
F i n i t e n e s s c o n d i t i o n s a n d s t r u c t u r a l c o n s t r u c t i o n o f a u t o m a t a

f o r a l l p r o c e s s a l g e b r a s

ERIC MADELAINE

INRIA
Route des Lucioles, Sophia Antipolis

06565 Valbonne Cedex (France)
email: madelain@mirsa.inria.fr

D I D I E R V E R G A M I N I

CERICS
Rue Albert Einstein, Sophia Antipolis

06565 Valbonne Cedex (France)
email: dvergami@mirsa.inria.fr

A b s t r a c t
Finite automata are the basis of many verification methods and tools for process

algebras. It is however undecidable in most process algebras whether the semantics
of a given term is finite. We give sufficient finiteness conditions derived from the
analysis of the operational rules of the algebra operators. From these rules we also
generate the functions that compute autom,~ta from terms of the algebra. These
constructions allow one to use our verilication tools for programs written in many
process algebras.

1 I n t r o d u c t i o n

Verification methods for concurrent systems can be classified in at least three families:
theorem proving methods, model-checking, and automata based methods. The first fam-
ily holds the biggest theoretical power; it may be applied to many sort of undecidable
problems and in some sense it can deal with infinite objects. However theorem proving
methods have usually a high complexity and there is few hope to make these methods
purely automatic. The EeRINs system ([DMdSg0]) uses theorem proving methods, to-
gether with specialized algorithms, to check for tile validity of bisimulation laws in process
algebras. The approach is general enough to consider most usual process calculi from the
literature; the semantics of the operators is defined in user-defined calculus description
files, and used by the system to generate specialized behaviour-evaluation algorithms.

We want to apply this parameterized approach for building tools based on automata
analysis. The system AUTO ([RS89]) is dedicated to verification by reduction of parallel
and concurrent programs. AUTO deals only with terms that have finite automata rep-
resentations. Its main activities are the construction of automata from terms of process

1This work was partially supported by ESPRIT BRA (n°3006) CONCUR.
2The full version of this paper is published in the AMS-DIMACS volume of the Computer Aided

Verification Workshop proceedings, R.P.Kurshan ed., 1990

354

algebras and the reduction and comparison of automata along a large family of equiva-
lences. These activities are mostly intertwined, according to congruence properties of the
equivalences that allow for reducing subterms of operators before building any global au-
tomaton. This approach cuts off partially the space explosion that causes the well-known
limitation of such techniques.

The current AUTO system is using a subset of the MEIJE calculus ([Bo85]) as input
language. To ensure that terms have finite representations, we use a two layers structure
for input terms. In the lower layer, one can write recursive definitions directly encoding
automata: recursive variables correspond to states and transitions are specified through
action prefixing and non-deterministic choice (see the example 1 in section 2.2); these
are dynamic operators, for they build the behaviour of components of a system. In the
upper layer, one builds networks of automata using static operators (asynchronous parallel
composition, renamings of signals, and a restriction operator). Finiteness of automata is
guaranteed by forbidding occurrences of the parallel and renaming operators inside the
recursive definitions. Observational equivalence appears to be a congruence for the MEI:IE
parallel and restriction operators, so lower layer automata can be reduced before being
composed.

Similar conditions have been given by other authors for other languagaes, e.g. by
D. Taubner for CCS, by H. Garavel for Lotos, and by M. Barbeau for Lotos also, but
in the case of 1-place Petri-nets models, that may represent strictly more programs than
finite automata.

Extending the structural construction of automata to parameterized process algebra,
we need new finiteness conditions, computable from the very definitional rules of the
operators. Here the splitting between static and dynamic operators makes less sense,
as many operators can be used both in dynamic and static positions. Moreover there
are operators that are asymmetric; recursion on the left argument of the enable and
disable operators of LOTOS may generate infinite structures, whereas recursion on their
right arguments can be used safely. We shall deduce from analysis of their rules which
operators may in which position accept a recursive variable as one of its arguments, and
which operators are preserving finiteness of automata. The rules analysis also provides
us functions associated with each operator for building the automata. Of course the
finiteness conditions rely deeply on the format allowed for the operator rules.

In section 2, we give an overview of the concepts from process calculi theory we need
in the paper, including a description of the syntax we allow for structural operational
semanticrules. In section 3, we discuss finiteness conditions and explain the classification
of operators obtained from the analysis of the rules. In section 4 we describe the algorithms
for structural construction of the automata, and in the conclusion we describe a prototype
system that uses this generic technique and discuss current work.

2 P r o c e s s Calcu l i

Process calculi are now a well-accepted generic notion for designing a class of formalisms
which share the same definitional principles : CCS [MiS0], SCCS [Mi83], MEIJE [Bo85],
ACP [BK86], BasicLOTOS [BB88] to name a few. We shall assume reader's acquaintance
with at least one of these language.s and its definitional mechanisms.

355

Process calculi are based on two main types : actions and processes. Operators take
actions and processes arguments into processes, providing a classical algebraic structure.
Operational semantics provides interpretation of closed terms into transition systems, with
actions as transition labels. Operators and non-closed expressions are then interpreted
as transition system transformers; this semantics is defined through behaviour rules in
a structural operational style, with a particular format (see [dSi85], [VG88]). We shall
describe our format for rules in section 2.4.

Special operators are action renamings and recursive definitions. They are present in
all process calculi.

2.1 A c t ions

In all process algebras actions are themselves structured. This structure is what allows
for synchronization and further communication to be handled in relevant operators rules.
Just recall the inverse signals in CCS, which meets in synchronization and produce a
hidden action r. In SCCS and MEIJE there is a full commutative monoid of potential
simultaneous actions, again containing a group of invertible signals. Actions structure in
ACP is more scarce and parametric, while in BasicLOTOS it is only a set of so-called
gate names without structure, but for a distinguished termination action &

2.2 R e c u r s i v e d e f i n i t i o n s

Most process algebras have some sort of recursion operator. In AUTO and ECRINS we use
a common recursive definition medlanism for all process algebras. Here is an example of
a recursive definition, written with MEIJE operators:

i
ExampIe 1
let rec {x = a:x + b:x +c:stop

and y a:y + b:z

....... and z a:z + c:c:y } I in x / / y

Such recursive definitions are used in AUTO for building finite automata, perhaps
composed later on by other operators of the algebra. One can also build infinite structures,
not suitable for analysis in AUTO, such as:

Example 2
!

let rec {many-processes = one-process // many-processes} i

in many-processes]

2.3 D e f i n i t i o n o f p r o c e s s a l g e b r a s

A calculus description contains the concrete syntax and abstract syntax definitions of the
calculus operators, together with structural conditional rules that gives them an opera-
tional semantics. The EcrtINS calculus compiler uses the first part to produce a scanner, a
parser and abstract syntax structures for expressions of the calculus. From the semantics
part, the compiler will produce the fimctions for building and combining automata from
terms. Here is an example taken from Basic-I, otos:

356

iii

operator disable :: Process Process --> Process

syntax [> lef% 4

semantics

disabling_1 p -- a --> p' k not(a equal d)

disabling_2

p[>q -- a --> p'[>q

p -- a --> p' k (a equal d)

disabling_3

p[>q -- d --> p'
q -- a --> q'

p[>q -- a --> q'

end

2 . 4 T h e C o n d i t i o n a l R e w r i t e R u l e s f o r m a t

The rules must obey the following format ([DMdS90]):

uj
{Xj = : X~ }ffC[1..n] ~ P({uj}ff?..al, . . . ,ara)

, , , . . . , a,,)
, I X ~l . Op(Xl , . . . xn, a l , . . . , a ,) , T ({ k}[1. .n]- f f ,{ k}ff, al, • . ,am)

Many definitions in this paper rely on the syntax allowed for the various elements of
conditional rules. Let us give precise .names to these elements.

D e f i n i t i o n 1 We call:

• premises the upper part of the rule and conclusion its bottom part.

• subject the term at the left end part of the conclusion. The head operator Op of the
subject has process arguments za , . . . , z , and action parameters aa,. . . , am. Inside
P, F and T' some other actions may appear: they are global constants of the calculus
and had to be declared as such previously.

• formal hypothesis the part of the premises on the left of the & and vcorking formM
variables the xj with j E 3".

• actions predicate the part of the premises on the right of the &. P belongs to
boolean operators closure of the following basic predicates : equality, divisibility, set
membership., over actions terms with synchronization product.

• resulting action the label over the a~wow of the conclusion. The resulting action F is
a function of the formal hypotheses actions (and of the operator action parameters).

resulting process the right end part of the conclusion. The process arguments that
appear as formal hypothesis must be transformed as x~ in the resulting process. This
condition does not allow to test a potential future behaviour of a process, without

357

making it ezplicitly perform its action within the considered rule, therefore saving
the possibility of choosing another future. This is a restriction to the format in
[VG88]. Beside this condition, the resulting process is built from the action and
process variables, and the operators of the calculus (ezcluding recursive definitions).

3 F i n i t e n e s s C o n d i t i o n s

The preceding conditional rules defines in a structural manner the semantics function that
computes a transition system from a (closed) term of a process algebra. This definition is
constructive: you can compute each transition of the transition system by building proof
trees which nodes are instances of the rules.

Defini t ion 2 A term of a process algebra has transition-system finiteness (TSF) iff the
transition system computed from the term using the operators' rules is strongly bisimular
to some finite transition system (i.e. with a finite number of states and a finite number
of transitions).

In many process algebras with recursion, this property is undecidable. Sufficient syn-
tactic conditions to ensure FTS will be given in this section, for any process algebra
defined using the conditional rewrite rules from the preceding section. As far as possible,
these conditions will be expressed in terms of the semantic rules of the operators. We
shall use the following notions:

gua rded recursion: It is possible to build infinite proof trees for terms containing re-
cursive definitions. Can we found syntactic conditions to guaranty that all proof
trees are finite?

non-growing opera to r s : Making the assumption that the arguments of an operator
have finite semantics, is it always true that their composition by this operator is
a finite automaton? This property holds for most classical operators, but the rule
format allows to define exotic operators that create infinitely many states.

sieves: Some unary operators have the nice property that the resulting automaton has
exactly the same states than the argument automaton, only some transitions being
transformed, erased, or added. We implement their semantics by sieves, that is
functions that only modify the transitions of the system. Which operators may be
implemented in this way?

switches: Inside a recursive definition, the use of recursive variables should be limited in
some way, in order to avoid building infinitely many states, or states with infinitely
many transitions. Clearly, parallel composition operators and non-alphabetical re-
namings should be somehow forbidden inside recursive definitions. At which places
(defined as occurrences of operator arguments) is a recursive variable allowed to
appear?

358

3.1 Guarded reeursion

In order to avoid divergence in the proof tree construction, we introduce as usual a notion
of guarded terms. We define here this notion in a rather abstract way, and we shall give
a generic algorithm that computes it in a further section. The definition relies on the fact
that if a proof tree is infinite, then either it contains a pattern that occurs infinitely, or the
subject of its nodes are strictly growing along the infinite branches. The guarded property
takes care of infinitely repeated patterns, while growing branches will be addressed later.

Def ini t ion 3

• A proof tree is unguarded iff the subject of its root is equal to the subject of one of
its subtree, or if it has an unguarded subtree.

• A term of a process algebra is unguarded if it has an unguarded proof tree, or if at
least one of its possible reconfigurations is unguarded.

• A term of a process algebra is guarded if it is not unguarded.

3 . 2 N o n - g r o w i n g o p e r a t o r s

Growing operators build infinite structures from arguments having finite automata repre-
sentations. Though no operators of usual process algebras have such a r;asty behaviour,
we need a syntactical way to ensure that no growing operator is used in a term. In order
to obtain infinitely many states in the resulting automaton, one would have to introduce
a rule that produces new terms ab infinitum. A natural sufficient condition for ensuring
finiteness is to be able to find an order on expressions such that for all rules, the resulting
process is not strictly greater than the subject.

It is possible to adapt here many results from tile term rewrite system theory, with the
difference that we are looking for a non-strict order compatible with our rewrite relation~
whereas usual rewrite systems need a strict decreasing order. We give here a simple
definition that covers nearly all interesting cases:

We consider families of operators closed under reconfiguration: if an operator belongs
to the family, then all operators that occur in the resulting processes of all its rules also
belong to the family.

Defini t ion 4 A family of operators { Opk } is non-growing iff there exist a simplification
ordering ~. such that:

For each rule of each operator, let us denote Opk(zi) the subject o f the rule and
Ti~[~/xi] its resulting process in which all resulting working variables x~ have been re.
placed by their corresponding xi, then:

either Ti~ [x~/xl] ~, Opk(zi)

or = opk(x,)

where = is the syntactic equality on terms.
We say then that all Opk are ,~.-non.growing.

359

T h e o r e m 1 Given a family of non-growing operators F = {Opk}, an operator Op~(x~)
of arity n, and n terms Ti having TSF, then Opk(Ti) has TSF.

A//proofs are in the full paper.

3.3 Sieves

Defini t ion 5 A sifting operator, or sieve, is an operator with exactly one process argu-
ment, which rules obey the following conditions: each rule has ezactly one working formal
variable (the process argument}, may have predicates and any form of resulting action,
and the resulting process is obtained fi'om the subject of the rule by substituting the working
formal variable by the corresponding resulting process variable.

This definition includes the renaming, restriction, and ticking operators of MEI:IE, the
hiding operator of TcSP and LOTOS.

The introduction of sieves is two-folded:

• They are an interesting family of automata transformers, acting only on transitions.
As such, they can be easily composed and combined with the automata building
functions, leading to efficient implementations where no intermediate automata are
built for such operators, and only accessble pal"ts are considered.

• They may be used also inside recursive definitions. We need define here a sub-class
of sieves such that the language generated by their compositions, modulo some
idempotence property, remains finite. Then the states of the generated automaton
will be obtained as pairs of a recursive variable and a composition of sieves.

This applies e.g. for alphabetical renamings, hiding, and restriction (for the alphabet
of action labels in a term is finite, and the set of all restriction compositions is a finite
commutative group).

Of course, it does not apply to ticking or to non-alphabetical renamings, and the
MEI:IE term: l e t rec x= a :y and y = b*x in x generates infinitely many states x,
b,x, b*b*x, etc.

We need here a non-growing definition for resulting action functions:

Defini t ion 6 An operator rule is action-non-growing iff its resulting action is an action
term built only from the following items: the fox,hal action of the rule, the action pa-
rameters of the subject, the constant actions of the calculus, and alphabetical renamings
(including renaming a label by an invisible action).

This definition is trivially fulfilled by all operators of BASlCLOTOS and Ccs, but not
by the ticking operator of MEIJE, nor by non-alphabetical renamings.

Defini t ion 7 A non-growing sieve is a sifting operator which rules are action-non-growing.

Propos i t ion 1 Given a finite alphabet of actions, the algebra of all compositions of non-
growing sieves has a finite model.

3 6 0

3 . 4 S w i t c h i n g o p e r a t o r s

We introduce the family of switching operators as a generalization of the usual sum
operator of CCS/]VIEIJE.

Defini t ion 8 Given a family of operators 0 and a well founded simplification ordering
~: on expressions generated from (9,

An operator Op in O is a switching operator (or simply a switch) w.r.t, one of its
process arguments ~p" iff:

- All rules in which Up,, is a working formal variable verify the followin 9 properties:
it has no other premise ("p" works alone) and the resulting process is ezactIy p'.

- All rules where the resulting process contains an occurrence of '2" are non-growing
for ~. and are their resulting processes are themselves switches for '~p".

Remarks:

- This includes non-growing operators with no premise at all.

- This definition could be extended by allowing rules in which "p" is working to have
as resulting processes T such that T ~. Op(...,p', ...), with T being also in some
sense a switch for p. However, this would complicate to much both the definition
and the related proofs, whereas all classical operators fit the restricted definition we
have just given.

The sum operator of Sccs , the binary choice of BASICLOTOS are switches, but also
the delay operator of MEIJE and the disabling operator of LOTOS for its second argument.

Usual prefixing operators are also switches, including the action prefl~ operators of
MEIJE and LOTOS, of course, but also the enabling operator of LOTOS for its second
process argument. The internal choice of TCSP is a switch.

Yet the external choice operator of TCsP is not a switching operator (see its rules in
the annex), because for each of its arguments, it has a rule looking as a switching rule,
and a rule resembling a sieve rule. By the way this operator is one we do not want to be
involved in a recursive definition:

E x a m p l e 3 i
let rec x = !tau : x) ext-choice a:y in x

This term generates the following sequence of resulting processes:

let rec (x = ~au:x ext-choico a:x) in x ex~-choice a:x

let rec ~x = tau:x ext-choice a:x} in (x ext-choice a:x) ext-choice a:x

Though this specific case could be reduced (to a finite set of terms) by semantical
arguments, the finiteness property may no more be guaranteed at a syntactical level.
Semantical arguments for finiteness are out of the scope of this paper.

361

3.5 Main result

D e f i n i t i o n 9 Given a family of variables V, a term from a process algebra is called a
te rm suitable for recursion on V iff either

1. it is a variable from V,

~. or it does not contain any variable from V and it has a finite automaton semantics,

3. or its head operator is a switching operator for some of its arguments, these argu-
ments are subterms suitable for recursion on V, and all other arguments contains
no occurrences of variables in V and have finite automaton semantics,

4. or its head operator is a non-growing sieve and its argument is suitable for recursion
on V.

Remark: this definition can be extended to handle nested recursive definitions, by adding
an i tem for any recursive declaration "let rec {zl = el} in Xo" such tha t all el are suitable
for recursion on V tJ {zl}. Such an extension preserves the following theorem, though the
proof is still more tedious.

T h e o r e m 2 Let Proc be a recursive definition "let rec {xl = ei} in Xo".
I f Proc is guarded, and i f all ezpressions el are terms suitable for recursion on {zi} ,

then the recursive definition has a finite automaton semantics.

Hint : We define a finite set of states by induction on the structure of the term, then
we prove that the transition system of the term maps in this state space, with a finite
number of transitions from each state. The proof is in the full paper.

This property Mlows us to guarantee, that some recursive definition have a finite se-
mantics. In any process algebra, it permits using any combination of nested recursive
definitions, and arbitrary closed terms inside recursive definitions. In the case of MEIJE-
Sccs , it naturally includes the classical "well-guarded" condition (sums of action-prefix
operators). In the case of BASlCLOTOS, it allows the occurrence of recursive variables
as second arguments of the enabling operator and well-guarded occurrences of recursive
variables within the second argument of the disabling operator.

3.6 Accessibility

All preceding conditions can be restricted to the accessible parts of the term. This is
not only an optimization issue: considering only ~ccessible parts allows for rejecting less
programs, for any violations of a condition inside a non-accessible part of a term will have
no consequence on its semantics.

We give in the full paper a sufficient characterization of potentially accessible parts of
a term, based on the analysis of recursive variable occurrences in the recursive definitions.

362

4 Algor i thms

We have implemented a new version of AUTO using the preceding results. From the rules
of the operators, and from their classification in finite, sifting, switching, and non-growing
operators, we derive functions that test the syntactical conditions for finiteness, then build
the automaton of a term. Due to size constraints, we cannot give here a full description
of the generated algorithms. The main ideas are:

• A given term of a process algebra is first checked for guardeness and suitability of
its accessible part. Terms that do not satisfy the syntactic conditions are rejected.

• The automaton is built structurally in a bottom-up manner, starting with the re-
cursive definitions at the leaves. There are two main algorithms, one dealing with
recursive definitions, and the other one combining several arguments-antomata w.r.t.
a given operator. Both algorithms take a (composition of) sieve and a reduction
congruence as additional parameters.

• The algorithm dealing with a recursive definition maintains a set of states that are
pairs of a recursive variable and a sieve, e ~ h state associated to a subterm containing
recursive variable occurrences. The analysis of such a term generates transitions
towards states that have to be compared to already existing states, or added to the
set. The finiteness conditions ensure the termination of this computation.

• The composition algorithm is a residual algorithm that traverses both arguments
combining their transitions in a manner that depends on the combination operator.

5 Conclusion

The AUTO system we currently distribute is using specific hand-coded algorithms for the
operators of the MEI:IE0 calculus (stop, prefixing, sum, parallel, restriction, renaming).
These algorithms were carefully optimized in order to avoid building parts of product
automata that were to be deleted by some restriction operators.

We have built a new prototype of the AUTO system using the generic algorithms of
this paper. Tests have been made both for the MEIJE0 calculus and for BASICLOTOS (the
prototype has been presented in [MV89]). The MEIJE0 operators are correctly classified by
our definitions: the prototype accepts stricty more MEIJE0 programs than the preceeding
AUTO system. Some other MEIJE-SCcs operators (see [dSi85]) can be added easily to
this syntax, including ticking, interleaving and the synchronized product as non-growing
operators. The results are good also for BASICLOTOS operators: the usual finiteness
conditions are correctly deduced from the rules. Some limitations of our conditions are
listed in the annex. We also obtained efficiency mesurements: this version appears to have
the same order of performances than the old version. Moreover, it should be clear that
in many cases it allows to build a smaller number of automata (for sieves never require
to copy an automaton) and to apply sieves on smaller automata. No optimizations have
been done in the first prototype, so the new version is potentially much more efficient
than the specialized MEIJE0 version.

This prototype in its BASICLOTOS version is currently integrated in the LOTOS tool
environment of the ESPRIT project LOTOSPIIERE.

363

The set of programs accepted by the generic version is of course larger than in the
former system, and programs may be written in a much more permissive way: for example
parallel compositions may be done in many different ways using various operators and
nested recursive definitions are allowed.

The congruence properties of some equivalences versus MEIJE composition operators
are also to be generalized. It is very important for space efficiency reasons to apply reduc-
tions as deep as possible in the term, in order to create and compose smaller automata.
We plan to have the ECRINS system proving congruence laws for various equivalences and
various operators, so that the congruence properties can be automatically used in AUTO
during the automata construction.

R e f e r e n c e s

[BB88] T. Bolognesi, E. Brinksma, "Introduction to the ISO Specification Language LO-
TOS", in The Formal Description Technique LOTOS, North-Holland, 1988

[BK86] J.A. Bergstra, J.W. Klop, "Process Algebra: Specification and Verification in
Bisimulation Semantics", CWI Monographs, North-Holland, 1986

[BS87] T. Bolognesi, S. A. Smolka, "Fundamental Results for the Verification of Obser-
vational Equivalence: a Survey", proc. of the IFIP 7 th Internaional'Symposium on
Protocol Specification, Testing, and Verification, North-Holland, 1987

[Bo85] G. Boudol, "Notes on Algebraic Calculi of Processes", Logics and Models of Con-
current Systems, NATO ASI series F13, K.Apt ed., 1985

[dSi85] R. De Simone, "Higher-Level Synchronising Devices in Meije-Sccs', Theoretical
Computer Science 37, p245-267, 1985

[MV89] E. Madelaine, D. Vergamini, "AUTO, a verification tool for distributed systems
using reduction of automata", in proceedings of Forte'89 conference, Vancouver,
North-holland, 1989

[DMdS90] G.Doumenc, E. Madelaine, R. de Simone, "Proving Process Calculi Transla-
tions in ECRINS', Technical Repport INRIA RRl192, 1990

[MiS0] R. Milner, "A Calculus for Communicating Systems", Lectures Notes in Comput.
Sci. 92, 1980

[Mi83] R. Milner, "Calculi for Synchrony and Asynchrony", Theoretical Computer Science
25, p267-310, 1983

[RS89] V. Roy, R. De Simone, "AUTO - AUTOGRAPH", this volume.

[VG88] F.W. Vaandrager, J.F. Groote, "Structured operational semantics and bisimula-
tion as a congruence" CWI report CS-R8845, 1988

[Ve89] D. Vergamini, "Verification of Distributed Systems: an Experiment", in Formal
Properties of Finite Automata and Applications, LNCS 386, 1990

