) 

= { one choice is no choice and parallel composition through guarded choice, using that a and 

c are internal } 

b?; ((c!; C) 11 (c?; al;d!; F))  

= { internal communication on c } 
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b?; ( c  II (c?; al; d!; F)Ic?) 

= { definition of C and after through prefixing } 

b?; ((a?; b?; e!; C) II [e? -~ ± D skip -~ ~!; d!; F]) 

= { one choice is no choice, parallel composition through guarded choice, using that a and c 

are internal, and definition of C } 

b?; [skip --* (C II (,,!; d!; f ) ) ]  

= { one choice is no choice, internal communication on a and external communication on d 
} 

b?; d!; (C/a? II F) 

By uniqueness of guarded recursion, this combination of C-element and Fork behaves just like a wire. 

Although the Fork signals on a and d "in parallel", this did not lead to a doubling of the number 

of states which we had to analyse. We could deal with a entirely before d was pulled out of the 

parallel composition. This technique can be more generally applied and that is why these algebraic 

manipulations do not lead to a state explosion. 

4 A Smal l  C a s e  S t u d y  This section has been omitted.  

5 C o n c l u s i o n  

An algebraic approach has been taken to the specification and verification of delay-insensitive circuits. 

It has not been necessary to express explicitly all the states that such a circuit can enter; instead 

the possibility of them arising can be deduced using algebraic laws. This has lead to more concise 

specifications and shorter proofs than would be possible using other methods. Another simplifying 

factor has been that, following [14], we do not distiguish between high and low-going transitions; 

this exposes many symmetries that would not otherwise be apparent. The main advantage of our 

approach is the ease with which we can compute the parallel composition of components. We have 

worked through many examples in which we used algebraic laws either to prove further laws or to 

investigate the behaviour of specified circuits. As a case study, we verified some of Martin's designs, 

bringing to light interesting facts about his Isochronic Forks, D-elements and Q-elements. 
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