
A Variable Latency Pipelined
Floating-Point Adder*

Stuart F. Oberman and Michael J. Flynn

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

Abst rac t . Addition is the most frequent floating-point operation in
modern microprocessors. Due to its complex shift-add-shift-round data-
flow, floating-point addition can have a long latency. To achieve max-
imum system performance, it is necessary to design the floating-point
adder to have minimum latency, while still providing maximum through-
put. This paper proposes a new floating-point addition algorithm which
exploits the ability of dynamically-scheduled processors to utilize func-
tional units which complete in variable time. By recognizing that certain
operand combinations do not require all of the steps in the complex addi-
tion dataflow, the average latency is reduced. Simulation on SPECfp92
applications demonstrates that a speedup in average addition latency
of 1.33 can be achieved using this algorithm while maintaining single
cycle throughput.

1 I n t r o d u c t i o n

Floating-point (FP) addition and subtraction are very frequent floating-point
operations. Together, they account for over half of the total floating-point oper-
ations in typical scientific applications [7]. Both addition and subtraction utilize
the FP adder. Techniques to reduce the latency and increase the throughput of
the FP adder have therefore been the subject of much previous research.

Due to its many serial components, FP addition can have a longer latency
than FP multiplication. Pipelining is a commonly used method to increase the
throughput of the adder. However, it does not reduce the latency. Previous re-
search has provided algorithms to reduce the latency by performing some of the
operations in parallel. This parallelism is achieved at the cost of additional hard-
ware. The minimum achievable latency using such algorithms in high clock-rate
microprocessors has been three cycles, with a throughput of one cycle.

To further reduce the latency, it is necessary to remove one or more of the
remaining serial components in the dataflow. In this study, it is observed that
not all of the components are needed for all input operands. Two variable latency
techniques are proposed to take advantage of this behavior and to reduce the
average addition latency. To take advantage of the reduced average latency, it

* This work was supported by NSF under grant MIP93-13701.

184

is necessary that the processor be able to exploit a variable latency functional
unit. Thus, the processor must use some form of dynamic instruction scheduling
with out-of-order completion in order to use the reduced latency and achieve
maximum system performance.

The remainder of this paper is organized as follows: Section 2 presents pre-
vious research in FP addition. Section 3 presents two forms of the proposed
algorithm. Section 4 analyzes the performance of the algorithm. Section 5 is the
conclusion.

2 F P A d d i t i o n A l g o r i t h m s

FP addition comprises several individual operations. Higher performance is
achieved by reducing the maximum number of serial operations in the criti-
cal path of the algorithm. Throughout this study, the analysis assumes IEEE
double precision operands. An IEEE double precision operand is a 64 bit word,
comprising a 1 bit sign, an 11 bit biased exponent, and a 52 bit significand, with
one hidden significand bit [5].

2.1 Basic

The straightforward addition algorithm Basic requires the most serial operations.
It has the following steps [13]:

1. Exponent subtraction: Perform subtraction of the exponents to form the
absolute difference lEa - Ebl = d.

2. Alignment: Right shift the significand of the smaller operand by d bits. The
larger exponent is denoted E/.

3. Significand addition: Perform addition or subtraction according to the ef-
fective operation, which is a function of the opcode and the signs of the
operands.

4. Conversion: Convert the significand result, when negative, to a sign-magnitude
representation. The conversion requires a two's complement operation, in-
cluding an addition step.

5. Leading-one detection: Determine the. amount of left shift needed in the case
of subtraction yielding cancellation. Priority encode (PENC) the result to
drive the normalizing shifter.

6. Normalization: Normalize the significand and update E] appropriately.
7. Rounding: Round the final result by conditionally adding 1 unit in the last

place (ulp), as required by the IEEE standard [5]. If rounding causes an
overflow, perform a 1 bit right shift and increment E/.

The latency of this algorithm is large, due to its many long length compo-
nents. It contains two full-length shifts, in steps 2 and 6. It also contains three
full-length significand additions, in steps 3, 4 and 7.

185

2.2 Two P a t h

Several improvements can be made to Basic in order to reduce its total la-
tency. These improvements come typically at the cost of adding additional hard-
ware. These improvements are based on noting certain characterists of FP ad-
dition/subtraction computation:

1. The sign of the exponent difference determines which of the two operands
is larger. By swapping the operands such that the smaller operand is al-
ways subtracted from the larger operand, the conversion addition in step 4
and the rounding addition in step 7 become mutually exclusive operations,
eliminating one of the three carry-propagate addition delays.

2. The full-length alignment shift and the full-length normalizing shift are mu-
tually exclusive, and only one such shift need ever appear on the critical
path. These two cases can be denoted CLOSEfor d _~ 1, and FAR for d > 1,
where each path comprises only one full-length shift [3].

3. Rather than using leading-one-detection after the completion of the signif-
icand addition, it is possible to predict the number of leading zeros in the
result directly from the input operands. This leading-one-prediction (LOP)
can therefore proceed in parallel with the significand addition using special-
ized hardware [4, 10].

An improved adder takes advantage of these three cases. It implements the
significand datapath in two parts: the CLOSE path and FAR path. At a mini-
mum, the cost for this added performance is an additional significand adder and
a multiplexor to select between the two paths for the final result. Adders based
on this algorithm have been used in several commercial designs [1, 2, 6]. A block
diagram of the improved Two Path algorithm is shown in Fig. l(a).

2.3 Pipelining

To increase the throughput of the adder, a standard technique is to pipeline
the unit such that each pipeline stage comprises the smallest possible atomic
operation. While an FP addition may require several cycles to return a result, a
new operation can begin each cycle, providing maximum throughput. Figure 1 (a)
shows how the adder is typically divided in a pipelined implementation. It is clear
that this algorithm fits well into a four cycle pipeline for a high-speed processor
with a cycle time between 10 and 20 gates. The limiting factors on the cycle time
are the delay of the significand adder (SigAdd) in the second and third stages,
and the delay of the final stage to select the true result and drive it onto a result
bus. The first stage has the least amount of computation; the FAR path has the
delay of at least one 11 bit adder and two multiplexors, while the CLOSE path
has only the delay of the 2 bit exponent prediction logic and one multiplexor.
Due to the large atomic operations in the second stage, the full-length shifter
and significand adder, it is unlikely that the two stages can be merged, requiring
four distinct pipeline stages.

FAR CLOSE FAR

l

I

CLOSE

186

M.X]
(b)

Fig. 1. Block ~agram of (a) two path (b) combined rounding

When the cycle time of the processor is significantly larger than that required
for the FP adder, it is possible to combine pipeline stages, reducing the overall
latency in machine cycles but leaving the latency in time relatively constant.
Commercial superscalar processors often have larger cycle times, resulting in
a reduced FP addition latency in machine cycles when using the Two Path
algorithm. In contrast, superpipelined processors have shorter cycle times and
have at least a four cycle FP addition latency. For the rest of this study, it is
assumed that the FP adder cycle time is limited by the delay of the largest
atomic operation within the adder, such that the pipelined implementation of
Two Path requires four stages.

2.4 C o m b i n e d R o u n d i n g

A further optimization can be made to the Two Path algorithm to reduce the
number of serial operations, as shown in Fig. l(b). This optimization is based
upon the realization that the rounding step occurs very late in the computa-
tion, and it only modifies the result by a small amount. By precomputing all
possible required results in advance, rounding and conversion can be reduced to
the selection of the correct result, as described by Quach [8, 9]. Specifically, for
the IEEE round to nearest (RN) rounding mode, the computation of A -t- B and
A + B + 1 is sufficient to account for all possible rounding and conversion possibili-
ties. Incorporating this optimization into Two Path requires that each significand
adder compute both sum and sum+l , typically through the use of a compound

187

adder (ComAdd). Selection of the true result is accomplished by analyzing the
rounding bits, and then selecting either of the two results. The rounding bits
are the sign, LSB, guard, and sticky bits. This optimization removes one signif-
icand addition step. For pipelined implementations, this can reduce the number
of pipeline stages from four to three. The cost of this improvement is that the
significand adders in both paths must be modified to produce both sum and
sum§

For the two directed IEEE rounding modes round to positive and minus
infinity (RP and RM), it is also necessary to compute A + B + 2. The rounding
addition of 1 ulp may cause an overflow, requiring a 1 bit normalizing right-shift.
This is not a problem in the case of RN, as the guard bit must be 1 for rounding
to be required. The explicit addition sum+2 is required for correct rounding
in the event of overflow requiring a 1 bit normalizing right shift for RP and
RM where the guard bit need not be 1. In [9], it is proposed to use a row of
half-adders above the FAR path significand adder. These adders allow for the
conditional pre-addition of the additional ulp to produce sum+2. The critical
path in this implementation is in the third stage consisting of the delays of the
half-adder, compound adder, multiplexor, and drivers.

3 V a r i a b l e L a t e n c y A l g o r i t h m

From Fig. 1, it can be seen that the long latency operation in the first cycle occurs
in the FAR path. It contains hardware to compute the absolute difference of two
exponents and to conditionally swap the exponents. As previously stated, the
minimum latency in this path comprises the delay of an 11 bit adder and two
multiplexors. The CLOSE path, in contrast, has relatively little computation.
A few gates are required to inspect the low-order 2 bits of the exponents to
determine whether or not to swap the operands, and a multiplexor is required
to perform the swap.

3.1 Two Cycle

Rather than letting the CLOSE path hardware sit idle during the first cycle, it
is possible to take advantage of the duplicated hardware and initiate CLOSE
path computation one cycle earlier. This is accomplished by moving both the
second and third stage CLOSE path hardware up to their preceding stages. As
it has been shown that the first stage in the CLOSE path completes very early
relative to the FAR path, the addition of the second stage hardware need not
result in an increase in cycle time.

The operation of the proposed algorithm is as follows. Both paths begin
speculative execution in the first cycle. At the end of the first cycle, the true
exponent difference is known from the FAR path. If the exponent difference
dictates that the FAR path is the correct path, then computation continues
in that path for two more cycles, for a total latency of three cycles. However,
if the CLOSE path is chosen, then computation continues for one more cycle,
with the result available after a total of two cycles. While the maximum latency

188

of the adder remains three cycles, the average latency is reduced due to the
faster CLOSE path. If the CLOSE path is a frequent path, then a considerable
reduction in the average latency can be achieved.

A result can be driven onto the result bus in either stage 2 or stage 3. There-
fore, some logic is required to control the tri-state buffer in the second stage to
ensure that it only drives a result when there is no result to be driven in stage
3. In the case of a collision with a pending result in stage 3, the stage 2 result
is simply piped into stage 3. While this has the effect of increasing the CLOSE
path latency to three cycles in these instances, it does not affect throughput. As
only a single operation is initiated every cycle, it is possible to retire a result
every cycle.

Scheduling the use of the results of an adder implementing Two Cycle is
not complicated. At the end of the first cycle, the FAR path hardware will
have determined the true exponent difference, and thus the correct path will be
known. Therefore, a signal can be generated at that time to inform the scheduler
whether the result will be available at the end of one more cycle or two more
cycles. Typically, one cycle is sufficient to allow for the proper scheduling of a
result in a dynamically-scheduled processor.

3.2 O n e C yc le

Further reductions in the latency of the CLOSE path can be made after certain
observations. First, it can be seen that the normalizing left shift in the second
cycle is not required for all operations. A normalizing left shift can only be
required if the effective operation is subtraction. Since additions never need a
left shift, addition operations in the CLOSE path can complete in the first cycle.
Second, in the case of effective subtractions, small normalizing shifts, such as
d < 2, can be separated from longer shifts. While longer shifts still require the
second cycle to pass through the full-length shifter, short shifts can be completed
in the first cycle through the addition of a separate small multiplexor. Both of
these cases have a latency of only one cycle, with little or no impact on cycle
time. If these cases occur frequently, the average latency is reduced. A block
diagram of the adder is shown in Fig. 2.

The One Cycle algorithm allows a result to be driven onto the result bus in
any of the three stages. As in the Two Cycle algorithm, additional control for the
tri-state buffers is required to ensure that only one result is driven onto the bus
in any cycle. In the case of a collision with a pending result in any of the other
two stages, the earlier results are simply piped into their subsequent stages. This
guarantees the correct FIFO ordering on the results. While the average latency
may increase due to collisions, throughput is not affected.

Scheduling the use of the results from a One Cycle adder is somewhat more
complicated than for Two Cycle. In general, the instruction scheduling hardware
needs some advance notice to schedule the use of a result for another functional
unit. It may not be sufficient for this notice to arrive at the same time as the
data. Thus, an additional mechanism may be required to determine as soon
as possible before the end of the first cycle whether the result will complete

189

FAR CLOSE

Rshlft

Collision TriState Logic -~
1

Output

, ~ Output

~ Output

Fig. 2. Variable latency adder

either 1) in the first cycle or 2) the second or third cycles. A proposed method is
as follows. First, it is necessary to determine quickly whether the correct path is
the CLOSE or FAR path. This can be determined from the absolute difference
of the exponents. If all bits of the difference except for the LSB are 0, then the
absolute difference is either 0 or 1 depending upon the LSB, and the correct path
is the CLOSE path. To detect this situation fast, an additional small leading-
one-predictor is used in parallel with the exponent adder in the FAR path to
generate a CLOSE/FAR signal. This signal is very fast, as it does not depend
on exactly where the leading one is, only if it is in a position greater than the
LSB.

Predicting early in the first cycle whether or not a CLOSE path operation
can complete in one or two cycles may require additional hardware. Effective ad-
ditions require no other information than the CLOSE/FAR signal, as all CLOSE
path effective additions can complete in the first cycle. In the case of effective
subtractions, an additional specialized leading-one-predictor can be included in
the significand portion of the CLOSE path to predict quickly whether the lead-
ing one will be in any of the high order three bits. If it will be in these bits,
then it generates a one cycle signal; otherwise, it generates a two cycle signal.

190

~ 100.0

~ 90.0

u. 00.0

/~ ~ 100"0 I /~

. :; r /
~.~" " r 8 o . o i - i

f ~ r ~. -~ . -o "~- r "# "~' "~ "~- ~ "r

70.0 "s ~. 70.0 ,~'~"~' _

60.0 p~'~ 60.0 / r

j ~
50.0 . 50.0

! i r
" 40.0 /

i

0 2 4 0 8 10 12 14 16 18 >20 0 2 4 6 8 10 12 14 18 18 >20
Exponent Difference [.eft Shift Distance

(a) (b)

Fig. 3. Histogram of (a) exponent difference and (b) left-shift distance

An implementation of this early prediction hardware should produce a one cycle
signal in less than 8 gate delays, or about half a cycle.

4 P e r f o r m a n c e R e s u l t s

To demonstrate the effectiveness of these two algorithms in reducing the av-
erage latency, the algorithms were simulated using operands from actual ap-
plications. The data for the study was acquired using the ATOM instrumen-
tation system [12]. ATOM was used to instrument 10 applications from the
SPECfp92 [11] benchmark suite. These applications were then executed on a
DEC Alpha 3000/500 workstation. The benchmarks used the standard input
data sets, and each executed approximately 3 billion instructions. All double
precision floating-point addition and subtraction operations were instrumented.
The operands from each operation were used as input to a custom FP adder
simulator. The simulator recorded the effective operation, exponent difference,
and normalizing distance for each set of operands.

Figure 3(a) is a histogram of the exponent differences for the observed
operands, and it also is a graph of the cumulative frequency of operations for
each exponent difference. This figure shows the distribution of the lengths of the
initial aligning shifts. It should be noted that 57% of the operations are in the
FAR path with Ed > 1, while 43% are in the CLOSE path. An implementation
of the Two Cycle algorithm therefore utilizes the two cycle path 43% of the time,
yielding an average latency of 2.57 cycles. Thus, an implementation of the Two
Cycle algorithm has a speedup in average addition latency of 1.17.

Implementations of the One Cycle algorithm reduce the average latency even
further. An analysis of the effective operations in the CLOSE path shows that
the total of 43% can be broken down into 20% effective addition and 23% effec-

191

3.0/1100 3.0 -

2 , 8 -

2 . 6 - 2.571~.17

2.4 "

2.2 "
2.31/1.30

2 . 0

Fig. 4. Performance summary of proposed techniques

tive subtraction. As effective additions do not require any normalization in the
close path, they complete in the first cycle. An implementation Mlowing effec-
tive addition to complete in the first cycle is referred to as adds has an average
latency of 2.37 cycles, for a speedup of 1.27.

Figure 3(b) is a histogram of the normalizing left shift distances for effective
subtractions in the CLOSEpath. From Fig. 3(b), it can be seen that the majority
of the normalizing shifts occur for distances of less than three bits. Only 4.4%
of the effective subtractions in the CLOSE path require no normalizing shift.
However, 22.4% of the subtractions require a 1 bit normalizing left shift, and
25.7% of the subtractions require a 2 bit normalizing left shift. In total, 52.5%
of the CLOSE path subtractions require a left shift less than or equal to 2 bits.
The inclusion of separate hardware to handle these frequent short shifts provides
a performance gain.

Three implementations of the One Cycle algorithm could be used to exploit
this behavior. They are denoted subsO, subs1, and subs2, which allow comple-
tion in the first cycle for effective subtractions with maximum normalizing shift
distances of 0, 1, and 2 bits respectively. The most aggressive implementation
subs2 reduces the average latency to 2.25 cycles, for a speedup of 1.33.

The performance of the proposed techniques is summarized in Fig. 4. For
each technique, the average latency is shown, along with the speedup provided
over the base Two Path FP adder with combined rounding that has a fixed
latency of three cycles.

5 Conclusion

This study has presented two techniques for reducing the average latency of
FP addition. Previous research has shown techniques to guarantee a maximum

192

latency of three cycles in high clock-rate processors. This study shows that addi-
tional performance can be achieved in dynamic instruction scheduling processors
by exploiting the distribution of operands that use the CLOSE path. It has been
shown that 43% of the operands in the SPECfp92 applications use the CLOSE
path, resulting in a speedup of 1.17 for the Two Cycle algorithm. By allowing
effective additions in the CLOSE path to complete in the first cycle, a speedup
of 1.27 is achieved. For even higher performance, an implementation of the One
Cycle algorithm achieves a speedup of 1.33 by allowing effective subtractions
requiring very small normalizing shifts to complete in the first cycle. These tech-
niques do not add significant hardware, nor do they impact cycle time. They
provide a reduction in average latency while maintaining single cycle through-
put.

References

1. B. J. Benschneider, et al. A pipelined 50-Mhz CMOS 64-bit floating-point arith-
metic processor. IEEE Journal of Solid-State Circuits, 24(5):1317-1323, October
1989.

2. M. Birman, A. Samuels, G. Chu, T. Chuk, L. Hu, J. McLeod, and J. Barnes. De-
veloping the WTL 3170/3171 Sparc floating-point co-processors. IEEE Micro,
10(1):55-63, February 1990.

3. M. P. Farmwald. On the Design of High Performance Digital Arithmetic Units.
PhD thesis, Stanford University, August 1981.

4. E. Hokenek and R. K. Montoye. Leading-zero anticipator (LZA) in the IBM RISC
System/6000 floating-point execution unit. IBM Journal of Research and Devel-
opment, 34(1):71-77, January 1990.

5. ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic.
6. P. Y. Lu, A. Jain, J. Kung, and P. H. Ang. A 32-mflop 32b CMOS floating-point

processor. In Proceedings of the IEEE International Solid-State Circuits Confer-
ence, pages 28-29, 1988.

7. S. F. Oberman and M. J. Flynn. Design issues in division and other floating-point
operations. In press IEEE Transactions on Computers, 1996.

8. N. Quach and M. Flyrm. Design and implementation of the SNAP floating-point
adder. Technical Report No. CSL-TR-91-501, Computer Systems Laboratory,
Stanford University, December 1991.

9. N. T. Quach and M. J. Flyrm. An improved algorithm for high-speed floating-point
addition. Technical Report No. CSL-TR-90-442, Computer Systems Laboratory,
Stanford University, August 1990.

10. N. T. Quach and M. J. Flynn. Leading one prediction - implementation, general-
ization, and application. Technical Report No. CSL-TR-91-463, Computer Systems
Laboratory, Stanford University, March 1991.

11. SPEC Benchmark Suite Release 2/92.
12. A. Srivastava and A. Eustace. ATOM: A system for building customized program

analysis tools. In Proceedings of the SIGPLAN '94 Conference on Programming
Language Design and Implementation, pages 196-205, June 1994.

13. S. Waser and M. Flyun. Introduction to Arithmetic for Digital Systems Designers.
Holt, Rinehart, and Winston, 1982.

