To appear Proc. Performance Tools '95 / MMB '95, Heidelberg, Germany, Sept. 1995.

NASA-CR-197773 e =
| V/ ARy &

/0

Measuring Fault Tolerance with the FTAPE Fault Injection Tool //

Timothy IX. Tsai and Ravishankar K. Iyer
University of Tllinois
Center for Reliable and High Performance Computing
Coordinated Science Laboratory
Urbana, Illinois
Email: {ttsai|iyer}@crhc.uiuc.edu
Telephone: (217) 244-1768 Fax: (217) 244-5686

(NASA-CR-197773) MEASURING FAULT N95-27253
TOLERANCE WITH THE FTAPE FAULT
INJECTION TOOL (Illinois Univ.)

16 p Unclas

Abstract G3/38 0048539

This paper describes FTAPE (Fault Tolerance And Performance Evaluator), a tool that can
be used to compare fault-tolerant computers. The major parts of the tool include a system-wide
fault injector, a workload generator, and a workload activity measurement tool. The workload
creates high stress conditions on the machine. Using stress-based injection, the fault injector is
able to utilize knowledge of the workload activity to ensure a high level of faule propagation.
The errors/fault ratio, performance degradation, and number of system crashes are presented
as measures of fault tolerance.

Keywords: fault injection, workload generator, fault tolerance measurement, stress-based in-
jection

1 Introduction

A method for measuring the fault tolerance of any computer is desirable. Such a method could
be used to compare fault-tolerant computers. For system designers, different fault-tolerant designs
could be evaluated and used as feedback in the design process. A fault tolerance measure would be
useful to purchasers of new fault-tolerant systems in encapsulating the effectiveness and efficiency
of the fault tolerance.

This paper describes FTAPE (Fault Tolerance and Performance Evaluator). The tool combines
a fault injector and a workload generator with a workload activity measurement tool in order
to inject faults under high stress conditions based on workload activity. It is well known that
high stress and complex workloads cause greater propagation of faults and detection of errors[6).
By using knowledge of the workload activity (where and when the activity is at high levels), the
fault injector can maximize the chance that faults are activated. The tool also characterizes the
fault tolerance of a computer by producing a single measure (e.g., the performance degradation
due to error recovery). This use of FTAPE is analogous to the use of synthetic benchmarks in

evaluating the performance of non-fault tolerant computers. Despite the flaws of such measures,
these benchmarks are nevertheless useful in comparing different systems. In the area of fault
tolerance, no such benchmarks are currently available. Although the measures produced by FTAPE
may not be the most definitive, they are certainly useful as fault tolerance measures and should
motivate the discussion in the area of better fault tolerance metrics.

The use of fault injection to measure fault tolerance is needed because the error detection and
recovery mechanisms that comprise the fault tolerance of a computer can only be tested when
activated by faults and their corresponding manifestations. The fault injector in FTAPE can inject
faults throughout the target system, including in CPU registers, memory, and the disk system.
This ability to inject faults throughout different parts of the system is needed because the fault
tolerance mechanisms of the system are distributed throughout the entire system.

The workload generator is synthetic and is designed to produce workloads that will exercise the
CPU, memory, and disk. The amount and intensity of the workload in each area of the system
(CPU, memory, and disk) can be controlled and specified as distributions over time. Multiple
workload processes can be executed.

We define stress-based injection as the process of injecting faults based upon a measurement
of the current workload activity. Stress in this sense refers to the amount of activity caused by
the workload which could encourage fault propagation. The workload activity measurement tool
outputs two values: (1) the level of workload activity in each system component (CPU, memory,
and disk), which determines the location of injection, and (2) the the level of workload activity in
the entire system, which determines the time of injection. Experiments are given to demonstrate
the effectiveness of stress-based injection in increasing fault propagation.

Since the tool characterizes the fault tolerance of the system using a single quantity, a metric
for that characterization is needed. Several metrics are proposed and measured. The ratio of
detected errors to injected faults represents the effectiveness of error detection, while performance
degradation represents the efficiency of error recovery. The number of system crashes shows the
effectiveness of error recovery.

In addition to obtaining a measure of the system fault tolerance, FTAPE is also useful for
providing more detailed feedback to system designers. When system failures occur, the propagation
of the guilty fault can be traced, and that information can be used to improve the design of the
fault containment mechanisms, although this paper does not go into detail on this topic.

FTAPE is designed to be used on a functioning hardware implementation of a fault-tolerant
computer. The tool has been implemented on a Tandem Integrity S2 fault-tolerant computer.
Experiments using the tool show the effect of different workloads in influencing fault propagation.
A measure of the overall system fault tolerance is also obtained. The implementation of FTAPE
has been designed to be portable, although the fault injector is dependent to a degree upon the
architecture of the measured machine. Plans exist to port the tool to other fault-tolerant machines

and to compare the fault tolerance of those machines.

2 Related Work

There are several different approaches to fault injection. A detailed discussion can be found in [7].
Fault injection tools can be classified as simulation-based or prototype-based. Simulation involves
the injection of faults into electrical, logical, or functional simulations. Simulation has the ability to
model complex systems with greater accuracy than analytic modeling. However, ensuring that the
simulated models are realistic and containing simulation time explosion are challenges. Examples
of fault simulators include [2](FOCUS), [3], and [8](MEFISTO).

For prototype-based injection faults are injected into actual physical systems. There are several
methods for injecting faults into these computers. Hardware-implemented fault injection uses
additional hardware instrumentation to introduce faults. FTMP (4] and MESSALINE [1] use
active probes and special sockets to alter currents and voltages on chip pins. Radiation [5] can
also be used to inject chip-level faults. Although these methods inject actual low-level, physical
faults, they require special hardware and accessibility to the target system hardware and have the
possibility of damaging the target system.

Another method of injection involving prototypes is software-based fault injection (SWIFI). This
method uses software to emulate the effect of lower-level hardware faults by altering the contents
of memory or registers. No additional hardware is required. Some fault injection tools based on
SWIFTI are given in Table 1. FIAT injects faults into the user process image in memory. FERRARI
uses software traps to inject faults. HYBRID uses hardware and software monitoring of SWIFI
faults. DEFINE is a distributed version of FINE [12], which is able to emulate software faults as
well as hardware faults. SFI is used to validate dependability mechanisms and has been used on
a distributed real-time system. FTAPE differs from these tools by adding a synthetic workload
generator and a workload activity measurement tool that enables the fault injector to inject faults
based upon dynamic workload measurements. Performance degradation is produced along with

other quantities as measures of the overall system fault tolerance.

Table 1: Software-implemented Fault Injection Tools

System
Name Under Test | Fault Types
FIAT [14] IBM RT CPU, memory, communications
FERRARI[10] || Sun CPU, memory, bus, communications
HYBRID [16] || Tandem S2 | CPU, memory
DEFINE [11] || Sun CPU, memory, bus, SW| distributed
SFI[13] HARTS CPU, memory, communications
FTAPE Tandem S2 | CPU, memory, disk

3 Description of Tool

FTAPE is a tool that integrates the injection of faults and the workload necessary to propagate
those faults. The tool is composed of three main parts: FI (the fault injector), MEASURE, and
WG (the workload generator). Figure 1 shows how these three parts interact. The FI is responsible
for performing the fault injection. MEASURE provides a measurement of the current workload
activity that is used by the FI to determine the time and location for fault injection. The WG is a
synthetic workload generator which creates workloads that are designed to propagate the injected

faults. A more detailed description of each part of the tool follows.

P
Fauworkload

cpu imem; io

MEASURE

Figure 1: General Block Diagram of FTAPE

3.1 Fault Injector

The main task of the FI is to inject faults into the target system. The method of injection used
by the current version of FTAPE is software-implemented fault injection, which uses software to
emulate the effects of underlying physical faults. For instance, a bit in a memory location can be
flipped to emulate the effect of an alpha particle on a memory bit. This method of fault injection
is more controllable than hardware-based injection (e.g., it would be difficult to inject faults into
memory using hardware), but software-based injection incurs a higher time overhead.

The main goal of fault injection is to exercise the error detection and recovery mechanisms in
the target system. The best way to do this is to inject faults throughout the entire system. FTAPE
partitions the system into three main areas: cpu, mem, and io. For each area a different method

of fault injection is required. These areas are also the same areas that are targeted by the WG.

Because the same areas are targeted by both the FI and the WG, there is a good chance for the

injected faults to be propagated by the workload.

3.1.1 Fault Injection Method

The fault injection methods used by the FI are described below. Note that fault-tolerant systems
have widely varying architectures and therefore require different fault injection techniques. The
following are for the implementation of FTAPE on the Tandem Integrity S2:

inject_cpu The CPU fault models include single/multiple bit-flip and zero/set faults in CPU
registers.
Faults are injected into CPU registers, specifically, saved! general purpose and floating point
registers, the program counter, the global pointer, and stack pointer. These registers were
chosen because faults in these register have a higher chance of propagation compared to faults

in other registers (e.g., temporary registers).

The method of injection involves the following steps:

1. Obtain a copy of the registers.
2. Corrupt the register to be injected.
3. Place the corrupted register value back into the CPU register. The transfer of the

CPU values in and out is only performed when the targeted workload process is context
switched out of the CPU.

inject_mem The memory fault models include single/multiple bit-flip and zero/set faults in local
and global memory.
Faults are injected into local memory. Since only portions of the memory are heavily used by
the workload, faults are targeted at those portions. Faults are injected by directly modifying

the contents of selected memory locations.

inject_io The I/O fault models include valid SCST and disk errors.

Faults are injected into a mirrored disk system. The method of injection involves using a test
portion of the disk driver code that sets error flags for the next driver request. Thus, the
next request will be detected by the error handler in the driver code, and one half of the disk

mirror may be disabled.

3.1.2 Fault Selection Method

The time and location for each fault injection is determined using one of the following methods.
Some of the methods involve the measurement of workload stress, which is described in the next

section:

! Saved registers are those registers who values must be preserved across procedure calls.

location-based stress-based injection (LSBI) Faults are injected into the area (CPU, mem-

ory, or I/O) with the greatest normalized stress.

time-based stress-based injection (TSBI) Faults are injected during the time the composite

stress is greater than a specific threshold.

randomly The fault time is selected randomly based on a specified distribution (e.g., an expo-
nential interarrival distribution with a specified mean of 20 seconds), and the fault location

is randoinly chosen based on a uniform distribution.

If an error is detected, then all injections are suspended until the error is corrected, because an
error detection on the Tandem S2 disables the component in which the error was detected (e.g., a
detected error in the CPU forces the entire CPU off-line).

The fault models used for cpu and mem are single bit-flips. For io, valid error codes are

randomly chosen.

3.2 Workload Generator

The main purpose of the workload generator is to provide an easily controllable workload that can
propagate the faults injected by the FI. The workload is synthetic to allow easy specification of the
workload, based on a few parameters. The same areas that are used used the FI (cpu, mem, and
io) are targeted for workload activity. Each workload is comprised of one or more processes. Each
process is composed of a sequence of the following three functions, each of which exercises one of

the three main system areas intensively:

use_cpu This function is CPU-intensive. It consists of repeated additions, subtractions, multipli-
cations, and divisions for integer and floating point variables. These operations are performed
in a loop containing conditional branches. Memory accesses are limited by using CPU regis-

ters as much as possible.

use_mem This function is memory-intensive. A large memory array is created, and locations in
this array are repeatedly read from and written to in a sequential manner. The array is larger
than the size of the data cache in order to ensure that accesses are being made to the physical

memaory.

use_io This function is I/O-intensive. A dummy file system is created on a mirrored disk system.

Opens, reads, writes, and closes are repeatedly performed.

The parameters for each function are specified in a parameter file. In practice, each function is
usually specified to last the same amount of time (e.g., one second). Then the composition of each
workload process can be specified to contain a specific proportion of each function. For instance, a
workload that is CPU-intensive with a small amount of memory and I/O activity can be specified

to contain 90% of the cpu function and 5% of the mem and io functions. Such a workload would

be said to have a composition of 90/5/5. When the workload process is executed, each function
will be randomly chosen according to corresponding probabilities.

Each function also reads and writes data from a special global interdependence array which
forces data flow among functions. This is necessary to encourage fault propagation among functions.
Otherwise, a data fault in one function is usually overwritten if the fault influences only variables
local to that function and the system doesn’t detect the error before the end of the function.

The intensity is the amount of activity in each function relative to the maximum possible
activity. The intensity of each function can be controlled. This is useful for studying the impact of
the workload activity level on fault propagation. For most of the workloads used in the experiments
in Section 4, the intensity is varied from 100% to 20% over a period of about nine minutes?.
Varying the intensity emphasizes the effect of high and low workload activity on the amount of
fault propagation.

Finally, the workload sends to the FI information needed to determine the location of certain

faults, such which processes are currently executing and what portions of memory are being used.

3.3 MEASURE

MEASURE is a tool that monitors the actual workload activity. Each workload is specified by
its associated parameter files to contain a certain relative amount of cpu, mem, and io activity.
Although each workload function is designed to be very intensive for one system area, each function
must necessarily cause activity in other system areas. For instance, the io function must also use
the CPU and perform memory reads and writes as well as accessing the disk. Thus, the MEASURE
tool is necessary to measure the actual activity caused by the workload.

MEASURE returns the level of workload stress for each system area as well as for the system
as a whole. The stress is the amount of workload activity — especially that which can aid fault
propagation. As with the FI, the methods needed to obtain the stress measures for each system
area are system dependent to a large extent. For each system area, the following methods are used

to obtain the workload stress:

measure_cpu The stress measure is based upon the CPU utilization. On the S2, the sar utility

returns the CPU utilization.

measure_mem The stress measure is based upon the number of reads and writes per second
to the memory space used by the workload. Since any software method of obtaining this
information would incur an unacceptable amount of overhead, a hardware method is used.
A Tektronix DAS 9200 logic analyzer is used to count the number of memory accesses. This

count is automatically sent to the MEASURE program every 10 seconds.

measure_io The stress measure is based on the number of disk blocks accessed per second. On

the S2, the sar utility returns the number of disk blocks accessed per second.

2This time period needs to be long enough for the MEASURE tool and FI to react to the corresponding workload
activity.

A detailed description of the setup needed to measure mem stress can be found in Young(15}.
Each stress measure is normalized in order to compare the different measures. The normalization
is performed by running a set of various workloads® and obtaining a distribution of the raw stress
measures (i.e., CPU utilization, memory accesses/second, and disk blocks/second). Each raw stress
measure was normalized to a value between 0 and 1, inclusively, based on the following formula,

where X, is the 5th percentile value and X4, is the 95th percentile value in the raw stress

X - X
Xoormat = i —"‘-)o] 1}.
normal mln{lnax [(Xmua: - Xmin ,

One disadvantage of the current methods is the relatively long amount of time between mea-

distribution:

surements (about 10 seconds). This is mainly due to the amount of time required by the logic
analyzer to count memory accesses. However, most of this time is used to set up the logic analyzer;
the actual count only takes about one second. A newer logic analyzer will be used in the future to

significantly decrease this setup time.

4 Experiments

The main goals of the following experiments are

e to see how FTAPE can be used to investigate how a specific machine (the Tandem Integrity

S2) performs under faults and
e to illustrate the effectiveness of stress-based injection.

The target machine for these experiments is the Tandem Integrity S2 fault-tolerant computer. A
brief description of the S2 is given in Section 4.1. The general experimental procedure is described
in Section 4.2. The first set of experiments, described in Section 4.3, involves injecting coordi-
nated faults (i.e., faults that are injected into areas of greatest workload stress) and uncoordinated
faults (i.e., faults that are injected into areas of least workload stress). These experiments expose
the sensitivity of certain workloads to specific faults. The next set of experiments, presented in

Section 4.4, illustrates the effectiveness of stress-based injections in increasing fault propagation.

4.1 Description of S2

The Integrity S2[9] is a fault-tolerant computer designed by Tandem Computers, Inc. The core
of the S2 is its triple-modular-redundant processors. Each processor includes a CPU, a cache,
and an 8MB local memory. Although these three processors perform the same work, they operate
independently of each other until they need to access the doubly-replicated global memory. At
this point, the duplexed Triple Modular Redundant Controllers (TMRCs) vote on the address
and data. If an error is found, the faulty processor is shut down. After that processor passes a

power-on self-test (POST), it is reintegrated into the system by copying the states of the two good

3These workloads had compositions of 33/33/33, 20/20/60, 20/60/20, and 60/20/20.

processors. Voting also occurs on all I/O and interrupts. In addition, the local memory is scrubbed
periodically. This architecture ensures that a fault that occurs on one processor will not propagate
to other system components without being caught by the TMRC voting process.

CPU CPU CPU

Local Local Local
Memory Memory Memory
]
| |
Voter Voter
TMRC TMRC
Global Global
Memory Memory
|
| |
I0P IOP
Controller
L
[/0 Devices
|
Controller

Y Y

Figure 2: Overview of Tandem Integrity S2 Architecture

4.2 General Experimental Procedure

Each experiment is composed of two runs, one with faults and one without. The reason for this
duplication is that it allows the calculation of the performance degradation, which is the ratio of
two times: (1) the extra time required by the workload due to the detection and correction of faults
by the system and (2) the workload execution time without faults. This ratio is adjusted by the
number of faults injected. If Ty is the workload execution time under fault injection, Ty is the

time with no faults, and n is the number of faults injected, then the performance degradation is

Performance 1 (Ty) (1)
Degradation 1 Tny '

Performance degradation is a measure of the amount of extra time a system requires to recover
from detected errors. Performance degradation can be used as a measure of a system’s fault

tolerance, where a lower level of degradation means that the recovery mechanisms are more efficient.

In order to obtain this measure, runs of the experiment which cause system crashes are ignored,
since the degradation would be infinite in that case. Instead, the number of system crashes is
counted and can be used another measure of fault tolerance (i.e., how well the system is able to
recover from faults).

One run of each experiment consists of the following steps:

1. Start the MEASURE tool.

2. Run the workload while injecting faults. Measure the total workload time required (Ty in
Equation 1).

3. Run the workload a second time, this time without injecting any faults. Again measure the

total workload time required (7, f in Equation 1).

For the second non-injection run, the FI is still executed, but with null injection masks. In other
words, the FI goes through the motions of injecting faults, but instead of flipping a bit (XORing
with a 1) and setting a disk error (setting error to nonzero value), the FI doesn’t flip a bit (XORs
with a 0) and sets a null disk error (sets error to zero value). By so doing, the second run will
also invoke the same FI overhead as the first run. This is important when comparing workload
execution times.

In addition to performance degradation, the ratio of error detections to fault injections is mea-
sured for each run. This ratio represents the effectiveness of error detection. Since it is usually
desirable to detect faults quickly, the errors/fault ration should be minimized. Although analogous
to error detection coveragé, it is different because multiple injected faults may be concurrently
present in a system component. When a single error in that component is detected, reintegration
of that component results in correction and removal of all faults in that component. Thus, the
errors/fault ratio is always less than or equal to the error detection coverage.

Performance degradation and the errors/fault ratio can also be used to measure the level of fault
propagation on a single machine. Since the detection and recovery mechanisms on a machine remain
the same from one run to another, variations in these two measures are caused by the detection
of errors caused by injected faults. The more the faults propagate, the more error detections are

likely to increase.

4.3 Sensitivity of Workloads to Faults

Faults require workloads to activate them and propagate their effects. This experiments in this
section show that more fault propagation occurs when the locations of faults and high workload
activity are the same. The experiments consist of injecting faults into a single system component.
Two types of workloads are executed along with those fault injections: (1) a workload with lit-
tle activity in that component and (2) a workload with its activity mostly concentrated in that
component. Thus, for experiment a in Table 2, faults are injected only into the CPU. The first

row represents a non-CPU intensive workload, while the second row represents a CPU-intensive

10

workload. The injection time was chosen randomly based on an exponential arrival distribution
with a mean of 20 seconds.

The results are given in Table 2. Each row represents seven runs. From the table, it can be
seen that the errors/fault ratio and the performance degradation are higher for the second row
of each experiment. This means that the fault propagation is indeed higher when the injection
location matches the location of high workload activity. For instance, the errors/fault ratio for
cpu injections increases from 0.148 to 0.257 when the workload activity become CPU-intensive.
Similarly the performance degradation increases from 0.0285 to 0.0438.

The increase in the errors/fault ratio occurs because the injected faults are accessed by the
workload more frequently when the workload activity is concentrated in the injection area. Fur-
thermore, the high workload activity causes the accessed fault to produce additional errors. For
instance, a CPU fault may be a corrupted register. That register may be a pointer to a memory
location. Each time that corrupted register is referenced by the workload, an additional memory er-
ror is created (i.e., fault propagation). This fault propagation effect is increased when the workload

causes the register to be used more often.

Table 2: Sensitivity of Workloads to Faults

Execution Execution

Injection Composition Errors Faults E:l(]"'ts Time with | Time without | Performance

Exp | Location | cpu | mem | io || Detected | Injected Faults (sec) Faults (sec) Degradation
a cpu 4 48 48 9 61 0.148 1588 1544 0.000467
cpu 90 5 5 26 101 0.257 2334 2236 0.000434
b mem 48 4 48 2 87 0.027 1948 1928 0.000119
mem 5 90 5 3 71 0.038 1558 1537 0.000193
¢ io 48 48 4 12 48 0.248 2026 1910 0.001257
io 5 5 90 26 37 0.700 3347 1583 0.030363

4.4 Stress-based Injection Results

Stress-based injection is a method of selecting the time and location for injected faults with the
goal of producing the greatest fault propagation possible. Injected faults must be activated and
propagated in order to adequately exercise the error detection and correction mechanisms on a
fault-tolerant system. Thus, by using stress-based injection, the likelihood that the fault tolerance
of a system is tested can be increased.

To show that stress-based injection increases fault propagation, experiments were performed

using using five different stress-based injection strategies:

11

Strategy Description

1t Use both location-based stress injection (LSBI) and time-
based stress injection (TSBI).

1 Use LSBI.

t Use TSBI.

random Randomly select injection times from an exponential distri-

bution and injection locations from a uniform distribution.
WLOW Use both LSBI and TSBI. However, select injection times

when the composite stress is below a specific threshold, and

select the injection location (CPU, memory, I[/O) with the

lowest measured stress.

The errors/fault ratio and performance degradation for the five injection strategies used with
the same workload are given in Figure 3. The figure shows averages based on 19 runs for each
injection strategy. The workload used is a disk-intensive workload. From the figure, it can be seen
that the highest level of fault propagation (as measured by the errors/fault ratio and performance
degradation) is obtained when using both the location-based and time-based injection strategies
(labeled in the graph as “It”). If only the location-based strategy (labeled as “I”) is used, then
the propagation is lower; yet, the location-based strategy still produces more propagation than
using the time-based or random strategies (labeled as “t” and “random”, respectively). Thus, for
this disk-intensive workload, injecting faults into the disk produces more fault propagation than
choosing the injection location randomly. However, if additionally the faults are injected only when
the dynamic workload activity is high, then even more propagation occurs.

The measured performance degradation in Figure 3 is small, partly because the it is divided
by the number of faults injected. Still, the measure is still significant because it represents many
machine cycles. Moreover, the performance degradation measure is intended to be used as a relative
measure. Thus, the importance of the measure is that the combined location-base and time-based

injection strategy produces more performance degradation than the other strategies.

0.8000 0.0300

0.6000

t random 0.0200

0.4000

0.2000 0.0100

0.0000 0.0000

Performance
Degradation

Errors/Fault

Figure 3: Errors/Fault and Performance Degradation

12

This same effect can be seen for other workloads. Figure 4 shows the errors/fault ratio for
several workloads. For each workload, the errors/fault ratio is higher when the location-based
strategy is combined with the time-based strategy. Again, the combined strategy is labeled as “It”

“l”

in the graph, while the location-based strategy alone is labeled as

0.25 t—
0.20
0.15
0.10
0.05
0.00

ITNTENIEN} lllllllll 111

Workloadd Workloade Workload f

Figure 4: Errors/Fault for Several Workloads

Table 3: Stress-based Injection Results For CPU and Memory Fault

[njection Composition # Errors Faults Eé::l—)lrt‘ﬁ‘
Experiment | Method | ¢pu | mem | io | Runs j| Detected | Injected
d it 90 5 5 19 4 22 0.1749+0.0362
1 90 5 5 18 13 104 0.1206+0.0147
t 90 5 3 19 2 17 0.1184+0.0353
random 90 5 5 19 3 23 0.1170=£0.0302
ItLOW 90 i 5 6 12 169 0.0740£0.0161
e 1t 33 33 33 12 11 66 0.1679+0.0261
] 33 33 33 17 7 71 0.1007£0.0169
t. 33 33 33 18 3 29 0.1075£0.0264
random 33 33 33 16 3 28 0.1053£0.0282
1tLOW 33 33 33 5 4 94 0.0403£0.0177
f It 20 20 60 19 7 60 0.1178+0.0187
I 20 20 60 10 4 32 0.0874£0.0220
t 20 20 60 9 3 33 0.1003+0.0298
random 20 20 60 19 4 32 0.1151£0.0254
1tLOW 20 20 60 6 2 76 0.0263+0.0147

As shown in Table 2, disk faults have a much higher errors/fault ratio and performance degra-
dation compared to CPU and memory faults. To ensure that the results of the experiments are
not biased by this, the results were also calculated for the same experiments in Figure 4 ignoring
disk faults. The results are given in Table 3. Again, the errors/fault ratio is highest when the

location-based and time-based injection strategies (labeled as “It”) are combined. The errors/fault

‘Interval given is a 95% confidence interval.

13

ratios for the It strategies are highlighted in the table. For the errors/faults ratio, 95% confidence

intervals are given.

System Crash Data

The results above do not include experiments which resulted in system crashes. The number
of system crashes is given in Table 4 based on the injection strategy and workload used. Each
row represents a different workload, and each column represents the injection strategy used. For
example, the “It” column of row “f” shows that 3 system crashes occurred while the combined
location-based and time-based injection strategy was used with workload f. The table includes
data for total 272 runs, during which a total of 5 system crashes occurred. These crashes included
one complete system hang. All crashes occurred when the location-based and time-based injection
strategies were used. Since the combination of these two strategies seems to produce the most fault
propagation as shown above, it is not surprising that the system crashes all result from their use.

All five crashes occurred because one of the TMR CPUs was already down when an error in
another CPU was detected. Since faults are only injected into a single CPU, errors should not
propagate to other CPUs. However, this was not the case for the crashes. In examining the
core dumps produced by system crashes, some insight into the cause for some of the crashes was
obtained. Each CPU contains non-volatile RAM which is used in the error detection and recovery
process. When this RAM is accessed, a checksumn is calculated for each block in the RAM. If a
checksum error is detected, then a panic is asserted, and a system crash occurs. Apparently the
faults injected into the CPU and local memory produced fault propagation into this non-volatile
RAM.

Table 4: Number of Observed System Crashes

Injection strategies
Experiment || It | 1 [t | random] ItLOW
d 01010 0 0
e 310(0 0 0
f 1100 0 0
g 11010 0 0
™ Tol [5]0]0] 0] 0 |

Repeatability

Although the specifics of each run (e.g., time and location of each fault) are not designed to be re-
peatable, the measured results (the errors/fault ratio and performance degradation) are repeatable,
given a sufficient number of runs. This can be seen with the relatively small confidence intervals

given in Table 3. Although it is possible to add additional instrumentation to force the specifics of

14

every run to be repeatable, such extra work would not add additional repeatability to the measured

results.

5 Conclusions

FTAPE is a tool that can be used to compare the fault tolerance of fault-tolerant computers.
Stress-based injection is used to to inject faults at the times and locations of greatest workload
activity. This encourages fault propagation, which is necessary to ensure that the fault-tolerant
mechanisms are adequately exercised. Experiments on the Tandem Integrity S2 show that fault
propagation {as measured by error/fault, performance degradation, and system crashes) is highest
when faults are injected (1) into components (e.g., CPU) that are exercised heavily by the workload
and (2) at times of greatest overall workload stress.

In the future, the tool will be ported to other fault-tolerant platforms and used to compare

these machines. More representative workloads and fault models will be incorporated into the tool.

6 Acknowledgements

Thanks are due Tandem Computer, Inc. for their help in this work. This research was supported in
part by the Advanced Research Projects Agency (ARPA) under contract DABT63-94-C-0045 and
by NASA grant NAG 1-613, in cooperation with the Illinois Computer Laboratory for Aerospace
Systems and Software (ICLASS). The content of this paper does not necessarily reflect the position

or policy of the government and no endoresement should be inferred.

References

(1] Jean Arlat et al. Fault injection for dependability validation-a methodology and some appli-
cations. IEEE Transactions on Software Engineering, 16(2):166-182, February 1990.

(2] Gwan S. Choi, Ravi K. Iyer, and V. Carreno. Focus: An experimental environment for fault

sensitivity analysis. I[EEE Transactions on Computers, 41(12):1515-1526, December 1992.

(3] Edward W. Czeck. On the Prediction of Fault Behavior Based on Workload. PhD thesis,
Carnegie Mellon University, April 1991.

[4] G. B. Finelli. Characterization of fault recovery through fault injection on ftmp. IEEE Trans-
actions on Reliability, 36(2):164-170, June 1987.

[5] U. Gunneflo, J. Karlsson, and J. Rorrin. Evaluation of error detection schemes using fault in-
jection by heavy-ion radiation. In Proceedings 19th International Symposium on Fault-Tolerant

Computing, pages 340-347, Chicago, Illinois, June 1989.

15

[6]

[

[10]

[11]

(12]

[14]

[15]

(16]

Ravi Iyer, D. Rossetti, and M. Hsueh. Measurement and modeling of computing reliability as
affect by system activity. ACM Transactions on Computer Systems, 4:214-237, August 1986.

Ravi Iyer and Dong Tang. Experimental analysis of computer system dependability. Technical
Report CRHC-93-15, University of Illinois at Urbana-Champaign, Urbana, [llinois, 1993.

E. Jenn, J. Arlat, M. Rimen, J Ohlsson, and J Karlsson. Fault injection into vhdl models:

The mefisto tool. In 24st International Symposium on Fault-Tolerant Computing, 1994.

Doug Jewett. Integrity s2: A fault-tolerant unix platform. In 21st International Symposium

on Fault- Tolerant Computing, pages 512-519, Montreal, Canada, June 1991.

Ghani Kanawati, Nasser Kanawati, and Jacob Abraham. Ferrari: A fault and error auto-
matic real-time injector. In Proc. 22nd International Symposium. on Fault- Tolerant Computing,

Boston, Massachusetts, 1992.

Wei-Lun Kao and Ravishankar K. Iyer. Define: A distributed fault injection and monitoring
environment. In Proceedings of IEEE Workshop on Fault-tolerant Parullel and Distributed
Systems, June 1994.

Wei-Lun Kao, Ravishankar K. Iyer, and Dong Tang. Fine: A fault injection and monitoring
environment for tracing the unix system behavior under faults. IEEE Transactions on Software
Engineering, 19:1105-1118, November 1993.

Harold Rosenberg and Kang Shin. Software fault injection and its application in distributed en-
vironment. In Proceedings of the 23rd International Symposium on Fault-Tolerant Computing,
France, June 1993.

7. Segall, D. Vrsalovie, et al. Fiat-fault injection-based automated testing environment. In

18th International Symposium on Fault-Tolerant Computing, pages 102-107, 1988.

Luke Young and Ravi Iyer. Error latency measurements in symbolic architectures. In AJTAA

Computing in Aerospace 8, pages 786-794, Baltimore, Maryland, October 1992.

Luke Young, Ravi Iyer, Kumar Goswami, and Carlos Alonso. A hybrid monitor assisted fault
injection environment. In Proceedings of the Third IFIP Working Conference on Dependable

Computing for Critical Applications, pages 163-174, Mondello, Sicily, Italy, September 1992.

16

