
To appear Proc. Performance Tools '95 / MMB '95, Heidelberg, Germany, Sept. 1995.

NASA-CR-197773

/,,v'3 :- -

Measuring FaultTolerancewith the FTAPE Fault InjectionTool />

Timothy N. Tsai and Ravishankar I,f. Iyer

University of Illinois

Center for Reliable and High Performance Computing

Coordinated Science Laboratory

Urbana, Illinois

Email: { ttsai]iyer}@crhc.uiuc.edu

Telephone: (217) 244-1768 Fax: (217) 244-5686

(NASA-CR-197773) MEASURING FAULT

TOLERANCE WITH THE FTAPE FAULT

INJFCTION TOOL (Illinois Univ.)

16 p

N95-27253

Unclas

Abstract G3/38 0048539

This paper describes FTAPE (Fault Tolerance And Performance Evaluator), a tool that can

be used to compare fault-tolerant computers. The major parts of tl_e tool include a system-wide

fault injector, a workload generator, and a workload activity measurement tool. The workload

creates high stress conditions on the machine. Using stress-ba_ed injection, the fault injector is

able to utilize knowledge of the workload activity to ensure a high level of fault propagation.

The errors/fault ratio, performance degradation, and number of system crashes are presented
as measures of fault tolerance.

Keywords: fauh injection, workload generator, fault tolerance measurement, stress-based in-

jection

1 Introduction

A method [br measuring the fault tolerance of any computer is desirable. Such a method could

be used to compare fault-tolerant computers. For system designers, different fault-tolerant designs

could be evaluated and used as feedback in the design process. A fault tolerance measure would be

useful to purchasers of new fault-tolerant systems in encapsulating the effectiveness and efficiency

of the fault tolerance.

This paper describes FTAPE (Fault Tolerance and Performance Evaluator). The tool combines

a fault injector and a workload generator with a workload activity measurement tool in order

to inject faults under high stress conditions based on workload activity. It is well known that

high stress and complex workloads cause greater propagation of faults and detection of errorsI6 I.

By using knowledge of the workload activity (where and when the activity is at high levels), the

fault injector can maximize the chance that faults are activated. The tool also characterizes the

fault tolerance of a computer by producing a single measure (e.g., the performance degradation

due to error recovery). This use of FTAPE is analogous to the use of synthetic benchmarks in

evaluatingthe performanceof non-fault tolerant computers.Despitethe flawsof suchmeasures,
thesebenchmarksare neverthelessusefulin comparingdifferent systems. In the areaof fault
tolerance,nosuchbenchmarksarecurrentlyavailable.Althoughthe measuresproducedby FTAPE
maynot be the most definitive, they arecertainlyusefulas fault tolerancemeasuresand should
motivatethe discussionin the areaof better fault tolerancemetrics.

The useof fault injectionto measurefault toleranceis neededbecausethe errordetectionand
recovery mechanisnls that comprise the fault tolerance of a computer can only be tested when

activated by faults and their corresponding manifestations. The fault injector in FTAPE can inject

faults throughout the target system, including in CPU registers, memory, and the disk system.

This ability to inject faults throughout different parts of the system is needed because the fault

tolerance mechanisms of the system are distributed throughout the entire system.

The workload generator is synthetic and is designed to produce workloads that will exercise the

CPU, memory, and disk. The amount and intensity of the workload in each area of the system

(CPU, memory, and disk) (:an be controlled and specified as distributions over time. Multiple

workload processes can be executed.

We define stress-based injection _ the process of injecting faults based upon a measurement

of the current workload activity. Stress in this sense refers to the amount of activity caused by

the workload which could encourage fault propagation. The workload activity measurement tool

outputs two values: (1) the level of workload activity in each system component (CPU, memory,

and disk), which determines the location of injection, and (2) the the level of workload activity in

the entire system, which determines the time of injection. Experiments are given to demonstrate

the effectiveness of stress-based injection in increasing fault propagation.

Since the tool characterizes the fault tolerance of the system using a single quantity, a metric

tbr that characterization is needed. Several lnetrics are proposed and measured. The ratio of

(letecte(l errors to injected faults represents the effectiveness of error detection, while performance

degradation represents the efficiency of error recovery. The number of system crashes shows the

effectiveness of error recovery.

In addition to obtaining a measure of the system fault tolerance, FTAPE is also useful for

providing more detailed feedback to system designers. When system failures occur, the propagation

of the guilty fault can be trace(t, and that information can be used to improve the design of the

fault containment mechanisms, although this paper does not go into detail on this topic.

FTAPE is designed to be used on a flmctioning hardware implementation of a fault-tolerant

computer. The tool has been implemented on a Tandem Integrity $2 fault-tolerant computer.

Experiments using the tool show the effect of different workloads in influencing fault propagation.

A measure of the overall system fault tolerance is also obtained. The implementation of FTAPE

has been designed to be portable, although the fault injector is dependent to a degree upon the

architecture of the measured machine. Plans exist to port the tool to other fault-tolerant machines

and to compare the fault tolerance of those machines.

2 Related Work

There axe several different approaches to fault injection. A detailed discussion can be found in [7].

Fault injection tools can be classified as simulation-based or prototype-based. Simulation involves

the injection of faults into electrical, logical, or fimctional simulations. Simulation has the ability to

model complex systems with greater accuracy than analytic modeling. However, ensuring that the

simulated models are realistic and containing simulation time explosion are challenges. Examples

of fault simulators include [2](FOCUS), [3], and [8](MEFISTO).

For prototype-based injection faults are injected into actual physical systems. There are several

methods for injecting faults into these computers. Hardware-implemented fault injection uses

additional hardware instrumentation to introduce faults. FTMP [4] anti MESSALINE [1] use

active probes and special sockets to alter currents and voltages on chip pins. Radiation [5] can

also be used to inject chip-level faults. Although these methods inject actual low-level, physical

faults, they require special hardware and accessibility to the target system hardware and have the

possibility of damaging the target system.

Another method of injection involving prototypes is software-based fault ,injection (SWIFI). This

method uses software to emulate the effect of lower-level hardware faults by altering the contents

of memory or registers. No additional hardware is required. Some fault injection tools based on

SWIFI are given in Table 1. FIAT injects faults into the user process image in memory. FERRARI

uses software traps to inject faults. HYBRID uses hardware and software monitoring of SWIFI

faults. DEFINE is a distributed version of FINE [12], which is able to emulate software faults as

well ,as hardware faults. SFI is used to validate dependability mechanisms and has been used on

a distributed real-time system. FTAPE (lifters from these tools by adding a synthetic workload

generator and a workload activity measurement tool that enables the fault injector to inject faults

based upon dynamic workload measurements. Performance degradation is produced along with

other quantities as measures of the overall system fault tolerance.

Table 1: Software-implemented Fault Injection Tools

Name

FIAT [141
FERRARI[10]

HYBRID [16]

DEFINE [111

SFI[13]
FTAPE

System
Under Test

IBM RT

Sun

Tandem $2

Sun

Fault Types

CPU,

CPU,

CPU,

CPU,

memory, communications

memory, bus, communications

memory

memory, bus, SW, distributed

HARTS CPU,

Tandem $2 CPU, memory, disk

memory, communications

3 Description of Tool

FTAPE is a tool that integrates the injection of faults and the workload necessary to propagate

those faults. The tool is composed of three main parts: FI (the fault injector), MEASURE, and

WG (the workload generator). Figure 1 shows how these three parts interact. The FI is responsible

for performing the fault injection. MEASURE provides a measurement of the current workload

activity that is used by the FI to determine the time and location for fault injection. The WG is a

synthetic workload generator which creates workloads that are designed to propagate the injected

faults. A more detailed description of each part of the tool follows.

.......W.o.r.k.!.o..a..d" p.e.

Fau[___ °rkl°ad

::memi io

[©© ©]
Activity

MEASURE

Figure 1: General Block Diagram of FTAPE

3.1 Fault Injector

The main task of the FI is to inject faults into the target system. The method of injection used

by the current version of FTAPE is software-implemented fault injection, which uses software to

emulate the effects of underlying physical faults. For instance, a bit in a memory location can be

flipped to emulate the effect of an alpha particle on a memory bit. This method of fault injection

is more controllable than hardware-based injection (e.g., it would be difficult to inject faults into

memory using hardware), but software-based injection incurs a higher time overhead.

The main goal of fault injection is to exercise the error detection and recovery mechanisms in

the target system. The best way to do this is to inject faults throughout the entire system. FTAPE

partitions the system into three main areas: cpu, mere, and io. For each area a different method

of fault injection is required. These areas are also the same areas that are targeted by the WG.

Becausethe sameareasare targetedby both the FI and the WG, there is a good chancefor the
injectedfaults to bepropagatedby theworkload.

3.1.1 Fault Injection Method

The fault injection methods used by the FI are described below. Note that fault-tolerant systems

have widely varying architectures aud thereibre require different fault injection techniques. The

following are for the implementation of FTAPE on the Tandem Integrity $2:

inject_cpu The CPU fault models include single/multiple bit-flip and zero/set faults in CPU

registers.

Faults ,are injected into CPU registers, specifically, saved 1 general purpose and floating point

registers, the program counter, the global pointer, and stack pointer. These registers were

chosen becanse faults in these register have a higher chance of propagation compared to faults

in other registers (e.g., temporary registers).

The method of injection involves the following steps:

1. Obtain a copy of the registers.

2. Corrnpt the register to be injected.

3. Place the corrupted register value back into the CPU register. The transfer of the

CPU values in and out is only performed when the targeted workload process is context

switched out of t,he CPU.

inject_mere The memory fault models include single/multiple bit-flip and zero/set faults in local

and global memory.

Faults are injected into local memory. Since only portions of the memory are heavily used by

the workload, faults are targeted at those portions. Faults are injected by directly modifying

the contents o|' selected memory locations.

inject_io The I/O fault models include valid SCSI and disk errors.

Faults are injected into a mirrored disk system. The method of injection involves using a test

portion of the disk driver code that sets error flags for the next driver request. Thus, the

next request will be detected by the error handler in the driver code, and one half of the disk

mirror may be disabled.

3.1.2 Fault Selection Method

The time and location tbr each fault injection is determined using one of the following methods.

Some of the methods involve the measurement of workload stress, which is described in the next

section:

t Saved registers axe those registers who values must be preserved across procedure calls.

location-based stress-based injection (LSBI) Faults are injected into the area (CPU, mem-

ory, or I/O) with the greatest normalized stress.

time-based stress-based injection (TSBI) Faults are injected during the time the composite

stress is greater than a specific threshold.

randomly The fault time is selected randomly based on a specified distribution (e.g., an expo-

nential interarriva] distribution with a specified mean of 20 seconds), and the fault location

is rando,nly chosen based on a unitbrm distribution.

If an error is detected, then all injections are suspended until the error is corrected, because an

error detection on the Tandem $2 disables the component in which the error was detected (e.g., a

detected error in the CPU forces the entire CPU off-line).

The fault models used for cpu and mem are single bit-flips. For io, valkt error codes are

randomly chosen.

3.2 Workload Generator

The main purpose of the workload generator is to provide an easily controllable workload that can

propagate the faults injected by the FI. The workload is synthetic to allow easy specification of the

workload, based on a few parameters. The same areas that are used used the FI (cpu, mem, and

io) are targeted tor workload activity. Each workload is comprised of one or more processes. Each

process is composed of a sequence of the following three flmctions, each of which exercises one of

the three main system areas intensively:

use_cpu This function is CPU-intensive. It consists of repeated additions, subtractions, multipli-

cations, and divisions tbr integer and floating point variables. These operations are performed

in a loop containing conditional branches. Memory accesses are limited by using CPU regis-

ters as much as possible.

use_mem This fnnction is memory-intensive. A large memory array is created, and locations in

this array are repeatedly read from and written to in a sequential manner. The array is larger

than the size of the data cache in order to ensure that accesses are being made to the physical

memory.

use_io This function is I/O-intensive. A dummy file system is created on a mirrored disk system.

Opens, reads, writes, and closes are repeatedly pertormed.

The parameters for each function are specified in a parameter file. In practice, each function is

usually specified to last the same amount of time (e.g., one second). Then the composition of each

workload process can be specified to contain a specific proportion of each function. For instance, a

workload that is CPU-intensive with a small amount of memory and I/O activity can be specified

to contain 90% of the cpu flmction and 5% of the mem and io functions. Such a workload would

be saidto havea composition of 90/5/5. When the workload process is executed, each function

will be randomly chosen according to corresponding probabilities.

Each flmction also reads and writes data from a special global interdependence array which

forces data flow among flmctions. This is necessary to encourage fault propagation among functions.

Otherwise, a data fault in one flmction is usually overwritten if the fault influences only variables

local to that flmction and the system doesn't detect the error before the end of the function.

The intensity is the amount of activity in each function relative to the maximum possible

activity. The intensity of each flmction call be controlled. This is useflfl for studying the impact of

the workload activity level on fault propagation. For most of the workloads used in the experiments

in Section 4, the intensity is varied from 100% to 20% over a period of about nine minutes 2.

Varying the intensity emphasizes the effect of high and low workload activity on the amount of

fault propagation.

Finally, the workload sends to the FI information needed to determine the location of certain

i'auits, such which processes are currently executing and what portions of memory are being used.

3.3 MEASURE

MEASURE is a tool that monitors the actual workload activity. Each workload is specified by

its _sociated parameter files to contain a certain relative amount of cpu, mem, and io activity.

Although each workload function is designed to be very intensive for one system area, each function

must necessarily cause activity in other system areas. For instance, the io function must also use

the CPU and perform memory reads and writes as well as accessing the disk. Thus, the MEASURE

tool is necessary to measure the actual activity caused by the workload.

MEASURE returns the level of workload stress fbr each system area as well as for the system

as a whole. The stress is the amount of workload activity -- especially that which can aid fault

propagation. As with the FI, the methods needed to obtain the stress measures for each system

area are system dependent to a large extent. For each system area, the following methods are used

to obtain the workload stress:

measure_cpu The stress measure is based upon the CPU utilization. On the $2, the sat utility

returns the CPU utilization.

measure_mem The stress measure is based upon the number of reads and writes per second

to the memory space used by the workload. Since any software method of obtaining this

information would incur an unacceptable amount of overhead, a hardware method is used.

A Tektronix DAS 9200 logic analyzer is used to count the number of memory accesses. This

count is automatically sent to the MEASURE program every 10 seconds.

measure_io The stress measure is based on the number of disk blocks accessed per second. On

the $2, the sa.r utility returns the number of disk blocks accessed per second.

'_This time period needs to be long enough for the MEASURE tool and FI to react to the corresponding workload

activity.

7
t

A detailed description of the setup needed to measure mem stress can be found in Young[15].

Each stress measure is normalized in order to compare the different measlLres. The normalization

is performed by running a set of various workloads 3 and obtaining a distribution of the raw stress

measures (i.e., CPU utilization, memory accesses/second, and disk blocks/second). Each raw stress

measure was normalized to a vahm between 0 and 1, inclusively, based on the following formula,

where X,mn is the 5th percentile value and X,n_z is the 95th percentile value in the raw stress

distribution:

Xno,-ma,=min(max[(xmX:Xmm

One disadvantage of the current methods is the relatively long amount of time betw_n mea-

surements (about 10 seconds). This is mainly due to the amount of time required by the logic

analyzer to count memory accesses. However, most of this time is used to set up the logic analyzer;

the actual count only takes about one second. A newer logic analyzer will be used in the future to

significantly decrease this setup time.

4 Experiments

The main goals of the following experiments are

,, to see how FTAPE can be used to investigate how a specific machine (the Tandem Integrity

$2) pertbrms under thults and

• to illustrate the effectiveness of stress-based injection.

The target machine tbr these experiments is the Tandem Integrity $2 fault-tolerant computer. A

brief description of the $2 is given in Section 4.1. The general experimental procedure is described

in Section 4.2. The first set of experiments, described in Section 4.3, involves injecting coordi-

m_ted faults (i.e., [aults that are injected into areas of greatest workload stress) and uncoordinated

faults (i.e., faults that are injected into areas of least workload stress). These experiments expose

the sensitivity of certain workloads to specific faults. The next set of experiments, presented in

Section 4.4, illustrates the effectiveness of stress-based injections in increasing fault propagation.

4.1 Description of $2

The Integrity $219] is a fault-t, olerant computer designed by Tandem Computers, Inc. The core

of the $2 is its triple-modular-redundant processors. Each processor includes a CPU, a cache,

and an 8MB local memory. Although these three processors perform the same work, they operate

independently of each or,her until they need to access the doubly-replicated global memory. At

this point, the duplexed Triple Modular Redundant Controllers (TMRCs) vote on the address

and data. If an error is found, the faulty processor is shut down. After that processor passes a

power-on self-test (POST), it is reintegrated into the system by copying the states of the two good

ZThese workloads had compositions of 33/33/33, 20/20/60, 20/60/20, and 60/20/20.

processors.Voting alsooccursonall I/O andinterrupts. In addition,the localmemoryis scrubbed
periodically.This architectureensuresthat a fault that occursononeprocessorwill not propagate
to othersystemcomponentswithout beingcaughtby theTMRC voting process.

CPU CPU CPU

Local Local Local

Memory Memory Memory

II

[lOP]

Voter

TMRC

Global

Memory

Voter

TMRC

Global

Memory

Controller]

I

I/O Devices [

Controller

lOP

Figure 2: Overview of Tandem Integrity $2 Architecture

4.2 General Experimental Procedure

Each experiment is composed of two runs, one with faults and one without. The reason for this

duplication is that it allows the calculation of the performance degradation, which is the ratio of

two times: (1) the extra time required by the workload due to the detection and correction of faults

by the system and (2) the workload execution time without faults. This ratio is adjusted by the

number of faults injected. If Tf is the workload execution time under fault injection, TnI is the

time with no faults, and n is the number of faults injected, then the performance degradation is

Periormance 1 (Tf
Degradation = n _nf - 1). (1)

Performance degradation is a measure of the amount of extra time a system requires to recover

from detected errors. Performance degradation can be used _ a measure of a system's fault

tolerance, where a lower level of degradation means that the recovery mechanisms are more efficient.

In order to obtain this measure, runs of the experiment which cause system crashes are ignored,

since the degradation would be infinite in that case. Instead, the number of system crashes is

counted and can be used another measure of fault tolerance (i.e., how well the system is able to

recover from faults).

One run of each experiment consists of the following steps:

1. Start the MEASURE tool.

2. Run the workload while injecting faults. Measure the total workload time required (T/ in

Equation 1).

3. Run the workload a second time, t,his time without injecting any faults. Again measure the

total workload time required (Tn.f in Equation 1).

For the second non-injection run, the FI is still executed, but with null injection masks. In other

words, the FI goes through the motions of injecting faults, but instead of flipping a bit (XORing

with a 1) and setting a disk error (setting error to nonzero value), the FI doesn't flip a bit (XORs

with a 0) and sets a mill disk error (sets error to zero value). By so doing, the second run will

also invoke the same FI overhead as the first run. This is important when comparing workload

execution times.

In addition to pertbrmance degradation, the ratio of error detections to fault injections is mea-

sured tbr each run. This ratio represents the efiectiveness of error detection. Since it is usually

desirable to detect faults quickly, the errors/fault ration should be minimized. Although analogous

to error detection coverage, it is different because multiple injected faults may be concurrently

present in a system component. When a single error in that component is detected, reintegration

of that component results in correction and removal of all faults in that component. Thus, the

errors/fault ratio is always less than or equal to the error detection coverage.

Performance degradation and the errors/fault ratio can also be used to measure the level of fault

propagation on a single machine. Since the detection and recovery mechanisms on a machine remain

the same from one run to another, variations in these two measures are caused by the detection

of errors caused by injected faults. The more the faults propagate, the more error detections are

likely to increase.

4.3 Sensitivity of Workloads to Faults

Faults require workloads to activate them and propagate their effects. This experiments in this

section show that more fault propagation occurs when the locations of faults and high workload

activity are the same. The experiments consist of injecting faults into a single system component.

Two types of workloads are executed along with those fault injections: (1) a workload with lit-

tle activity in that component and (2) a workload with its activity mostly concentrated in that

component. Thus, [br experiment a in Table 2, faults are injected only into the CPU. The first

row represents a non-CPU intensive workload, while the second row represents a CPU-intensive

10

workload. The injection time waschosenrandomlybasedon an exponentialarrival distribution
with a meanof 20seconds.

The resultsaregivenin Table2. Eachrow representssevenruns. From the table, it canbe
seenthat the errors/fault ratio and the performancedegradationarehigher for the secondrow
of eachexperiment. This meansthat the fault propagationis indeedhigherwhen the injection
locationmatchestile locationof high workloadactivity. For instance,the errors/fault ratio for
cpu injectionsincreasesfrom 0.148to 0.257whenthe workloadactivity becomeCPU-intensive.
Similarly the perfbrmancedegradationincreasesfrom 0.0285to 0.0438.

The incre_e in the errors/fault ratio occursbecausethe injected faults are accessedby the
workloadmore frequentlywhenthe workloadactivity is concentratedin the injectionarea. Fur-
thermore,the high workloadactivity causesthe accessedfault to produceadditionalerrors. For
instance,a CPU fault may be a corrupted register. That register may be a pointer to a memory

location. Each time that corrupted register is referenced by the workload, an additional memory er-

ror is created (i.e., fault propagation). This fault propagation effect is increased when the workload

causes the register to be used more often.

Table 2: Sensitivity of Workloads to Faults

Exp

a

Inje(:tion

Location
C_tnl)osition Errors Faults

cpu [mem [io Detected Injected

cpu 4 48 48 9 61 0.148
cpu 90 5 5 26 101 0.257

mem 48 4 48 2 87 0.027
raem 5 90 5 3 71 0.038

io 48 48 4 12 48 0.248
io 5 5 90 26 37 0.700

Errors
-VXh-W

Execution Execution

Time with Time without Performance

Faults (sec) Faults (sec) Degradation

1588 1544 0.000467
2334 2236 0.000434
1948 1928 0.000119
1558 1537 0.000193
2026 1910 0.001257

3347 1583 0.030363

4.4 Stress-based Injection Results

Stress-based injection is a method of selecting the time and location for injected faults with the

goal of producing the greatest fault propagation possible. Injected faults must be activated and

propagated in order to adequately exercise the error detection and correction mechanisms on a

fault-tolerant system. Thus, by using stress-based injection, the likelihood that the fault tolerance

of a system is tested can be increased.

To show that stress-based injection increases fault propagation, experiments were performed

using using five different stress-based injection strategies:

11

Strategy Description
It Useboth location-basedstressinjection (LSBI) and time-

basedstressinjection(TSBI).
1 UseLSBI.
t UseTSBI.
random Randomlyselectinjection timesfrom an exponentialdistri-

bution and injectionlocationsfrom a uniformdistribution.
ltLOW Useboth LSBI and TSBI. However,selectinjection times

whenthe compositestressis belowa specificthreshold,and
selectthe injection location (CPU, memory,I/O) with the
lowestmeasuredstress.

The errors/fault ratio and performancedegradationfor the five injectionstrategiesusedwith
the sameworkloadaregivenin Figure 3. The figure showsaveragesba.sedon 19 runs for each
injectionstrategy.The workloadusedis a disk-intensiveworkload.Fromthe figure,it canbeseen
that the highestlevelof fault propagation(asmeasuredby theerrors/fault ratio and performance
degradation)is obtainedwhenusingboth the location-basedand time-basedinjection strategies
(labeledin the graphas "It"). If only the location-basedstrategy (labeledas "l") is used,then
the propagationis lower; yet, the location-basedstrategystill producesmorepropagationthan
usingthe time-basedor randomstrategies(labeledas "t" and "random",respectively).Thus, for
this disk-intensiveworkload,injecting faults into the disk producesmore fault propagationthan
choosingtheinjectionlocationrandomly.However,if additionallythe faultsareinjectedonly when

the dynamicworkloadactivity is high, thenevenmorepropagationoccurs.
The measuredpertbrmancedegradationin Figure3 is small, partly becausethe it is divided

by the uumberof faults injected. Still, the measureis still significantbecauseit representsmany
machinecycles.Moreover,theperformancedegradationmeasureis intendedto beusedasa relative
measure.Thus,the importanceof the measureis that,the combinedlocation-baseand time-based
injectionstrategyproducesmoreperibrmancedegradationthan theotherstrategies.

0.8000 It

0.6000 I

0.4000

0.2000

0.0000
Errors/Fault

0.0300

I

0.0200
t random

0.0100

0.0000
Performance
Degradation

Figure 3: Errors/Fault and Performance Degradation

12

This same effect can be seen for other workloads. Figure 4 shows the errors/fault ratio for

several workloads. For each workload, the errors/fault ratio is higher when the location-based

strategy is combined with the time-based strategy. Again, the combined strategy is labeled as "lt"

in the graph, while the location-based strategy alone is labeled _ "l".

0.250.20 It

0.15

0.10

0.05

0.00
Workload d Workload e Workload f

Figure 4: Errors/Fault for Several Workloads

Table 3: Stress-based Injection Results For CPU and Memory Fault

Experiment

Injection

Method

tt

1

t

r_mdom

ltLOW

It

l

t

ra.n doe

ltLOW

It

1

t,

random

ltLOW

C°mp°siti°n]_ I
cpu I mem I io Runs

90 5 5 19

90 5 5 18

90 5 5 19

9O 5 5 19

90 5 5 6

33 33 33 12

33 33 33 17

33 33 33 18

33 33 33 16

33 33 33 5

20 20 60 19

20 20 60 10

20 20 60 9

20 20 60 19

20 20 60 6

Errors

Detected

4

13

2

3

12

11

7

3

3

4

Faults

Injected

22

104

17

23

169

66

71

29

28

94

60

52

33

32

76

Errors 4
Fault

0.1749-1-0.0362

O. 12064-0.0147

0.1184-I-0.0353

0.11704-0.0302

0.0}7404-0.0161

0.16794-0.0261

0.10074-0.0169

O.10754-0.0264

0.10534-0.0282

0.04034-0.0}177

0.1178+0.0187

0.0874::E0.0220

O.10034.0.0298

0.11514-0.0254

0.02634.0.0147

As shown in Table 2, disk faults have a much higher errors/fault ratio and performance degra-

dation compared to CPU and memory faults. To ensure that the results of the experiments are

not biased by this, the results were also calculated for the same experiments in Figure 4 ignoring

disk faults. The results are given in Table 3. Again, the errors/fault ratio is highest when the

location-based and time-based injection strategies (labeled as "lt") are combined. The errors/fault

4Interval given is a 95% confidence interval.

13

ratiosfor the It strategiesarehighlightedin the table. Forthe errors/faults ratio, 95%confidence
intervalsaregiven.

System Crash Data

The results above (lo not include experiments which resulted in system crashes. The number

of system crashes is given in Table 4 based on the injection strategy and workload used. Each

row represents a different workload, and each column represents the injection strategy used. For

example, the "it" column of row "f" shows that 3 system crashes occurred while the combined

location-based and time-based injection strategy was used with workload f. The table includes

data for total 272 runs, during which a total of 5 system crashes occurred. These crashes included

one complete system hang. All crashes occurred when the location-based and time-based injection

strategies were used. Since the combination of these two strategies seems to produce the most fault

propagation as shown above, it, is not surprising that the system (:rashes all result from their use.

All five crashes occurre(l because one of the TMR CPUs was already down when an error in

another CPU was detected. Since faults are only injected into a single CPU, errors should not

propagate to other CPUs. However, this was not (,he case for the crashes. In examining the

(:ore dumps produced by system (:rashes, some insight into the cause [or some of the cr_shes was

obtained. Each CPU (:ontains non-volatile RAM which is use(l in the error detection and recovery

process. When this RAM is accessed, a checksum is calculated tor each block in the RAM. If a

checksum error is detected, then a panic is asserted, and a system crash occurs. Apparently the

faults injected into the CPU and local memory produced fault propagation into this non-volatile

RAM.

Table 4: Number of Observed System Crashes

Experiment t
Injection strategies

It I l I t]random] ltLOW

(1 0 0 0

e 3 0 0

f 1 0 0

g 1 0 0

Total 115 { 0 {0 {

0 0

0 0

0 0

0 0

0 0

Repeatability

Although the specifics of each run (e.g., time and location of each fault) are not designed to be re-

peatable, the measured results (the errors/fault ratio and performance degradation) are repeatable,

given a sufficient number of runs. This can be seen with the relatively small confidence intervals

given in Table 3. Although it is possible to add additional instrumentation to force the specifics of

14

every run to be repeatable, such extra work would not add additional repeatability to the measured

results.

5 Conclusions

FTAPE is a tool that can be used to compare the [',unit tolerance of fault-tolerant computers.

Stress-based injection is used to to inject faults at the times and locations of greatest workload

activity. This encourages fault propagation, which is necessary to ensure that the fault-tolerant

mechanisms are adequately exercised. Experiments on the Tandem Integrity $2 show that fault

propagation (as measured by error/fault, performance degradation, and system crashes) is highest

when faults are injected (1) into components (e.g., CPU) that are exercised heavily by the workload

and (2) at times of greatest overall workload stress.

In the fllture, the tool will be ported to other fault-tolerant platforms and used to compare

these machines. More representative workloads and fault models will be incorporated into the tool.

6 Acknowledgements

Thanks are due Tandem Computer, Inc. for their help in this work. This research was supported in

part by the Advanced Research Projects Agency (ARPA) under contract DABT63-94-C-0045 and

by NASA grant NAG 1-613, in cooperation with the Illinois Computer Laboratory for Aerospace

Systems and Software (ICLASS). The coutent of this paper does not necessarily reflect the position

or policy of the government and no endoresement shouht be interred.

References

[1] Jean Arlat et al. Fault injection tbr dependability validation-a methodology and some appli-

cations. IEEE Transactions on Software Engineering, 16(2):166-182, February 1990.

[2] Gwan S. Choi, Ravi K. Iyer, and V. Carreno. Focus: An experimental environment for fault

sensitivity analysis. [EEE Transactions on Computers, 41(12):1515-1526, December 1992.

[3] Edward W. Czeck. On the Prediction of Fault Behavior Based on Workload. PhD thesis,

Carnegie Mellon University, April 1991.

[4] G. B. Finelli. Characterization of fault recovery through fault injection on ftmp. IEEE Trans-

actions on Reliability, 36(2):164-170, June 1987.

[5] U. Gunneflo, J. Karlsson, and J. Rorrin. Evaluation of error detection schemes using fault in-

jection by heavy-ion radiation. In Proceedings 19th International Symposium on Fault-Tolerant

Computing, pages 340-347, Chicago, Illinois, June 1989.

15

[6] Ravi Iyer, D. Rossetti,andM. Hsueh.Measurementand modelingof computingreliability as
,_ffect by system activity. A CM Transactions on Computer Systems, 4:214-237, August 1986.

[7] Ravi Iyer and Dong Tang. Experimental analysis of computer system dependability. Technical

Report CRHC-93-15, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1993.

I8] E. Jenn, J. Arlat, M. Rimen, J Ohisson, and J K_lsson. Fault injection into vhdl models:

The mefisto tool. In 24st International Symposium on Fault-Tolerant Computing, 1994.

[9] Doug Jewett. Integrity s2: A fault-tolerant unix platform. In 21st International Symposium

on Fault-Tolerant Computing, pages 512-519, Montreal, Canada, June 1991.

[10] Ghani Kanawati, Nasser Kanawati, and Jacob Abraham. Ferrari: A fault and error auto-

matic real-time injector. In Proc. 22nd International Symposium on Fault-Tolerant Computing,

Boston, Mas.sachusett, s, i992.

[11] Wei-Lun Kao and Ravishallkar K. Iyer. Define: A distributed fault injection and monitoring

environment. In Proceedings of [EEE Workshop on Fault-tolerant Parallel and Distributed

Systems, June 1994.

[12] Wei-Lun Kao, Ravishank_ K. Iyer, and Dong Tang. Fine: A fault injection and monitoring

environment for tracing the unix system behavior under faults. [EEE Transactions on Software

Engineering, 19:1105-1118, November 1993.

[13] Harold Rosenberg and Kang Shin. Software fault injection and its application in distributed en-

vironment. In Proceedings of the 23rd International Symposium on Fault-Tolerant Computing,

France, June 1993.

[14] Z. Segall, D. Vrsalovie, et al. Fiat-fault injection-bmsed automated testing environment. In

18th International Symposium on Fault-Tolerant Computing, pages 102-107, 1988.

[15] Luke Young and R.avi Iyer. Error latency measurements in symbolic architectures. In AIAA

Computing in Aerospace 8, pages 786-794, Baltimore, Maryland, October 1992.

[16] Luke Young, Ravi Iyer, Kumar Goswami, and Carlos Alonso. A hybrid monitor assisted fault

injection environment. In Proceedings of the Third IFIP Working Conference on Dependable

Computing for Critical Applications, pages 163-174, Mondello, Sicily, Italy, September 1992.

16

