
Lecture Notes in 
Computer Science 
Edited by G. Goos and J. Hartmanis 

441 

T. Ito R.H. Halstead, Jr. (Eds.) 

Parallel Lisp: 
Languages and Systems 
US/Japan Workshop on Parallel Lisp 
Sendal, Japan, June 5-8, 1989 
Proceedings 

Foreword by J. McCarthy 

Springer-Verlag 
Berlin Heidelberg NewYork London Paris Tokyo Hong Kong 



Editorial Board 

D. Barstow W. Brauer P. Brinch Hansen D. Gries D. Luckham 
C. Moler A. Pnueli G. SeegmSIler J. Stoer N. Wirth 

Editors 

Takayasu Ito 
Department of Information Engineering 
Faculty of Engineering, Tohoku University 
Sendai, 980, Japan 

Robert H. Halstead, Jr. 
Cambridge Research Lab 
Digital Equipment Corporation 
1 Kendall Square, Building ?00 
Cambridge, MA 02139, USA 

CR Subject Classification (1987): C.1.2, C.4, D.1.3, D .3 -4  

ISBN 3-540-52?82-6 Springer-Verlag Berlin Heidelberg NewYork 
ISBN 0-38?-52782-6 Springer-Verlag New York Berlin Heidelberg 

This work is subject to copyright. All rights are reserved, whether the whole or part of the material 
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, 
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication 
of this publication or parts thereof is only permitted under the provisions of the German Copyright 
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be 
paid. Violations fall under the prosecution act of the German Copyright Law. 
© Springer-Verlag Berlin Heidelberg 1990 
Printed in Germany 
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 
2145/3140-543210 - Printed on acid-free paper 



Foreword 

Since computers were first invented, it has been known that seriM computation has 
limits that can be far exceeded by using parallel computation. Even very early comput- 
ers used para~elism in carrying out arithmetic operations, and improved hardware has 
expanded this kind of parallelism. 

The first project to build a parallel computer was probably Illiac 4 proposed by the 
early 1960s. It was over-elaborate, the cellular automaton influenced design made it 
almost immune to programming, and by the time it was working, it had been over-run by 
the Cray I, and other ordinary serial computers with added vector facilities and pipelining. 

ParCel  computing poses a harsh dilemma for the system designer. The largest num- 
ber of arithmetic operations per second is obtained by designs that offer very limited 
communication among the processors. If the problem fits such a design, it can run very 
fast, but for many kinds of problem, effective parallelism cannot be obtained without 
good communication. Designs offering the best communication, e.g. fully shared full- 
speed memory, cannot compute as fast as other designs and don't scale easily to very 
large numbers of processors. Ingenuity sometimes provides unexpected solutions, but 
sometimes it seems that no amount of ingenuity will substitute for shared memory. 

The largest numerical computations are those involving partial differential equations. 
When these are replaced by difference equations in the most obvious ways, they seem to 
lend themselves to regular arrays of processors. However, as soon as shock waves require 
concentrating the computation on dynamically selected parts of space, and radiation 
propagates influences at the speed of light, the most obvious grids waste computation. 

The idea of queue-based multiprocessing arose in the early 1960s, but support was not 
offered for actually implementing it. The idea is that processes can dynamically generate 
subprocesses that can be done in parallel, and these subtasks are put in a queue structure 
from which processors take tasks when they become free. On the one hand, queue based 
multiprocessing seems to require a shared memory, which is expensive. On the other 
hand, it offers straightforward ways of programming almost any kind of problem using 
techniques that aren't far from those used in programming for serial computers. Moreover, 
the programs produced don't depend on the number of processors, which can even change 
dynamically. The languages needed are just the usual serial languages augmented by a 
few constructions for declaring parallelism. 

Queue-based multiprocessing is particularly well suited for symbolic computation, 
where the same recursive process may involve data structures of similar structure but 
of enormously varied size, and where the data structures are dynamically determined. 
Lisp can be made into a parallel language in a variety of ways without distorting its 
character. Moreover, many Lisp programs written for serial machines can be made to 
take advantage of parallelism of this kind. Putting Lisp programs on parallel machines 
based on the idea of a cellular automaton is problematical, and if a solution is found for 
a particular program, it is likely to be strongly configuration dependent. 



lY 

Projects to build parallel Lisp systems in the form of compilers and interpreters for 
existing or announced shared memory multiprocessors began in the middle 1980s and have 
proceeded uneventfully. It seems to be a straightforward task whenever the necessary 
resources can be assembled and maintained. The initial proposals for parallel constructs 
were similar to each other. In fact my original idea in proposing the workshop reported in 
these papers was that it would be a standardization conference, and on the basis of some 
experience with the parallel constructs, a proposal could be made for the incorporation 
of parallelism into Common Lisp. Unfortunately, it seems that the field of parallel Lisp 
is not quite ready for standardization. I hope standardization will be pursued in a future 
meeting. 

The present workshop is about the first in which extensive experience in actually 
implementing and using the parallel constructs is extensively reported. The approaches 
taken are adequately introduced in the Preface. 

It seems to me that both queue-based multi-processing and systems with weaker com- 
munication are destined to survive and will be suitable for different kinds of application. 
Queue-based multi-procesing will provide general and straightforward facilities of all kinds 
of work, but some kinds of program will compute faster on more specialized systems. 

John McCarthy 



P reface 

Lisp has been the most popular programming language for artificial intelligence 
and symbolic computing. Since the early 1980's, parallel Lisp languages and parallel 
execution of Lisp programs have been studied extensively in response to the needs of AI 
applications and progress in parallel architecture. Early parallel Lisp projects resulted 
in parallelized Lisp interpreters and data-flow models for parallel execution of Lisp 
programs. More recently, parallel Lisp systems that can execute realistic applications 
with "industrial-strength" performance have been developed. 

Inspired by two parallel Lisp languages, Qlisp and Multilisp, parallel Lisp languages 
have been proposed and developed by several research groups in the United States and 
Japan. The U.S./Japan Workshop on Parallel Lisp, held at Tohoku University in Sendai 
from June 5-8, 1989, brought together many of these researchers to discuss the tech- 
niques and conceptual models underlying their research projects. Significant advances in 
several areas were reported, notably in high-performance parallel Lisp implementation 
techniques and language constructs for speculative computing. The f u t u r e  construct 
emerged as the most popular approach for introducing parallelism into Lisp programs, 
and several advances in defining f u t u r e  to be compatible with other constructs, such 
as continuations, were presented. 

Workshop participants submitted papers describing their research projects, which 
were distributed at the workshop. Based on the presentations and discussions at the 
workshop, participants revised their manuscripts and contributed them to this book. 
This book is organized into two parts. Part I focuses on parallel Lisp languages and 
programming models and Part II focuses on parallel Lisp systems and architectures. 
Contributions in this book are of two kinds: full papers and extended abstracts. Many 
participants contributed full papers describing the research they presented at the work- 
shop; some participants contributed extended abstracts, because the work had already 
been published elsewhere or for other reasons. Generally, all the contributions concern 
how to make parallel computation more practical in Lisp through new approaches to 
language semantics, system design, or implementation techniques. This preface gives a 
summary of the workshop activities and the content of the papers included in this book. 

The first paper in Part I is by l%obert Halstead. It gives an overview of current lan- 
guage design and implementation ideas for parallel Lisp systems, based on his experience 
with the Multilisp language (an extended version of Scheme) and its implementations. 
The paper presents three criteria for judging Scheme extensions for parallel computing: 
compatibility with sequential Scheme, invariance of the result when f u t u r e  is intro- 
duced into side-effect-free Scheme programs, and modularity. These criteria are used 
to evaluate proposed mechanisms for continuations, speculative computing, and excep- 
tion handling. The paper also discusses several other directions for further research in 



VI 

improving the Multilisp language and its implementat ions.  These research topics in- 
clude da ta  types  to facilitate data-paral lel  computing;  techniques to reduce scheduling 
costs and enhance locality; garbage collection; and tools to assist in the development  of 
parallel programs.  

The next  pape r  is by Takayasu I to and Manabu Matsui.  I t  introduces the parallel 
Lisp language PaiLisp and its definition in terms of the kernel language PaiLisp-Kernel.  
It  shows how futures,  Qlisp's exclusive qlambda closures, and many  other concepts can 
be defined in te rms  of a small set of kernel constructs.  The pape r  also introduces a novel 
in terpreta t ion of continuations in a parallel language, in which invoking a continuation 
alters the flow of control in the task tha t  originally captured the continuation, instead 
of in the invoking task.  

A presentat ion at the workshop by Morry Katz  described another  way to define con- 
t inuat ions in a parallel language. This  work is represented in this book by an extended 
abs t rac t  by Katz  and Daniel Weise and is also discussed in Hals tead ' s  paper.  The  full 
paper  appears  in the 1990 ACM Conference on Lisp and Functional Programming.  

A paper  by Randy  Osborne presents an interesting model for speculative computa-  
tion called the sponsor model and gives performance results from an implementa t ion of 
this model in Multilisp. The sponsor model is a modular  framework for providing more 
control over scheduling than  is provided by s tandard  parallel Lisp systems.  This  control 
is useful in many  applications, especially those tha t  involve search. The  sponsor  model 
can also be useful in system contexts where resources must  be shared among users, or 
wherever a user needs control over groups of subtasks.  

James  Miller and Barbara  Epstein write about  copying garbage-collection algorithms 
for parallel Lisp implementat ions ,  discussing the issues crucial to achieving good perfor- 
mance.  Their  parallel garbage-collection algorithm supports  speculative computa t ion  
with the help of a weak pair construct  and garbage-collection of irrelevant tasks. Their  
approach to speculative computa t ion  via implicit reclamation of irrelevant tasks con- 
t rasts  with Osborne ' s  sponsor model,  in which irrelevant tasks are identified explicitly 

by program commands .  

Ron Goldman,  Richard Gabriel ,  and Carol Sexton give an overview of the Qlisp 
language, a parallel version of Common  Lisp with "industr ial-s trength" performance.  
In addition to futures,  Qlisp supports  propositional parameters to help limit excessive 
process creation and a qlarabda construct  for monitor-like mutua l  exclusion. Qlisp also 
includes k i l l - p r o c e s s  and c a t c h / t h r o w  constructs  for killing processes, which is useful 
for some forms of speculative computat ion.  To reduce the need for p rogrammers  to 
address synchronization problems explicitly, the pape r  introduces two new mechanisms: 
heavyweight futures and partially, multiply invoked functions. 

At the workshop, Joseph Weening presented an analytical model of the performance 
of dynamic partitioning--a technique for reducing the frequency of process creation by 
avoiding it when the number  of available processes exceeds the number  of processors. 
Joseph D. Pehoushek reported on a Qlisp implementat ion using dynamic part i t ioning 
and other  methods  for reducing process creation costs. Pehoushek and Weening have 
contr ibuted a combined paper  to this book,  presenting both  their  exper imental  and an- 



VII 

alytical results; experimentally,  dynamic part i t ioning gives performance improvements  
of up to a factor of 2 in the Qlisp implementat ion.  

Rober t  Kessler and Mark Swanson describe Concurrent  Scheme, a language for par-  
allel p rogramming  on a d is t r ibuted-memory architecture.  The  central  and novel concept 
of Concurrent  Scheme is the domain, which is an entity containing mutable  data .  At 
most  one thread of execution can be active in each domain at  any time. A domain 
thus enforces mutua l  exclusion on accesses to its contents in a manner  similar to Qlisp's 
qlambda or Hoare~s monitors .  Though  threads cannot  execute concurrently in the same 
domain,  threads can execute concurrently in separate  domains.  Concurrent  Scheme has 
been p ro to typed  on the Bolt, Beranek, and Newman GP1000 multiprocessor,  but  is 
u l t imate ly  targeted  for the Hewlet t -Packard Mayfly architecture.  

W. Ludwell Harrison gave a workshop presentat ion describing techniques used in 
Parcel,  a system for interprocedural  analysis and restructuring of sequential Scheme 
programs for parallel execution. Good  speedups have been achieved by applying his 
parallelizing compiler to several programs,  including the Boyer benchmark.  A de- 
tailed paper  about  his methods  appears  in Lisp and Symbolic Computation ~:3/~ (1989, 
pp. 179-396). Zahira Ammarguel la t  presented her work on control-flow normalization-- 
simplifying the control flow of Scheme programs to facilitate parallelizing t ransforma-  
tions. A joint  paper  in this book by Harrison and Ammarguel ta t  gives an overview and 
thoughtful  critique of Parcel 's  design. I t  then outlines the design principles of Miprac,  a 
successor to Parcel tha t  extends Parcel 's  techniques and applies them to a broad range 
of procedural  languages from F O R T R A N  to Scheme. 

A presentat ion at the workshop by Akinori Yonezawa discussed reflection in the 
object-oriented concurrent  language AB C L/ R .  More detail on this subject  appears  in 
a collection of papers  edited by Yonezawa--ABCL: An Object-Oriented Concurrent 
System (MIT Press,  1990). A brief summary  also appears  as an extended abs t rac t  in 
this book.  

In his presentat ion,  Etsuya  Shibayama discussed optimistic and pessimistic synchro- 
nization policies in the context  of the "car washing problem." A short  article in this book 
by Shibayama and Yonezawa gives the highlights; fuller details appear  in Yonezawa's 
book,  ABCL: An Object-Oriented Concurrent System. 

Mario Tokoro presented MD-based computing, which introduces notions of "distance" 
and "mass" and proposes an approach tha t  models objects as being under  the influence 
of a computa t iona l  "gravi ta t ional  field." He summarizes these ideas in an article in this 
book. 

Par t  I I  of the book,  focusing on parallel Lisp systems and architectures,  begins 
with a paper  by Ikuo Takeuchi based on practical  experience with TAO, a Lisp dialect 
tha t  fuses the procedural ,  object-oriented, and logic-programming paradigms into one 
language. TAO runs on the ELIS Lisp machine and is in product ion use by many  users. 
The paper  discusses TAO's  approaches to process management ,  sharing Lisp programs 
among processes and users, name-space problems associated with symbol  packages~ 
concurrent  primitives,  and concurrent  program debugging. Most of the key primitives 
of TAO are implemented  in ELIS microcode, leading to good performance,  even in 
interpreted m o d e - - e v e n  a T C P / I P  network system was run under  the interpreter!  



A short article by Ken-ichiro Murakami describes the MacELIS multiprocessor, de- 
signed to be compatible with single-processor TAO/ELIS systems. Interprocessor com- 
munication is supported by an in-core pseudo-network, which uses s tandard network 
protocols to t ransmit  messages through a shared memory. 

An extended abstract  by David Kranz, Robert  Halstead, and Eric Mohr describes 
Mul-T, a parallel Lisp system with "industrial-strength" performance. Mul-T uses an 
optimizing compiler to generate code for an Encore Multimax multiprocessor and offers 
real speed-ups over good sequential implementations. Additional information about  
Mul-T appears in the ACM SIGPLAN '89 Conference on Programming Language Design 
and Implementat ion and in the paper  by Halstead in this book. 

Dan Pierson outlines the issues in integrating parallel Lisp systems with modern op- 
erating systems. He discusses the application of services provided by the Mach and Unix 
operating systems to the problems of process management~ scheduling, and exception 
handling in a Qlisp-based parallel Lisp system. 

Hideya Iwasaki gives a brief description of mUtilisp, a parallel dialect of Utilisp (Uni- 
versity of Tokyo Interactive Lisp). mUtilisp programs are composed of processes tha t  
communicate by message-passing; shared objects are not supported. An implementation 
of mUtilisp that  simulates parallelism by time-slicing is available. 

A paper  by Taiichi Yuasa and Takafumi Kawana describes an experimental  parallel 
computer  (the PM1) and the PMLisp language. The PM1 is built around an 8-bit mi- 
croprocessor (the Z-80) and a butterfly network for interprocessor communication. It  is 
a first pro to type  of a massively parallel "P-machine." PMLisp is a Scheme-like language 
with explicit constructs for interprocessor communication. Examples are given showing 
how to express a shortest-path algorithm and models of various network topologies in 
PMLisp. 

Hiroshi Yasui, Toshikazu Sakaguchi, Kohichi Kudo, and Nobuyuki Hironishi write 
a short article about  the EVLIS machine, a multiprocessor composed of EVAL II pro- 
cessors. Regulation lists are introduced as a mechanism for controlling the execution 
of parallel processes and the performance of the "List-Tarai-4" benchmark (using reg- 
ulation lists) on EVLIS is analyzed. A multi-port  memory system for EVLIS is also 
proposed as a way of increasing performance. 

At the workshop~ Norihisa Suzuki described the architecture of the TOP-1 multi- 
processor and an ongoing project  on parallel Common Lisp based on futures. A novel 
feature of this Lisp is that  it supports the use of futures for expressions that  return 
multiple values. Plans for the installation of a real-time garbage collector were also 
presented. In this book, Suzuki writes about  the architecture of TOP-1 and describes 
parallel processing research projects that  have been performed on it. 

Eiichi Goto was invited to the workshop to present his work on high-speed computer  
architectures based on Josephson-junction computing and cyclic pipeline architectures. 
Such architectures should complement techniques for using parallelism to achieve high- 
performance symbolic computing. He gave an interesting talk based on his published 
article in IEEE Transactions on Computers (June 1989). 



I× 

In addition to the formal presentations, the workshop included three discussion 
sessions in which the participants exchanged views on applications, benchmarks, archi- 
tectures for parallel Lisp, and the relationships between parallel Lisp and parallel logic 
programming. The first two discussion sessions were devoted to informal discussion of 
language design, performance, scheduling, and architecture for parallel Lisp. 

Kazunori Ueda began the final discussion session by giving an overview of the GHC 
guarded-Horn-clause language for parallel logic programming, developed at the Institute 
for New Generation Computer Technologies (ICOT). He also explained the relationship 
between GHC and KL1, an extension of GHC also developed at ICOT, and discussed 
the need for meta-level operations (reflection) in future logic-programming languages. 
Akikazu Takeuchi then commented on the close relationship between futures and logic 
variables in parallel logic languages. 

Discussion then turned to the question of applications for parallel symbolic comput- 
ing. Hiroshi Okuno discussed his experience in parallelizing two large AI systems--the 
production-system language OPS-5, and the truth-maintenance system ATMS: these 
programs are of the scale that should be available as benchmark programs. W. Ludwell 
Harrison commented on the value of the "real" programs in the set of FORTRAN bench- 
marks that have been collected at the University of Illinois and suggested that a similar 
collection of Lisp benchmarks should be created. Among the benchmarks proposed 
by various workshop participants were sorting, the Gabriel Lisp benchmark set, the 
Japan Lisp benchmark set, a symbolic algebra system such as REDUCE, N-body sim- 
ulations, fast Fourier transforms, robotics, animation, and graphics. At the close of the 
workshop, all agreed that a standard set of realistic benchmarks for parallel symbolic 
computing would be very valuable in advancing parallel symbolic computing toward 
practical utility and making it easier to compare the merits of different approaches. 

Workshop participants had several opportunities for informal discussion while ab- 
sorbing Japanese culture and technology through a series of events outside of the formal 
agenda: two receptions, a Japanese banquet, and a day of "extracurricular activities" 
organized by the workshop's hosts. The day of activities included a tour of the "super- 
clean room" for VLSI fabrication at Tohoku University (a "Class 0.0001" clean room 
where the level of dust is so low as to be unmeasurable), the Golden Temple at Hiraizumi, 
the temples and gardens at Mohtsu-ji, picturesque Matsushima Bay, and another deli- 
cious Japanese banquet at Taritsu-an Restaurant overlooking Matsushima Bay. 

The papers in this book describe advances in language design and system architec- 
ture for parallel Lisp, but few of them discuss theory or applications of realistic size. 
In the theoretical domain, we would like to see more work done on the semantics of 
parallel Lisp languages. Specifically, a sound semantic understanding of combining fu- 
tures (for parallelism) and continuations (for control) would be valuable. Incorporating 
speculative computation into such a semantic theory is another important challenge. 

Experiments with several small- and medium-sized parallel Lisp applications have 
been conducted (see, for example, Section 3 of Halstead's paper), but it will be very 



impor tan t  to have experience with realistic, large-scale applications too. We hope tha t  
the availability of parallel Lisp systems with "industr ial-strength" performance will 
enable and encourage the development of such parallel Lisp applications. I t  is through 
experience with such applications tha t  we will learn how to make parallel Lisp systems 
tha t  are effective for p rogramming in the large as well as in the small. This  in turn is 
a vi tal  step to making parallel Lisp a valuable, general-purpose comput ing technology 
for a wide range of users. 

The idea of holding a U .S . / J apan  workshop on parallel Lisp was first suggested to 
one of us (Ito) by John McCar thy  in January,  1987. Halstead was recruited as a co- 
organizer later  tha t  year. Dick Gabriel  was later recruited to help, and did most  of the 
organizing work on the U.S. side; unfortunately,  he was unable to a t tend  the workshop 
itself. We also regret the absence from the workshop of other parallel Lisp researchers 
who were unable to at tend,  and hope to see all parallel Lisp researchers united at a 
future workshop. 

The proposal  to publish this book as par t  of the Lecture Notes in Computer Science 
series was made to Juris Har tmanis  (and accepted) in the fall of 1989. We thank  him 
and all of the above people for their vital role in bringing about  the workshop and 
the publicat ion of this book.  We also thank Hans Wossner of Springer-Verlag for his 
assistance in this book ' s  publication.  Finally, we thank  all those who helped organize, 
and par t ic ipated in, the workshop for their invaluable contributions.  

Takayasu lto 
Robert H. Halstead, Jr. 
Cambridge, Massachusetts 
March, 1990 



XI 

Table of  Content s  

P A R T  I : Para l le l  Lisp Languages  and  P r o g r a m m i n g  Models  

New Ideas in Parallel Lisp: Language Design, Implementation, . . . . . . . . . . . . . . . . . . .  2 
and Programming Tools 
R. H. Halstead, Jr. 

A Parallel Lisp Language PaiLisp and Its Kernel Specification . . . . . . . . . . . . . . . . . . . .  58 

T. Ito and M. Matsui 

Continuing Into the Future: On the Interaction of Futures 
and First-Class Continuations 
M. Katz and D. Weise 

101 

Speculative Computation in Multilisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103 

R. B. Osborne 

Garbage Collection in MultiScheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

d. S. Miller and B. S. Epstein 

138 

Qlisp: An Interim Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

R. Goldman, R. P. Gabriel and C. Sexton 

161 

Low-Cost Process Creation and Dynamic Partitioning in Qlisp . . . . . . . . . . . . . . . . . .  

J. D. Pehoushek and J. S. Weening 

182 

Concurrent Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200 

R. R. Kessler and M. R. Swanson 

The Design of Automatic Parallelizers for Symbolic and Numeric Programs . . . . .  

W. L. Harrison III  and Z. Ammarguellat 

A Reflective Object Oriented Concurrent Language ABCL/R . . . . . . . . . . . . . . . . . . .  

A. Yonezawa 

235 

254 

Optimistic and Pessimistic Synchronization in Distributed Computing . . . . . . . . . . .  257 

E. Shibayama and A. Yonezawa 

Toward a New Computing Model for an Open Distributed Enviromnent . . . . . . . . .  261 

M. Tokoro 



X~r 

P A R T  II  : Para l le l  Lisp Sys tems  and  Arch i t e c tu r e s  

Concurrent Programming in TAO - -  Practice and Experience . . . . . . . . . . . . . . . . . . .  271 

L Takeuchi 

A Pseudo Network Approach to Inter-processor Communica- 
3OO 

tion on a Shared-memory Multi-Processor MacELIS . . . . . . . . . . . . . . . . . . . .  
K. Murakami 

Mul-T: A High-Performance Parallel Lisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

D. A. Kranz, R. H. Halstead, Jr. and E. Mohr 

Integrating Parallel Lisp with Modern UNIX-based Operating Systems . . . . . . . . . .  

D. L. Pierson 

306 

312 

mUtilisp: A Lisp Dialect for Parallel Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  316 

H. Iwasaki 

PM1 and PMLisp: An Experimental Machine and Its Lisp Sys- 322 
tern for Research on MIMD Massively Parallel Computation . . . . . . . . . . . . . . . . . .  
T. Yuasa and T. Kawana 

Design of the Shared Memory System for Multi-Processor Lisp Ma- 
chines and Its Implementation on the EVLIS Machine . . . . . . . . . . . . . .  348 
H. Yasui , T. Sakaguchi, K. Kudo and N. Hironishi 

TOP-1 Multiprocessor Workstation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

N. Suzuki 

353 

List of Workshop Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  364 


