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A b s t r a c t  
Finite automata  are the basis of many verification methods and tools for process 

algebras. It is however undecidable in most process algebras whether the semantics 
of a given term is finite. We give sufficient finiteness conditions derived from the 
analysis of the operational rules of the algebra operators. From these rules we also 
generate the functions that compute autom,~ta from terms of the algebra. These 
constructions allow one to use our verilication tools for programs written in many 
process algebras. 

1 I n t r o d u c t i o n  

Verification methods for concurrent systems can be classified in at least three families: 
theorem proving methods, model-checking, and automata based methods. The first fam- 
ily holds the biggest theoretical power; it may be applied to many sort of undecidable 
problems and in some sense it can deal with infinite objects. However theorem proving 
methods have usually a high complexity and there is few hope to make these methods 
purely automatic. The EeRINs system ([DMdSg0]) uses theorem proving methods, to- 
gether with specialized algorithms, to check for tile validity of bisimulation laws in process 
algebras. The approach is general enough to consider most usual process calculi from the 
literature; the semantics of the operators is defined in user-defined calculus description 
files, and used by the system to generate specialized behaviour-evaluation algorithms. 

We want to apply this parameterized approach for building tools based on automata 
analysis. The system AUTO ([RS89]) is dedicated to verification by reduction of parallel 
and concurrent programs. AUTO deals only with terms that have finite automata rep- 
resentations. Its main activities are the construction of automata from terms of process 

1This work was partially supported by ESPRIT BRA (n°3006) CONCUR. 
2The full version of this paper is published in the AMS-DIMACS volume of the Computer Aided 

Verification Workshop proceedings, R.P.Kurshan ed., 1990 



354 

algebras and the reduction and comparison of automata along a large family of equiva- 
lences. These activities are mostly intertwined, according to congruence properties of the 
equivalences that allow for reducing subterms of operators before building any global au- 
tomaton. This approach cuts off partially the space explosion that causes the well-known 
limitation of such techniques. 

The current AUTO system is using a subset of the MEIJE calculus ([Bo85]) as input 
language. To ensure that terms have finite representations, we use a two layers structure 
for input terms. In the lower layer, one can write recursive definitions directly encoding 
automata: recursive variables correspond to states and transitions are specified through 
action prefixing and non-deterministic choice (see the example 1 in section 2.2); these 
are dynamic operators, for they build the behaviour of components of a system. In the 
upper layer, one builds networks of automata using static operators (asynchronous parallel 
composition, renamings of signals, and a restriction operator). Finiteness of automata is 
guaranteed by forbidding occurrences of the parallel and renaming operators inside the 
recursive definitions. Observational equivalence appears to be a congruence for the MEI:IE 
parallel and restriction operators, so lower layer automata can be reduced before being 
composed. 

Similar conditions have been given by other authors for other languagaes, e.g. by 
D. Taubner for CCS, by H. Garavel for Lotos, and by M. Barbeau for Lotos also, but 
in the case of 1-place Petri-nets models, that may represent strictly more programs than 
finite automata. 

Extending the structural construction of automata to parameterized process algebra, 
we need new finiteness conditions, computable from the very definitional rules of the 
operators. Here the splitting between static and dynamic operators makes less sense, 
as many operators can be used both in dynamic and static positions. Moreover there 
are operators that are asymmetric; recursion on the left argument of the enable and 
disable operators of LOTOS may generate infinite structures, whereas recursion on their 
right arguments can be used safely. We shall deduce from analysis of their rules which 
operators may in which position accept a recursive variable as one of its arguments, and 
which operators are preserving finiteness of automata. The rules analysis also provides 
us functions associated with each operator for building the automata. Of course the 
finiteness conditions rely deeply on the format allowed for the operator rules. 

In section 2, we give an overview of  the concepts from process calculi theory we need 
in the paper, including a description of the syntax we allow for structural operational 
semanticrules. In section 3, we discuss finiteness conditions and explain the classification 
of operators obtained from the analysis of the rules. In section 4 we describe the algorithms 
for structural construction of the automata, and in the conclusion we describe a prototype 
system that uses this generic technique and discuss current work. 

2 P r o c e s s  Calcu l i  

Process calculi are now a well-accepted generic notion for designing a class of formalisms 
which share the same definitional principles : CCS [MiS0], SCCS [Mi83], MEIJE [Bo85], 
ACP [BK86], BasicLOTOS [BB88] to name a few. We shall assume reader's acquaintance 
with at least one of these language.s and its definitional mechanisms. 
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Process calculi are based on two main types : actions and processes. Operators take 
actions and processes arguments into processes, providing a classical algebraic structure. 
Operational semantics provides interpretation of closed terms into transition systems, with 
actions as transition labels. Operators and non-closed expressions are then interpreted 
as transition system transformers; this semantics is defined through behaviour rules in 
a structural operational style, with a particular format (see [dSi85], [VG88]). We shall 
describe our format for rules in section 2.4. 

Special operators are action renamings and recursive definitions. They are present in 
all process calculi. 

2.1 A c t ions  

In all process algebras actions are themselves structured. This structure is what allows 
for synchronization and further communication to be handled in relevant operators rules. 
Just recall the inverse signals in CCS, which meets in synchronization and produce a 
hidden action r. In SCCS and MEIJE there is a full commutative monoid of potential 
simultaneous actions, again containing a group of invertible signals. Actions structure in 
ACP is more scarce and parametric, while in BasicLOTOS it is only a set of so-called 
gate names without structure, but for a distinguished termination action & 

2.2  R e c u r s i v e  d e f i n i t i o n s  

Most process algebras have some sort of recursion operator. In AUTO and ECRINS we use 
a common recursive definition medlanism for all process algebras. Here is an example of 
a recursive definition, written with MEIJE operators: 

i 
ExampIe  1 .... 
let rec {x = a:x + b:x +c:stop 

and y a:y + b:z 

....... and z a:z + c:c:y } I in x / / y  

Such recursive definitions are used in AUTO for building finite automata, perhaps 
composed later on by other operators of the algebra. One can also build infinite structures, 
not suitable for analysis in AUTO, such as: 

Example  2 
! 

let rec {many-processes = one-process // many-processes} i 

in many-processes ] 

2.3  D e f i n i t i o n  o f  p r o c e s s  a l g e b r a s  

A calculus description contains the concrete syntax and abstract syntax definitions of the 
calculus operators, together with structural conditional rules that gives them an opera- 
tional semantics. The EcrtINS calculus compiler uses the first part to produce a scanner, a 
parser and abstract syntax structures for expressions of the calculus. From the semantics 
part, the compiler will produce the fimctions for building and combining automata from 
terms. Here is an example taken from Basic-I, otos: 
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iii 

operator disable :: Process Process --> Process 

syntax [> lef% 4 

semantics 

disabling_1 p -- a --> p' k not(a equal d) 

disabling_2 

p[>q -- a --> p'[>q 

p -- a --> p' k (a equal d) 

disabling_3 

p[>q --  d --> p'  
q -- a --> q' 

p[>q --  a --> q'  

end 

2 . 4  T h e  C o n d i t i o n a l  R e w r i t e  R u l e s  f o r m a t  

The rules must obey the following format ([DMdS90]): 

uj 
{Xj = : X~ }ffC[1..n] ~ P({uj}ff?..al, . . . ,ara ) 

, , , . . . ,  a,,) 
, I X ~l  . Op(Xl , . . .  xn, a l , . . . , a ,  ) , T ( {  k}[1. .n]- f f ,{  k}ff, al, • . ,am) 

Many definitions in this paper rely on the syntax allowed for the various elements of 
conditional rules. Let us give precise .names to these elements. 

D e f i n i t i o n  1 We call: 

• premises the upper part of the rule and conclusion its bottom part. 

• subject the term at the left end part of the conclusion. The head operator Op of the 
subject has process arguments za , . . . ,  z ,  and action parameters aa,. . . ,  am. Inside 
P,  F and T' some other actions may appear: they are global constants of the calculus 
and had to be declared as such previously. 

• formal hypothesis the part of the premises on the left of the & and vcorking formM 
variables the xj with j E 3". 

• actions predicate the part of the premises on the right of the &. P belongs to 
boolean operators closure of the following basic predicates : equality, divisibility, set 
membership., over actions terms with synchronization product. 

• resulting action the label over the a~wow of the conclusion. The resulting action F is 
a function of the formal hypotheses actions (and of the operator action parameters). 

resulting process the right end part of the conclusion. The process arguments that 
appear as formal hypothesis must be transformed as x~ in the resulting process. This 
condition does not allow to test a potential future behaviour of a process, without 
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making it ezplicitly perform its action within the considered rule, therefore saving 
the possibility of choosing another future. This is a restriction to the format in 
[VG88]. Beside this condition, the resulting process is built from the action and 
process variables, and the operators of  the calculus (ezcluding recursive definitions). 

3 F i n i t e n e s s  C o n d i t i o n s  

The preceding conditional rules defines in a structural manner the semantics function that 
computes a transition system from a (closed) term of a process algebra. This definition is 
constructive: you can compute each transition of the transition system by building proof 
trees which nodes are instances of the rules. 

Defini t ion 2 A term of a process algebra has transition-system finiteness (TSF) iff  the 
transition system computed from the term using the operators' rules is strongly bisimular 
to some finite transition system (i.e. with a finite number of states and a finite number 
of transitions). 

In many process algebras with recursion, this property is undecidable. Sufficient syn- 
tactic conditions to ensure FTS will be given in this section, for any process algebra 
defined using the conditional rewrite rules from the preceding section. As far as possible, 
these conditions will be expressed in terms of the semantic rules of the operators. We 
shall use the following notions: 

gua rded  recursion:  It is possible to build infinite proof trees for terms containing re- 
cursive definitions. Can we found syntactic conditions to guaranty that all proof 
trees are finite? 

non-growing opera to r s :  Making the assumption that the arguments of an operator 
have finite semantics, is it always true that their composition by this operator is 
a finite automaton? This property holds for most classical operators, but the rule 
format allows to define exotic operators that create infinitely many states. 

sieves: Some unary operators have the nice property that the resulting automaton has 
exactly the same states than the argument automaton, only some transitions being 
transformed, erased, or added. We implement their semantics by sieves, that is 
functions that only modify the transitions of the system. Which operators may be 
implemented in this way? 

switches:  Inside a recursive definition, the use of recursive variables should be limited in 
some way, in order to avoid building infinitely many states, or states with infinitely 
many transitions. Clearly, parallel composition operators and non-alphabetical re- 
namings should be somehow forbidden inside recursive definitions. At which places 
(defined as occurrences of operator arguments) is a recursive variable allowed to 
appear? 
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3.1 Guarded reeursion 

In order to avoid divergence in the proof tree construction, we introduce as usual a notion 
of guarded terms. We define here this notion in a rather abstract way, and we shall give 
a generic algorithm that computes it in a further section. The definition relies on the fact 
that if a proof tree is infinite, then either it contains a pattern that occurs infinitely, or the 
subject of its nodes are strictly growing along the infinite branches. The guarded property 
takes care of infinitely repeated patterns, while growing branches will be addressed later. 

Def ini t ion 3 

• A proof tree is unguarded iff the subject of its root is equal to the subject of one of 
its subtree, or if it has an unguarded subtree. 

• A term of a process algebra is unguarded if it has an unguarded proof tree, or if at 
least one of its possible reconfigurations is unguarded. 

• A term of a process algebra is guarded if it is not unguarded. 

3 . 2  N o n - g r o w i n g  o p e r a t o r s  

Growing operators build infinite structures from arguments having finite automata repre- 
sentations. Though no operators of usual process algebras have such a r;asty behaviour, 
we need a syntactical way to ensure that no growing operator is used in a term. In order 
to obtain infinitely many states in the resulting automaton, one would have to introduce 
a rule that produces new terms ab infinitum. A natural sufficient condition for ensuring 
finiteness is to be able to find an order on expressions such that for all rules, the resulting 
process is not strictly greater than the subject. 

It is possible to adapt here many results from tile term rewrite system theory, with the 
difference that we are looking for a non-strict order compatible with our rewrite relation~ 
whereas usual rewrite systems need a strict decreasing order. We give here a simple 
definition that covers nearly all interesting cases: 

We consider families of operators closed under reconfiguration: if an operator belongs 
to the family, then all operators that occur in the resulting processes of all its rules also 
belong to the family. 

Defini t ion 4 A family of operators { Opk } is non-growing iff there exist a simplification 
ordering ~. such that: 

For each rule of each operator, let us denote Opk(zi) the subject o f  the rule and 
Ti~[~/xi] its resulting process in which all resulting working variables x~ have been re. 
placed by their corresponding xi, then: 

either Ti~ [x~/xl] ~, Opk(zi) 

or = opk(x,)  

where = is the syntactic equality on terms. 
We say then that all Opk are ,~.-non.growing. 
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T h e o r e m  1 Given a family of non-growing operators F = {Opk}, an operator Op~(x~) 
of arity n, and n terms Ti having TSF, then Opk(Ti) has TSF. 

A//proofs are in the full paper. 

3.3 Sieves  

Defini t ion 5 A sifting operator, or sieve, is an operator with exactly one process argu- 
ment, which rules obey the following conditions: each rule has ezactly one working formal 
variable (the process argument}, may have predicates and any form of resulting action, 
and the resulting process is obtained fi'om the subject of the rule by substituting the working 
formal variable by the corresponding resulting process variable. 

This definition includes the renaming, restriction, and ticking operators of MEI:IE, the 
hiding operator of TcSP and LOTOS. 

The introduction of sieves is two-folded: 

• They are an interesting family of automata transformers, acting only on transitions. 
As such, they can be easily composed and combined with the automata building 
functions, leading to efficient implementations where no intermediate automata are 
built for such operators, and only accessble pal"ts are considered. 

• They may be used also inside recursive definitions. We need define here a sub-class 
of sieves such that the language generated by their compositions, modulo some 
idempotence property, remains finite. Then the states of the generated automaton 
will be obtained as pairs of a recursive variable and a composition of sieves. 

This applies e.g. for alphabetical renamings, hiding, and restriction (for the alphabet 
of action labels in a term is finite, and the set of all restriction compositions is a finite 
commutative group). 

Of course, it does not apply to ticking or to non-alphabetical renamings, and the 
MEI:IE term: l e t  rec x= a :y  and y = b*x in x generates infinitely many states x, 
b,x,  b*b*x, etc. 

We need here a non-growing definition for resulting action functions: 

Defini t ion 6 An operator rule is action-non-growing iff its resulting action is an action 
term built only from the following items: the fox,hal action of the rule, the action pa- 
rameters of the subject, the constant actions of the calculus, and alphabetical renamings 
(including renaming a label by an invisible action). 

This definition is trivially fulfilled by all operators of BASlCLOTOS and Ccs, but not 
by the ticking operator of MEIJE, nor by non-alphabetical renamings. 

Defini t ion 7 A non-growing sieve is a sifting operator which rules are action-non-growing. 

Propos i t ion  1 Given a finite alphabet of actions, the algebra of all compositions of non- 
growing sieves has a finite model. 
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3 . 4  S w i t c h i n g  o p e r a t o r s  

We introduce the family of switching operators as a generalization of the usual sum 
operator of CCS/]VIEIJE. 

Defini t ion 8 Given a family of operators 0 and a well founded simplification ordering 
~: on expressions generated from (9, 

An operator Op in O is a switching operator (or simply a switch) w.r.t, one of its 
process arguments ~p" iff: 

- All rules in which Up,, is a working formal variable verify the followin 9 properties: 
it has no other premise ("p" works alone) and the resulting process is ezactIy p'. 

- All rules where the resulting process contains an occurrence of '2" are non-growing 
for ~. and are their resulting processes are themselves switches for '~p". 

Remarks: 

- This includes non-growing operators with no premise at all. 

- This definition could be extended by allowing rules in which "p" is working to have 
as resulting processes T such that T ~. Op(...,p', ...), with T being also in some 
sense a switch for p. However, this would complicate to much both the definition 
and the related proofs, whereas all classical operators fit the restricted definition we 
have just given. 

The sum operator of Sccs ,  the binary choice of BASICLOTOS are switches, but also 
the delay operator of MEIJE and the disabling operator of LOTOS for its second argument. 

Usual prefixing operators are also switches, including the action prefl~ operators of 
MEIJE and LOTOS, of course, but also the enabling operator of LOTOS for its second 
process argument. The internal choice of TCSP is a switch. 

Yet the external choice operator of TCsP is not a switching operator (see its rules in 
the annex), because for each of its arguments, it has a rule looking as a switching rule, 
and a rule resembling a sieve rule. By the way this operator is one we do not want to be 
involved in a recursive definition: 

E x a m p l e  3 i 
let rec x = !tau : x) ext-choice a:y in x 

This term generates the following sequence of resulting processes: 

let rec (x = ~au:x ext-choico a:x) in x ex~-choice a:x 

let rec ~x = tau:x ext-choice a:x} in (x ext-choice a:x) ext-choice a:x 

Though this specific case could be reduced (to a finite set of terms) by semantical 
arguments, the finiteness property may no more be guaranteed at a syntactical level. 
Semantical arguments for finiteness are out of the scope of this paper. 



361 

3.5 Main result 

D e f i n i t i o n  9 Given a family of variables V,  a term from a process algebra is called a 
te rm suitable for recursion on V iff either 

1. it is a variable from V,  

~. or it does not contain any variable from V and it has a finite automaton semantics, 

3. or its head operator is a switching operator for some of its arguments, these argu- 
ments are subterms suitable for recursion on V, and all other arguments contains 
no occurrences of variables in V and have finite automaton semantics, 

4. or its head operator is a non-growing sieve and its argument is suitable for recursion 
on V. 

Remark: this definition can be extended to handle nested recursive definitions, by adding 
an i tem for any recursive declaration "let rec {zl = el} in Xo" such tha t  all el are suitable 
for recursion on V tJ {zl}. Such an extension preserves the following theorem, though the 
proof is still more tedious. 

T h e o r e m  2 Let Proc be a recursive definition "let rec {xl = ei} in Xo". 
I f  Proc is guarded, and i f  all ezpressions el are terms suitable for recursion on {zi} ,  

then the recursive definition has a finite automaton semantics. 

Hint : We define a finite set of states by induction on the structure of the term, then 
we prove that  the transition system of the term maps in this state space, with a finite 
number of transitions from each state. The proof is in the full paper. 

This property Mlows us to guarantee, that  some recursive definition have a finite se- 
mantics. In any process algebra, it permits using any combination of nested recursive 
definitions, and arbitrary closed terms inside recursive definitions. In the case of MEIJE- 
Sccs ,  it naturally includes the classical "well-guarded" condition (sums of action-prefix 
operators).  In the case of BASlCLOTOS, it allows the occurrence of recursive variables 
as second arguments of the enabling operator and well-guarded occurrences of recursive 
variables within the second argument of the disabling operator.  

3.6 Accessibility 

All preceding conditions can be restricted to the accessible parts of the term. This is 
not only an optimization issue: considering only ~ccessible parts allows for rejecting less 
programs, for any violations of a condition inside a non-accessible part of a term will have 
no consequence on its semantics. 

We give in the full paper a sufficient characterization of potentially accessible parts of 
a term, based on the analysis of recursive variable occurrences in the recursive definitions. 
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4 Algor i thms 

We have implemented a new version of AUTO using the preceding results. From the rules 
of the operators, and from their classification in finite, sifting, switching, and non-growing 
operators, we derive functions that test the syntactical conditions for finiteness, then build 
the automaton of a term. Due to size constraints, we cannot give here a full description 
of the generated algorithms. The main ideas are: 

• A given term of a process algebra is first checked for guardeness and suitability of 
its accessible part. Terms that do not satisfy the syntactic conditions are rejected. 

• The automaton is built structurally in a bottom-up manner, starting with the re- 
cursive definitions at the leaves. There are two main algorithms, one dealing with 
recursive definitions, and the other one combining several arguments-antomata w.r.t. 
a given operator. Both algorithms take a (composition of) sieve and a reduction 
congruence as additional parameters. 

• The algorithm dealing with a recursive definition maintains a set of states that are 
pairs of a recursive variable and a sieve, e ~ h  state associated to a subterm containing 
recursive variable occurrences. The analysis of such a term generates transitions 
towards states that have to be compared to already existing states, or added to the 
set. The finiteness conditions ensure the termination of this computation. 

• The composition algorithm is a residual algorithm that traverses both arguments 
combining their transitions in a manner that depends on the combination operator. 

5 Conclusion 

The AUTO system we currently distribute is using specific hand-coded algorithms for the 
operators of the MEI:IE0 calculus (stop, prefixing, sum, parallel, restriction, renaming). 
These algorithms were carefully optimized in order to avoid building parts of product 
automata that were to be deleted by some restriction operators. 

We have built a new prototype of the AUTO system using the generic algorithms of 
this paper. Tests have been made both for the MEIJE0 calculus and for BASICLOTOS (the 
prototype has been presented in [MV89]). The MEIJE0 operators are correctly classified by 
our definitions: the prototype accepts stricty more MEIJE0 programs than the preceeding 
AUTO system. Some other MEIJE-SCcs operators (see [dSi85]) can be added easily to 
this syntax, including ticking, interleaving and the synchronized product as non-growing 
operators. The results are good also for BASICLOTOS operators: the usual finiteness 
conditions are correctly deduced from the rules. Some limitations of our conditions are 
listed in the annex. We also obtained efficiency mesurements: this version appears to have 
the same order of performances than the old version. Moreover, it should be clear that 
in many cases it allows to build a smaller number of automata (for sieves never require 
to copy an automaton) and to apply sieves on smaller automata. No optimizations have 
been done in the first prototype, so the new version is potentially much more efficient 
than the specialized MEIJE0 version. 

This prototype in its BASICLOTOS version is currently integrated in the LOTOS tool 
environment of the ESPRIT project LOTOSPIIERE. 
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The set of programs accepted by the generic version is of course larger than in the 
former system, and programs may be written in a much more permissive way: for example 
parallel compositions may be done in many different ways using various operators and 
nested recursive definitions are allowed. 

The congruence properties of some equivalences versus MEIJE composition operators 
are also to be generalized. It is very important for space efficiency reasons to apply reduc- 
tions as deep as possible in the term, in order to create and compose smaller automata. 
We plan to have the ECRINS system proving congruence laws for various equivalences and 
various operators, so that the congruence properties can be automatically used in AUTO 
during the automata construction. 
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