
CSP),
e of in-
in the

um

e vari-
nt kinds
r algo-

of

y, if
Journal of Discrete Algorithms 1 (2003) 303–312

www.elsevier.com/locate/jda

On-line algorithms for networks of
temporal constraints

Fabrizio d’Amorea,∗, Fabio Iacobinib

a Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Via Salaria 113,
00198 Roma, Italy

b Oracle Italia, Via Bombay 1, 00144 Roma, Italy

Abstract

We consider a semi-dynamic setting for the Temporal Constraint Satisfaction Problem (T
where we are requested to maintain the path-consistency of a network under a sequenc
sertions of new (further) constraints between pairs of variables. We show how to mainta
path-consistency in O(nR3) amortized time on a sequence ofΘ(n2) insertions, wheren is the num-
ber of vertices of the network andR is its range, defined as the maximum size of the minim
interval containing all the intervals of a single constraint.

Furthermore we extend our algorithms to deal with more general temporal networks wher
ables can be points and/or intervals and constraints can also be defined on pairs of differe
of variables. For such cases our algorithms maintain their performance. Finally, we adapt ou
rithms to also maintain the arc-consistency of such generalized networks in O(R) amortized time for
Θ(n2) insertions.
 2003 Elsevier B.V. All rights reserved.

Keywords: Network constraints; Temporal constraints; On-line algorithms

1. The problem

Given a totally ordered universeU , anetwork of temporal constraints [7] is a pair(G,),
whereG = (V ,E) is an undirected graph and	 is a function mapping its edges to sets
(closed) intervals ofU . Each vertex ofV = {v1, . . . , vn} is a variable varying in U and
each edgee is a constraint on the difference between its incident variables, namel
	(e) = {I1, . . . , Ik}, Ij being a closed interval ofU , ande = {vi, vj }, then the difference

* Corresponding author.
E-mail addresses: damore@dis.uniroma1.it (F. d’Amore), fabio.iacobini@oracle.com (F. Iacobini).

1570-8667/$ – see front matter 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S1570-8667(03)00031-5

http://www.elsevier.com/locate/jda

304 F. d’Amore, F. Iacobini / Journal of Discrete Algorithms 1 (2003) 303–312

e such
l data-
e the

ution
rvals.
ugh a

expo-
ep is
ork it
e more
n pairs
for-
ng its
s. This
phase
[4,7]).
ide us
twork
traints
cy
th
ima-
ucing

uested
a new
to re-

ry
o non-
s
ath-
Fig. 1. Constraint[6,20] can be restricted to[7,11].

vmax{i,j} − vmin{i,j} must be in
⋃

I∈	(e) I . A typical choice for the universeU is the setZ of
the signed integers. TheTemporal Constraint Satisfaction Problem (TCSP) is the problem
of finding ann-ple ofUn satisfying the constraints, namely, for each{vi, vj } ∈ E it results
vmax{i,j} − vmin{i,j} ∈ ⋃

I∈	(vi,vj)
I .

Problems involving temporal constraints arise in several areas of computer scienc
as scheduling [2,10], program verification [3,13,14], real time systems [18], tempora
bases [21,22] and artificial intelligence (in [7] there is an extensive bibliography). Se
survey paper in [20] for further details.

In [6] it is proved that the problem of deciding whether a given network admits a sol
is NP-hard, even if we restrict each constraint to consist of no more than two inte
Conversely, the particular problem occurring when each constraint is defined thro
simple interval, known as theSimple Temporal Problem (STP), is polynomial.

Typically, the TCSP is solved through the use of backtracking and this causes
nential running time. In order to improve the overall performance, a preliminary st
normally carried out, consisting of making the network path-consistent. In a netw
frequently happens that the constraint defined on a pair of variables can be mad
restrictive without altering the set of the solutions because of the constraints betwee
of vertices in a path linking the initial pair. An example is illustrated in Fig. 1. In
mally, the process of making a given network path-consistent consists of restricti
constraints to keep into account the effects of the propagation of the other constraint
pre-processing is useful for lowering the running time of the successive backtracking
and in some cases it is sufficient for deciding the whole problem (see Section 4 and
It should be clear that in general the path-consistency of a network does not prov
with significant information about the existence of a solution: a path-consistent ne
can admit 0 or more solutions, although it is true that the process of restricting cons
could lead to empty ones (i.e.,	(e) = ∅). In [19] it is proved that even local consisten
algorithms can be exponential due tofragmentation problems, i.e., the excessive grow
of the number of intervals in a constraint. The authors provide polynomial approx
tion algorithms, which are efficient yet effective in detecting inconsistencies and red
fragmentation.

In this paper we consider a semi-dynamic setting for the TCSP, where we are req
to maintain the path-consistency of a network under a sequence of insertions of
(further) constraint between pairs of variables; in terms of graphs this corresponds
stricting, for a given edgee, the set of intervals	(e). The operation we consider is ve
general, allowing also to model the case where we add a constraint between tw
adjacent variables: this is achieved by creating an edgee between the pair of variable
and defining	(e) to be equal to the inserting constraint. We show how to maintain p

F. d’Amore, F. Iacobini / Journal of Discrete Algorithms 1 (2003) 303–312 305

consistent a network in the defined setting in O(nR3) amortized time on a sequence of
-
ingle
lem,

version
m is
re
irs of
best al-
ed

works
n pairs
per-

f such
hs of

d for

only
e pur-

f

d to

s to
lemen-

rvals of
xi-
f

An
r

Θ(n2) insertions, wheren is the number of vertices andR is the range of the network, de
fined as the maximum size of the minimum interval containing all the intervals of a s
constraint. This is the first paper explicitly dealing with a non-static setting of the prob
although some dynamic techniques have been suggested in [20] and a preliminary
of our results have appeared in [5]. The best off-line algorithm known for the proble
PC-2 [7] which runs in O(n3R3) worst case time. Off-line algorithms exist in the literatu
for the non-temporal case, where constraints are described by explicitly listing pa
allowed values, thus giving raise to quadratic space per constraint. For this case the
gorithm is PC-4 [9] which runs in O(n3a3) wherea denotes the size of the largest involv
domain.

Furthermore we extend our algorithms to deal with more general temporal net
[15], where variables can be points and/or intervals and constraints can be defined o
of different kinds of variables [1,25]. For such cases our algorithms maintain their
formance. Finally we adapt our algorithms to also maintain the arc-consistency o
generalized networks, which is a particular kind of path-consistency limited to pat
length 1. The property is maintained in O(R) amortized time forΘ(n2) insertions. This
result should be compared to that in [4], where a fully dynamic algorithm is presente
the STP only, capable of performing insertions/deletions of constraints in O(mR) worst
case time per operation, wherem is the number of edges.

2. Preliminaries

Networks of temporal constraints have been defined in Section 1 by introducing
binary constraints. Often it is convenient to consider unary constraints as well, to th
pose of handling cases where a variablevi is constrained to vary in adomain Di ⊆ U .
Unary constraints can be easily introduced inside a networkN through the introduction o
a new vertexv0 (associated with a fixed value, e.g., 0) and an edge{vi, v0} with appropri-
ate label, for each vertexvi needing a unary constraint. The resulting network is sai
be anaugmented network and is denoted byN+. Premising that two networksM1 and
M2 with the same set of solutions are said to beequivalent (M1 ≡ M2), it is clear thatN
andN+ are not equivalent, but a solution forN also satisfying thek unary constraints is
directly obtained by projecting a solution forN+ along its first component. IfN+ admits
no solutions then there are no solution toN also satisfying the unary constraints.

For simplifying what follows, and without loss of generality, we refer our algorithm
complete graphs. If a graph is not complete we assume the existence of all the comp
tary edges with label{U} (orU), if U is (is not) an interval; we call this atrivial constraint.
The assumption does not require extra storage. In addition, we assume that the inte
	(e) are disjoint (WLOG). We calllength of a constraint the difference between the ma
mum and the minimum values it allows andrange R of a network the maximum length o
its non-trivial constraints; clearly,|	(e)| ∈ O(R).

A network is said to beconsistent if the corresponding TCSP admits a solution.
edge{vi, vj } is arc-consistent [12] iff for eachxi ∈ Di there isxj ∈ Dj such that the pai
(xi, xj) satisfies the constraint	(vi , vj). A path (vi1, . . . , vip), p � 3, is path-consistent

306 F. d’Amore, F. Iacobini / Journal of Discrete Algorithms 1 (2003) 303–312

[16] iff for each xi1 ∈ Di1 andxip ∈ Dip satisfying	(vi1, vip) there arep − 2 valuesxij

sly,
that

ation

tent:
ath of

lds
uc-
such that(xij , xij+1) satisfies	(vij , vij+1), for j = 2, . . . , p − 1.
A network is said to bearc-consistent iff all its edges are arc-consistent; analogou

it is said to bepath-consistent iff all its paths are path-consistent. The set of networks
are path-consistent is denoted byPC. Moreover, a network ofn vertices isi-consistent [8],
with 1 < i � n, iff for any subsetV ′ ⊆ V such that|V ′| = i − 1 there exists a(i − 1)-ple
∈ Ui−1 satisfying the constraints defined by the edges of the subgraph induced byV ′ and
for each variablev ∈ V \V ′ the(i − 1)-ple can be extended into ai-ple∈ Ui satisfying all
constraints defined by the edges of the subgraph induced byV ′ ∪ {v}.

We define the following operations on constraints. LetA = {I1, . . . , I|A|} and B =
{J1, . . . , J|B|} be two constraints.

• A ⊕ B = {Ki | Ki = Ij ∩ Jk, for somej andk}.
Intersection: only values allowed by both the constraints are admitted. The oper
is commutative and associative.

• A ⊗ B = {Ki | Ki = [a + c, b + d] for someIj = [a, b] and someJk = [c, d]}.
Composition: valuesr are admitted such thatr = s + t , wheres is allowed byA andt

is allowed byB. The operation is commutative and associative.

Also, we introduce a (reflexive) order in the set of all constraintsC. Given two con-
straintsC1,C2 ∈ C, we writeC1 � C2 if each pair allowed byC1 is also allowed byC2.

Lemma 2.1. A network is path-consistent iff for each ordered m-ple (vi1, . . . , vim), m � 3,
it results 	(vi1, vim) � 	(vi1, vi2) ⊗ · · · ⊗ 	(vim−1, vim).

Proof. It easily follows from the definition of operation⊗. ✷
Lemma 2.2. A network is arc-consistent iff it is 2-consistent.

Proof. It immediately follows from the definition ofi-consistency fori = 2. ✷
Lemma 2.3. A network is path-consistent iff it is 3-consistent.

Proof. (⇒) Immediate.
(⇐) By induction on the length of the path. By hypothesis the network is 3-consis

it follows that each path of length 2 is path-consistent. Suppose now that each p
lengthm is path-consistent and consider a path(vi1, . . . , vim+2) of lengthm + 1. By in-
ductive hypothesis the path(vi1, . . . , vim+1) is path-consistent and by Lemma 2.1 it ho
	(vi1, vim+1) � 	(vi1, vi2)⊗· · · ⊗ 	(vim, vim+1). On the other hand by the base of the ind
tion we know that	(vi1, vim+2) � 	(vi1, vim+1) ⊗ 	(vim+1, vim+2). So we obtain

	(vi1, vim+2) � 	(vi1, vi2) ⊗ · · · ⊗ 	(vim+1, vim+2)

which by Lemma 2.1 proves the thesis.✷
An immediate consequence of the above lemma is the following.

F. d’Amore, F. Iacobini / Journal of Discrete Algorithms 1 (2003) 303–312 307

Lemma 2.4. A network is path-consistent iff for each triple (vi , vj , vk), with i �= j , i �= k

efined

n-
cy
e net-
on”).

re-
and j �= k, it results 	(vi , vk) � 	(vi, vj) ⊗ 	(vj , vk).

The following results characterizes the arc-consistency of augmented networks, d
at the beginning of this section.

Lemma 2.5. An augmented network is arc-consistent iff all paths of length 2 originating
from v0 are path-consistent.

Proof. (⇒) As the network is arc-consistent any edge(vi , vj) is such that for eachzi ∈ Di

there iszj ∈ Dj such that(zi, zj) is allowed by	(vi , vj). After the insertion ofv0 the above
property can be expressed as	(v0, vi) � 	(v0, vj) ⊗ 	(vj , vi).

(⇐) Symmetric reasoning.✷

3. Incremental path-consistency

We denote byC(i, j) the constraint between variablesvi andvj of the temporal network
made path-consistent. Note thatC(i, j) � 	(vi , vj).

Given a networkN = ((V ,E),C) ∈ PC, algorithmIPC (Incremental Path-Consiste
cy, Fig. 2) inserts a new constraintA on edge(vi , vj) and maintains the path-consisten
of the network. This is obtained through suitable restrictions on the constraints of th
work (we will use the term “edge restriction” as a synonymous of “constraint restricti
Basically, the algorithm stores edges that have been restricted into a setQ and, for each
restricted edge(vk, vl), restores the local consistency of the 2(n− 2) paths(vk, vl, vm) and
(vl, vk, vm), for vm ∈ V \ {vk, vl}, by possible restrictions on edges(vk, vm) and(vl, vm)

(function LPC, Fig. 3). Edge(vk, vm) is restricted ifC(k,m) ⊕ (C(k, l) ⊗ C(l,m)) �
C(k,m) (functionRevise, Fig. 4, inspired to an analogous function in [12]). Newly
stricted edges are added toQ.

1. Algorithm IPC(N , i, j,A)

2. input: a path-consistent networkN , an edge(i, j), a constraintA
3. side effect: insertsA on (i, j) and maintains the path-consistency ofN

by restricting its constraints
4. begin
5. Z := A ⊕ C(i, j) computes the effect of A
6. if Z �= C(i, j) then
7. C(i, j) := Z restricts (i, j)

8. Q := {(i, j)} inserts restricted edge into Q

9. whileQ �= ∅ do unprocessed restricted edges?
10. (k, l) := an element ofQ chooses an edge in Q

11. Q := Q \ {(k, l)} removes it from Q

12. Q := Q ∪ LPC(k, l) restores local consistency and increments Q

13. endwhile
14. endif
15. end

Fig. 2. AlgorithmIPC maintains the path-consistency ofN under the insertion of a new constraintA on (i, j).

308 F. d’Amore, F. Iacobini / Journal of Discrete Algorithms 1 (2003) 303–312

1. function LPC(i, j)

ath

ay
h

g

2. input: edge(i, j) that has been restricted
3. output: setS of restricted edges
4. side effect: restores local consistency on each triangle on(i, j)

5. begin
6. S := ∅
7. for k ∈ {1, . . . , n} \ {i, j } do for each non-incident vertex
8. if Revise(i, j, k) then (i, k) restricted?
9. S := S ∪ {(i, k)}

10. endif
11. if Revise(j, i, k) then (j, k) restricted?
12. S := S ∪ {(j, k)}
13. endif
14. endfor
15. return S

16. end

Fig. 3. FunctionLPC (Local Path-Consistency) propagates the effect of the constraint restriction on(i, j) to the
other variables. It returns the setS of the newly restricted edges.

1. function Revise(i, j, k)
2. input: subgraph (triangle) where to re-enforce consistency
3. output: true iff (i, k) is restricted
4. begin
5. Z := C(i, k) ⊕ (C(i, j) ⊗ C(j, k)) new constraint for (i, k)

6. if Z = C(i, k) then no restriction?
7. return false (i, k) not restricted
8. else
9. C(i, k) := Z

10. return true (i, k) has been restricted
11. endif
12. end

Fig. 4. FunctionRevise takes in input three indicesi, j and k and makes the path-consistency of the p
(i, j, k). The function returnstrue iff it restricts (i, k).

3.1. Analysis

We first notice thatRevise runs in O(R2) time (the operations carried out at line 5 m
take O(R logR) time for the intersection and O(R2) time for the composition). Also, eac
constraint can be restricted at most O(R) times. As there are at most O(n2) constraints, the
while cycle at lines 9–13 ofIPC is executed at most O(n2R) times. Thus the total runnin
time ofIPC is O(n2R) · Θ(n) · O(R2) = O(n3R3).

Theorem 3.1. Given a network N with n vertices, algorithm IPC runs in time O(n3R3),
where R is the maximum between the range of N and the length of the new constraint.

Let N andN ′ be two networks such thatN ≡ N ′ andN ′ ∈ PC. Let us denote by
M + Aij the network obtained through the addition of the constraintAij betweenvi and
vj in M and byIPC(M, i, j,Aij) the network built by applyingIPC(i, j,Aij) to M. In

F. d’Amore, F. Iacobini / Journal of Discrete Algorithms 1 (2003) 303–312 309

order to prove the correctness ofIPC we first observe thatIPC(N ′, i, j,Aij) ∈ PC. This

t

.
a
lutions

we

f
l:

er of

ones
can be easily proved by contradiction, exploiting Lemma 2.4.

Theorem 3.2. Given a path-consistent network N ′ and a new constraint Aij , IPC(N ′, i,
j,Aij) ∈ PC.

For proving thatIPC(N ′, i, j,Aij) ≡N +Aij , we first give the following theorem, tha
can be easily proved by induction on the number of restrictions carried out byRevise.

Theorem 3.3. Given a path-consistent network N ′ and a new constraint Aij , IPC(N ′, i,
j,Aij) ≡N ′ + Aij .

The theorem on the equivalence now follows.

Theorem 3.4. If N ≡N ′ ∈ PC, then for any constraint Aij , IPC(N ′, i, j,Aij) ≡N +Aij .

Proof. By Theorem 3.3 we know thatIPC(N ′, i, j,Aij) ≡ N ′ + Aij . Let S be the set of
solutions ofN and ofN ′. If all n-ples inS satisfy the new constraintAij the theorem holds
Otherwise, letS′ ⊂ S be the set ofn-ples inS satisfyingAij . Note that the insertion of
new constraint cannot introduce new solutions in a network, hence the sets of so
of N ′ + Aij and ofN + Aij are both contained inS. But, beingS′ the set of solutions
satisfying all the constraints, it follows that it is the set of solutions ofN ′ + Aij and of
N + Aij , which are therefore equivalent.✷

Passing to consider the running time ofIPC over a sequence of constraint insertions,
(surprisingly) get the result thatΘ(n2) executions ofIPC globally take O(n3R3) time. This
can be proved throughamortized analysis [23]. Let us denote byqi the number of pairs
inserted inQ during theith execution ofIPC and byq̄i = ∑i

j=1 qi the total number o
pairs inserted inQ during the firsti executions ofIPC. We choose the following potentia

Φi = 2(n − 2)(Ri − q̄i).

Notice thatΦ0 = 0; moreoverΦn2 = 2(n − 2)(Rn2 − q̄n2) > 0 becausēqn2 < Rn2.

Theorem 3.5. Any sequence of Θ(n2) executions of IPC runs in O(n3R3) worst case time.

Proof. Let us first compute the (relative) cost of the sequence in terms of numb
executions ofRevise. The amortized relative complexity of theith execution isa′

i =
t ′i + Φi − Φi−1 = t ′i + 2(n − 2)R − 2(n − 2)qi . Now note thatt ′i is equal to 2(n − 2)qi .
From this it follows that the amortized relative cost isa′

i = 2(n−2)R ∈ O(nR). Thus, a se-
quence ofΘ(n2) executions has amortized relative complexity O(n3R). The thesis follows
by recalling thatRevise runs in O(R2) worst case time. ✷

Notice that, asIPC does not care about unconstrained variables, we can insert new
into a path-consistent network in O(1) time per insertion.

310 F. d’Amore, F. Iacobini / Journal of Discrete Algorithms 1 (2003) 303–312

4. Extensions

ncy
main-

als. In
es are
-
t of
lso,

solved
ificant

traints
tion is

as the
-
poral
s only,
have
3.1

change
con-

n
raint

the

t

We briefly show how algorithmIPC can be adapted to maintain the path-consiste
of more general networks of temporal constraints, and how it can be specialized for
taining the arc-consistency of such networks.

In more general networks, their variables of can independently be points or interv
the previous sections we considered networks with point variables. Interval variabl
defined on domains whose values are intervals, e.g.,{(a, b) ∈ Z

2 | a ≤ b}. In this case con
straints arequalitative, e.g., an interval is before another interval, or a point is to the righ
an interval etc. All networks with qualitative constraints are trivially arc-consistent. A
large and significant classes of networks with qualitative constraints can be directly
through the path-consistency (see [24,26] for the point algebra and [17] for a sign
subclass of the interval algebra).

The intersection operation is immediately extended to the new case (only cons
of the same kind can be intersected), while the extension of the composition opera
more involved, needing to use the so-called “composition tables” [1,25]. AlgorithmIPC
maintains the path-consistency of networks of general temporal constraints, as long
composition and the intersection needed in functionRevise are correspondingly gen
eralized. Thus all results for the TCSP directly extend to networks of general tem
constraints without changes. However, in the particular case of qualitative constraint
the time complexity ofRevise becomes constant because qualitative constraints
fixed size, and this cuts off theR3 factor in the time costs obtained by Theorems
and 3.5.

In the case of the incremental arc-consistency, Lemma 2.5 suggests how to
algorithmIPC for maintaining the arc-consistency of a network of general temporal
straints: just maintain the path-consistency of the paths originating fromv0. The new
algorithm, namedIAC, can be obtained fromIPC by appropriately changing functio
LPC, so that it will propagate along paths originating from 0 the effect of the const
restriction on(i, j).

The analysis of algorithmIPC can be repeated forIAC using the potential function

Φi = 2(i − r̄i) + (n − 2)

(
i
R

n
− s̄i

)
,

where:

• r̄i = ∑i
h=1 rh, rh being the number of pairs(h, k), h, k �= 0, inserted intoQ during the

hth execution ofIAC;
• s̄i = ∑i

h=1 sh, sh being the number of pairs(0, k), k �= 0, inserted intoQ during the
hth execution ofIAC.

The worst case running time ofIAC can be obtained by the same technique used in
proof of Theorem 3.1. Note however that sinceIAC only restricts constraints involvingv0,
and there are at most O(n) such constraints, the cycle at line 9 ofIPC is executed at mos
O(nR) times.

F. d’Amore, F. Iacobini / Journal of Discrete Algorithms 1 (2003) 303–312 311

Theorem 4.1. Given a temporal network with n vertices, algorithm IAC maintains its

r the
ce of

ts, in:

and ver-
FCET,

f AIPS

Ed.),
Notes

Intelli-

Com-

ster’s

Ed.),
, 1981,

r, J.S.
p. 215–

10th

ing, In-

interval

ce 93

.
Theory,

eries on
arc-consistency running in O(R3) amortized time and in O(n2R3) worst case time.

In [11] it is shown that the networks computed by our algorithms are maxima ove
order introduced by Montanari [16]. Thus, it is not possible to improve the performan
IPC and ofIAC by reducing the number of restrictions on the constraints.

References

[1] J.F. Allen, Maintaining knowledge about temporal intervals, Comm. ACM 26 (11) (1983).
[2] F.D. Anger, R.V. Rodriguez, Effective Scheduling of Tasks Under Weak Temporal Interval Constrain

Lecture Notes in Comput. Sci., Vol. 945, Springer, Berlin, 1995.
[3] J. Carmo, A. Sernadas, A temporal logic framework for a layered approach to systems specification

ification, in: Proceedings of the Conference on Temporal Aspects in Information Systems, France, A
1987, pp. 31–47.

[4] R. Cervoni, A. Cesta, A. Oddi, Managing dynamic temporal constraint networks, in: Proceedings o
’94, 1994.

[5] F. d’Amore, F. Iacobini, On-line algorithms for networks of temporal constraints, in: R.H. Möhring (
Proc. of the 23rd Int. Work. on Graph-Theoretic Concepts in Computer Science, WG ’97, in: Lecture
in Comput. Sci., Vol. 1335, Springer, Berlin, 1997, pp. 144–156.

[6] E. Davis, Private communication reported in [7], 1989.
[7] R. Dechter, I. Meiri, J. Pearl, Temporal constraint networks, Artificial Intelligence 49 (1991).
[8] E.C. Freuder, A sufficient condition for backtrack-free search, J. ACM 29 (1982).
[9] C.-C. Han, C.H. Lee, Comments on Mohr and Henderson’s path consistency algorithms, Artificial

gence 36 (1988).
[10] C.-C. Han, K.-J. Lin, J.W.-S. Liu, Scheduling jobs with temporal distance constraints, SIAM J.

put. 24 (5) (1995) 1104–1121.
[11] F. Iacobini, On-line algorithms for maintaining the consistency in network of temporal constraints, Ma

Thesis, School of Electrical Engineering, Università di Roma “La Sapienza”, 1996 (in Italian).
[12] A.K. Mackworth, Consistency in networks of relations, Artificial Intelligence 8 (1977).
[13] Z. Manna, A. Pnueli, Verification of concurrent programs: Temporal proof principle, in: D. Kozen (

Logics of Programs, Proceedings 1981, in: Lecture Notes in Comput. Sci., Vol. 131, Springer, Berlin
pp. 200–252.

[14] Z. Manna, A. Pnueli, Verification of concurrent programs: the temporal framework, in: R.S. Boye
Moore (Eds.), The Correctness Problem in Computer Science, Academic Press, New York, 1981, p
273.

[15] I. Meiri, Combining qualitative and quantitative constraints in temporal reasoning, in: Proc. of the
National Conference of the American Association for Artificial Intelligence, AAAI ’91, 1991.

[16] U. Montanari, Networks of constraints: Fundamental properties and applications to picture process
form. Sci. 7 (1974).

[17] B. Nebel, H.J. Bürckert, Reasoning about temporal relations: a maximal tractable subclass of Allen’s
algebra, J. ACM 42 (1995).

[18] J.S. Ostroff, Temporal Logic of Real-Time Systems, Research Studies Press, 1990.
[19] E. Schwalb, R. Dechter, Processing disjunctions in temporal constraint networks, Artificial Intelligen

(1997) 29–61.
[20] E. Schwalb, Ll. Vila, Temporal constraints: A survey, Constraints Internat. J. 3 (2/3) (1998) 129–149
[21] A.U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, R. Snodgrass (Eds.), Temporal Databases:

Design, and Implementation, Benjamin/Cummings, Redwood City, CA, 1993.
[22] A.U. Tansel, J. Clifford, S. Gadia, S. Jajopia, A. Segev, D.R. Snodgrass, Temporal Databases, S

Database Systems and Applications, Benjamin/Cummings, Redwood City, CA, 1993.

312 F. d’Amore, F. Iacobini / Journal of Discrete Algorithms 1 (2003) 303–312

[23] R.E. Tarjan, Amortized computational complexity, SIAM J. Algebraic Discrete Methods 6 (2) (1985) 306–

h Na-

vised
Morgan
318.
[24] P. van Beek, Reasoning about qualitative temporal information, Artificial Intelligence 58 (1992).
[25] M. Vilain, H.A. Kautz, Constraint propagation algorithms for temporal reasoning, in: Proc. of the 5t

tional Conference of the American Association for Artificial Intelligence, AAAI ’86, 1986.
[26] M. Vilain, H.A. Kautz, P. van Beek, Constraint propagation algorithms for temporal reasoning: A re

report, in: D.S. Weld, J. de Kleer (Eds.), Readings in Qualitative Reasoning About Physical Systems,
Kaufman, San Mateo, CA, 1989.

	On-line algorithms for networks of temporal constraints
	The problem
	Preliminaries
	Incremental path-consistency
	Analysis

	Extensions
	References

