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Abstract

We consider a semi-dynamic setting for the Temporal Constraint Satisfaction Problem (TCSP),
where we are requested to maintain the path-consistency of a network under a sequence of in-
sertions of new (further) constraints between pairs of variables. We show how to maintain the
path-consistency in @R3) amortized time on a sequence@tnz) insertions, wherea is the num-
ber of vertices of the network anil is its range, defined as the maximum size of the minimum
interval containing all the intervals of a single constraint.

Furthermore we extend our algorithms to deal with more general temporal networks where vari-
ables can be points and/or intervals and constraints can also be defined on pairs of different kinds
of variables. For such cases our algorithms maintain their performance. Finally, we adapt our algo-
rithms to also maintain the arc-consistency of such generalized networkRinaortized time for
O (n?) insertions.
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1. Theproblem

Given a totally ordered univergé, anetwork of temporal constraints[7] is a pair(G, ¢),
whereG = (V, E) is an undirected graph arfds a function mapping its edges to sets of
(closed) intervals ol/. Each vertex ofV = {vs, ..., v,} is avariable varying in U and
each edge is aconstraint on the difference between its incident variables, namely, if
L(e) ={I1,..., I}, I; being a closed interval df/, ande = {v;, v;}, then the difference
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Umax(i, j} — Umin(i, j) Must be irU,Eue) 1. A typical choice for the universE is the set of
the signed integers. Themporal Constraint Satisfaction Problem (TCSP) is the problem
of finding ann-ple of U" satisfying the constraints, namely, for edoh v;} € E it results
vmax(i. j} — Vminii.j} € Ureeqrvp) -

Problems involving temporal constraints arise in several areas of computer science such
as scheduling [2,10], program verification [3,13,14], real time systems [18], temporal data-
bases [21,22] and artificial intelligence (in [7] there is an extensive bibliography). See the
survey paper in [20] for further detalils.

In[6]itis proved that the problem of deciding whether a given network admits a solution
is NP-hard, even if we restrict each constraint to consist of no more than two intervals.
Conversely, the particular problem occurring when each constraint is defined through a
simple interval, known as th&mple Temporal Problem (STP), is polynomial.

Typically, the TCSP is solved through the use of backtracking and this causes expo-
nential running time. In order to improve the overall performance, a preliminary step is
normally carried out, consisting of making the network path-consistent. In a network it
frequently happens that the constraint defined on a pair of variables can be made more
restrictive without altering the set of the solutions because of the constraints between pairs
of vertices in a path linking the initial pair. An example is illustrated in Fig. 1. Infor-
mally, the process of making a given network path-consistent consists of restricting its
constraints to keep into account the effects of the propagation of the other constraints. This
pre-processing is useful for lowering the running time of the successive backtracking phase
and in some cases it is sufficient for deciding the whole problem (see Section 4 and [4,7]).
It should be clear that in general the path-consistency of a network does not provide us
with significant information about the existence of a solution: a path-consistent network
can admit O or more solutions, although it is true that the process of restricting constraints
could lead to empty ones (i.€.(¢) = #). In [19] it is proved that even local consistency
algorithms can be exponential dueftagmentation problems, i.e., the excessive growth
of the number of intervals in a constraint. The authors provide polynomial approxima-
tion algorithms, which are efficient yet effective in detecting inconsistencies and reducing
fragmentation.

In this paper we consider a semi-dynamic setting for the TCSP, where we are requested
to maintain the path-consistency of a network under a sequence of insertions of a new
(further) constraint between pairs of variables; in terms of graphs this corresponds to re-
stricting, for a given edge, the set of intervalg(e). The operation we consider is very
general, allowing also to model the case where we add a constraint between two non-
adjacent variables: this is achieved by creating an edgetween the pair of variables
and definingl(e) to be equal to the inserting constraint. We show how to maintain path-
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consistent a network in the defined setting im®3) amortized time on a sequence of

O (n?) insertions, where is the number of vertices aridlis the range of the network, de-

fined as the maximum size of the minimum interval containing all the intervals of a single
constraint. This is the first paper explicitly dealing with a non-static setting of the problem,
although some dynamic techniques have been suggested in [20] and a preliminary version
of our results have appeared in [5]. The best off-line algorithm known for the problem is
PC-2 [7] which runs in @3 R3) worst case time. Off-line algorithms exist in the literature

for the non-temporal case, where constraints are described by explicitly listing pairs of
allowed values, thus giving raise to quadratic space per constraint. For this case the best al-
gorithm is PC-4 [9] which runs in @3:3) wherea denotes the size of the largest involved
domain.

Furthermore we extend our algorithms to deal with more general temporal networks
[15], where variables can be points and/or intervals and constraints can be defined on pairs
of different kinds of variables [1,25]. For such cases our algorithms maintain their per-
formance. Finally we adapt our algorithms to also maintain the arc-consistency of such
generalized networks, which is a particular kind of path-consistency limited to paths of
length 1. The property is maintained in(®) amortized time for® (n2) insertions. This
result should be compared to that in [4], where a fully dynamic algorithm is presented for
the STP only, capable of performing insertions/deletions of constraintg/inRpworst
case time per operation, whereis the number of edges.

2. Preliminaries

Networks of temporal constraints have been defined in Section 1 by introducing only
binary constraints. Often it is convenient to consider unary constraints as well, to the pur-
pose of handling cases where a varialylés constrained to vary in domain D; C U.

Unary constraints can be easily introduced inside a netwbtkrough the introduction of

a new vertexy (associated with a fixed value, e.g., 0) and an €agep} with appropri-

ate label, for each vertex needing a unary constraint. The resulting network is said to
be anaugmented network and is denoted by *. Premising that two networks$1; and
M with the same set of solutions are said toeheivalent (M1 = Mby), it is clear that\/
andN* are not equivalent, but a solution f&f also satisfying thé unary constraints is
directly obtained by projecting a solution faf™ along its first component. &/ admits

no solutions then there are no solution\foalso satisfying the unary constraints.

For simplifying what follows, and without loss of generality, we refer our algorithms to
complete graphs. If a graph is not complete we assume the existence of all the complemen-
tary edges with labglU} (or U), if U is (is not) an interval; we call thistaivial constraint.

The assumption does not require extra storage. In addition, we assume that the intervals of
£(e) are disjoint (WLOG). We callength of a constraint the difference between the maxi-
mum and the minimum values it allows arahge R of a network the maximum length of

its non-trivial constraints; clearly?(e)| € O(R).

A network is said to beconsistent if the corresponding TCSP admits a solution. An
edgefv;, v;} is arc-consistent [12] iff for eachx; € D; there isx; € D; such that the pair
(xi, x;) satisfies the constraidi(v;, v;). A path (vi,,...,v;,), p > 3, is path-consistent
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[16] iff for eachx;, € D;; andx;, € D;, satisfying¢(v;,, v;,) there arep — 2 valueSx,»j
such thal(xij,xw) satisfiest (v;;, Viji1)s forj=2,...,p—1.

A network is said to barc-consistent iff all its edges are arc-consistent; analogously,
it is said to bepath-consistent iff all its paths are path-consistent. The set of networks that
are path-consistent is denotedBg¢. Moreover, a network of vertices is -consistent [8],
with 1 < i < n, iff for any subsetV’ C V such thaiV’| =i — 1 there exists & — 1)-ple
e U1 satisfying the constraints defined by the edges of the subgraph indudé&deamny
for each variable € V \ V' the (i — 1)-ple can be extended intaigple € U’ satisfying all
constraints defined by the edges of the subgraph inducéd by{v}.

We define the following operations on constraints. Uet {11, ..., [j4)} and B =
{J1,..., Jip|} be two constraints.

e A® B={K;|K;=1;NJ, forsomej andk}.
Intersection: only values allowed by both the constraints are admitted. The operation
is commutative and associative.

e A® B={K; | K;=[a+c,b+d]for somel; =[a, b] and someJ; = [c, d]}.
Composition: valuesr are admitted such that= s + ¢, wheres is allowed byA and:
is allowed byB. The operation is commutative and associative.

Also, we introduce a (reflexive) order in the set of all constraiht&iven two con-
straintsCq, C2 € C, we write C1 C C3 if each pair allowed by’1 is also allowed byC».

Lemma 2.1. A network is path-consistent iff for each ordered m-ple (v;,, ..., vi,), m > 3,
it resultsﬁ(v,»l, v;,,) E Z(Uil, Uiz) R Z(v,-m_l, Vi)

Proof. It easily follows from the definition of operatioR. O

Lemma 2.2. A network is arc-consistent iff it is 2-consistent.

Proof. It immediately follows from the definition af-consistency fof =2. O
Lemma 2.3. A network is path-consistent iff it is 3-consistent.

Proof. (=) Immediate.

(<) By induction on the length of the path. By hypothesis the network is 3-consistent:
it follows that each path of length 2 is path-consistent. Suppose now that each path of
lengthm is path-consistent and consider a path, ..., v;,,,) of lengthm + 1. By in-
ductive hypothesis the path;,, ..., v;,,,) is path-consistent and by Lemma 2.1 it holds
L(viy, Vi, y) EL(Vig, Vi) ® - - ® L(v;,, vi,,,). On the other hand by the base of the induc-
tion we know that (v;,, vi,,,,) E £(viy, Vi,,q) ® £(Vi, 4, Vi) SO We obtain

L(viy, Vi, 0) E iy, Vip) @ -+ @ (Vi 11, Viyy2)

which by Lemma 2.1 proves the thesisz

An immediate consequence of the above lemma is the following.
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Lemma 2.4. A network is path-consistent iff for each triple (v;, v;, vi), withi # j, i #k
and j #k, it results £(v;, vi) E £(vi, vj) @ £(vj, vg)-

The following results characterizes the arc-consistency of augmented networks, defined
at the beginning of this section.

Lemma 2.5. An augmented network is arc-consistent iff all paths of length 2 originating
from vg are path-consistent.

Proof. (=) Asthe network is arc-consistent any edgg v;) is such that for eachy € D;
thereisz; € D; suchthatz;, z;) is allowed byt (v;, v;). After the insertion ob the above
property can be expressedso, v;) E £(vo, v;) ® £(vj, v;).

(<) Symmetric reasoning. O

3. Incremental path-consistency

We denote byC (i, j) the constraint between variablgsandv; of the temporal network
made path-consistent. Note th@g, j) C £(v;, v}).

Given a network\V = ((V, E), C) € PC, algorithml PC (Incremental Path-Consisten-
cy, Fig. 2) inserts a new constraiaton edge(v;, v;) and maintains the path-consistency
of the network. This is obtained through suitable restrictions on the constraints of the net-
work (we will use the term “edge restriction” as a synonymous of “constraint restriction”).
Basically, the algorithm stores edges that have been restricted intoa aed, for each
restricted edgévy, v;), restores the local consistency of tha 2- 2) paths(vg, v, v,,) and
(v1, Vk, V), fOr v, € V\ {u, v}, by possible restrictions on edgés, v,,) and (v, v,)
(function LPC, Fig. 3). Edge(vg, vy,) is restricted ifC(k,m) & (C(k,l) ® C(l,m)) C
C(k,m) (functionRevi se, Fig. 4, inspired to an analogous function in [12]). Newly re-
stricted edges are added@

1. Algorithm | PC(\V, i, j, A)

2. input: a path-consistent network’, an edge(i, j), a constraintd

3. sideeffect: insertsA on (i, j) and maintains the path-consistency\sf
by restricting its constraints

4. begin
5. Z:=A®C(,)) computes the effect of A
6. if Z#C(, ) then
7 Ci,j)=2Z restricts (i, j)
8. 0 :={G, j)} insertsrestricted edge into Q
9. whileQ # ¢ do unprocessed restricted edges?
10. (k, 1) := an element oD chooses an edgein Q
11. 0:=0\{k,D} removes it from Q
12. Q= QULPCk,1) restores local consistency and increments Q
13. endwhile
14.  endif
15. end

Fig. 2. AlgorithmI PC maintains the path-consistency.&f under the insertion of a new constraifiton (i, j).
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. function LPC(, j)
. input: edge(i, j) that has been restricted
. output: setS of restricted edges
. side effect: restores local consistency on each trianglgion)
begin
S:=0
for ke{l,...,n}\{i, j} do for each non-incident vertex
if Revi se(i, j, k) then (i, k) restricted?
S:=SU{(i, k)}
10. endif
11. if Revi se(j,i, k) then (J, k) restricted?
12. S:=SU{(j,k)}
13. endif
14.  endfor
15. return S
16. end

CENOO AL R

Fig. 3. FunctionLPC (Local Path-Consistency) propagates the effect of the constraint restrictian jorto the
other variables. It returns the sg¢bf the newly restricted edges.

1. function Revi se(, j, k)
2. input: subgraph (triangle) where to re-enforce consistency
3. output: true iff (i, k) is restricted

4. begin
5 Z:=CU k@ (3 Jj)C(, k) new constraint for (i, k)
6. if Z=C(, k) then no restriction?
7 return false (i, k) not restricted
8. édse
9. Ci,k):=2
10. return true (i, k) has been restricted
11. endif
12. end

Fig. 4. FunctionRevi se takes in input three indices j and k and makes the path-consistency of the path
(i, j, k). The function returns r ue iff it restricts (i, k).

3.1. Analysis

We first notice thaRevi se runsin QR?) time (the operations carried out at line 5 may
take QR log R) time for the intersection and(@?) time for the composition). Also, each
constraint can be restricted at mostR) times. As there are at mos{(&¥) constraints, the
while cycle at lines 9-13 df PCis executed at most @2R) times. Thus the total running
time of | PCis O(n?R) - © (n) - O(R?) = O(n°R3).

Theorem 3.1. Given a network \ with n vertices, algorithm | PC runsin time O(n3R3),
where R is the maximum between the range of A" and the length of the new constraint.

Let N and A be two networks such that’ = A’ and A’ € PC. Let us denote by
M+ A;; the network obtained through the addition of the constraintoetweerv; and
vj in M and byl PC(M, i, j, A;;) the network built by applying PC(G, j, A;;) to M. In
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order to prove the correctnessldPC we first observe thadtPC\’, i, j, A;j) € PC. This
can be easily proved by contradiction, exploiting Lemna 2

Theorem 3.2. Given a path-consistent network \/" and a new constraint A;;, | PC(N”, i,
J A,’j) e PC.

For proving that PC(\’, i, j, A;j) = N + A;;j, we first give the following theorem, that
can be easily proved by induction on the number of restrictions carried dregbyse.

Theorem 3.3. Given a path-consistent network \/" and a new constraint A;;, | PC(N”, i,
J A =N+ Ay

The theorem on the equivalence now follows.
Theorem 3.4.1f "= N € PC, thenfor any constraint A;;, | PC(N, i, j, Aij) = N+ Ajj.

Proof. By Theorem 3.3 we know thatPC(\N’, i, j, A;j) =N’ + A;;. Let S be the set of
solutions ofA/ and of . If all n-ples inS satisfy the new constraint;; the theorem holds.
Otherwise, letS” C S be the set ofi-ples in S satisfyingA;;. Note that the insertion of a

new constraint cannot introduce new solutions in a network, hence the sets of solutions
of NV + A;; and of ' + A;; are both contained if. But, being$’ the set of solutions
satisfying all the constraints, it follows that it is the set of solutions\@f+ A;; and of

N + A;;, which are therefore equivalent

Passing to consider the running timd &fC over a sequence of constraint insertions, we
(surprisingly) get the result that (n2) executions of PCglobally take Grn3R3) time. This
can be proved througamortized analysis [23]. Let us denote by; the number of pairs
inserted inQ during theith execution off PC and byg; = lezlqi the total number of
pairs inserted irQ during the first executions of PC. We choose the following potential:

®@; =2(n — 2)(Ri — §p).

Notice that®g = 0; moreoverb,> = 2(n — 2)(Rn? — d,2) > 0 becausg, . < Rn?.
Theorem 3.5. Any sequence of © (n2) executionsof | PCrunsin O(n3R3) worst casetime.

Proof. Let us first compute the (relative) cost of the sequence in terms of number of
executions oRevi se. The amortized relative complexity of thiéh execution isa; =

1+ & — ®;_1=1+2(n —2)R — 2(n — 2)g;. Now note that; is equal to 2n — 2)q;.

From this it follows that the amortized relative costjs= 2(n —2)R € O(nR). Thus, a se-
quence ofd (n?) executions has amortized relative complexity:€R). The thesis follows

by recalling thaRevi se runs in QR?) worst case time. O

Notice that, a$ PC does not care about unconstrained variables, we can insert new ones
into a path-consistent network in(D time per insertion.
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4, Extensions

We briefly show how algorithnh PC can be adapted to maintain the path-consistency
of more general networks of temporal constraints, and how it can be specialized for main-
taining the arc-consistency of such networks.

In more general networks, their variables of can independently be points or intervals. In
the previous sections we considered networks with point variables. Interval variables are
defined on domains whose values are intervals, §@.b) € Z2 | a < b}. In this case con-
straints argualitative, e.g., an interval is before another interval, or a point is to the right of
an interval etc. All networks with qualitative constraints are trivially arc-consistent. Also,
large and significant classes of networks with qualitative constraints can be directly solved
through the path-consistency (see [24,26] for the point algebra and [17] for a significant
subclass of the interval algebra).

The intersection operation is immediately extended to the new case (only constraints
of the same kind can be intersected), while the extension of the composition operation is
more involved, needing to use the so-called “composition tables” [1,25]. AlgotitA@
maintains the path-consistency of networks of general temporal constraints, as long as the
composition and the intersection needed in functiR&vi se are correspondingly gen-
eralized. Thus all results for the TCSP directly extend to networks of general temporal
constraints without changes. However, in the particular case of qualitative constraints only,
the time complexity ofRevi se becomes constant because qualitative constraints have
fixed size, and this cuts off th&2 factor in the time costs obtained by Theorems 3.1
and 3.5.

In the case of the incremental arc-consistency, Lemma 2.5 suggests how to change
algorithml PC for maintaining the arc-consistency of a network of general temporal con-
straints: just maintain the path-consistency of the paths originating frpnThe new
algorithm, named AC, can be obtained frorhPC by appropriately changing function
LPC, so that it will propagate along paths originating from O the effect of the constraint
restriction on(i, j).

The analysis of algorithrhPC can be repeated férAC using the potential function

R
D =23 —r)+ (n— 2)<i— —Ei>,
n
where:

o ri= 22:1 r, ry, being the number of pain&, k), i, k # 0, inserted intaQ during the
hth execution ot AC,

e 5i =) ,_15, sp being the number of pair®, k), k # 0, inserted intoQ during the
hth execution ot AC.

The worst case running time bfAC can be obtained by the same technique used in the
proof of Theorem 3.1. Note however that sing&C only restricts constraints involving,
and there are at most(@) such constraints, the cycle at line 91d?Cis executed at most
O(nR) times.
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Theorem 4.1. Given a temporal network with »n vertices, algorithm / AC maintains its
arc-consistency running in O(R?) amortized time and in O(n?R3) worst case time.

In [11] it is shown that the networks computed by our algorithms are maxima over the
order introduced by Montanari [16]. Thus, it is not possible to improve the performance of
I PCand ofl AC by reducing the number of restrictions on the constraints.
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