
Modelling and Optimising Flows Using Parallel
Spatial Interaction Models

Ian Turton and Stan Openshaw

Centre for Computational Geography, School of Geography, University of Leeds,
Leeds, UK, LS2 9JT

email:{ian,stan}@geog.leeds.ax:.uk , URL:http://www.geog.leeds.ac.uk/

Abstract. The paper demonstrates some of the benefits that high per-
formance computing has to offer geographers. It reports the results of
porting and then using very large spatial interaction models on the Cray
T3D parallel supercomputer in modelling and spatial optimisation ap-
phcations that would otherwise have been judged computationally infea-
sible.

1 B a c k g r o u n d

The entropy-maximising spatial interaction model is used for modelling many
different types of flow data in both research and applied contexts. Examples
of flow data are: journey to work trips, airline traffic, retail behaviour, world
trade and telephone traffic in which flows of people, money, information etc.,
connect origin zones to destination zones. These zones have a geographical ex-
pression on maps whilst the flow data provides a useful summary of the very
complex processes and behaviour patterns that generated them; for example,
journey to work flows summarise the spatial dimensions of labour markets cov-
ering home-workplace interactions whilst in a retail context credit card purchases
connect peoples home addresses to where they shop. Not surprisingly building
computer models of flow data has many commercial applications. The purpose
of this paper is to describe a few applications as a means of illustrating some of
the benefits that high performance computing (I-IPC) can offer computationally
minded geographers interested in this area of human systems modelling.

2 F l o w d a t a a n d s p a t i a l i n t e r a c t i o n m o d e l s

The idea of developing a parallel spatial interaction model is not new. Harris
(1985), discussed how (in theory) it could be ported onto a parallel machine.
However, it seems that not until the early 1990s was the parallel implemen-
tation of the spatial interaction model developed, see Birkin et al (1995). The
reasons for wanting to parallelise spatial interaction models are: to allow much
bigger datasets to be processed more speedily than previously, to improve the
underlying science both by being able to use finer resolution data, and to seek
an improvement in the quality of the results by using more flexible methods of

271

parameter estimation and model optimisation: In the spatial interaction model
the compute load is an approximate power function of the number of zones, small
numbers of zones run well enough on a PC but large numbers (i.e. few thousand)
require high performance computing hardware in the form of vector or parallel
supercomputers. An ability to model large flow data matrices is now important
because the availability and volume of flow data has rapidly increased as a result
of developments in IT, viz. data warehousing and there is a prospect of UK flow
data tables with up to 1.6 million origins and destinations becoming available
soon (viz. credit card transactions) or 32 million origin and destinations (if tele-
phone traffic were to be modelled at the subscriber level). However, currently
in the UK the biggest public domain flow matrices are those from the special
workplace statistics of the 1991 census (Openshaw, 1995). This is a 10,764 by
10,764 matrix of journey to work flows between all wards in Britain.

A simple origin constrained flow model developed using entropy-maximising
methods is specified as follows:

Tij = OiDjAie -ac'j (1)

Ai = 1 / E Dje-ZC'" (2)
J

where T/j is the predicted number of trips from an origin place i to a destination
place j, Oi is the "size" of i, Dj is the "size" of j , and Cij is a measure of
the distance or travel cost between i and j . The parameter ~ is estimated to
optimise the fit of the model using maximum likelihood or nonlinear least squares
methods. Note that equation (2) ensures that t he predicted flows satisfy the
following accounting constraint:

= Oi (3)
J

A doubly constrained model is slightly more complex:

~j = OiDj AiBj e -~c~j (4)

Ai = 1 / ~ Dj Bj e -~c'j (5)
J

= (6)
i

3 P o r t i n g a n d s c a l a b i l i t y e x p e r i m e n t s

Fortran code was written for the two models so that they could cope with the
10,764 origin and destination zones of the 1991 ward level journey to work data.
The two matrices used in the model to hold observed trips and costs (Tij ob-
served, Cij), could not be stored in the memory of a standard UNIX workstation,
since they would require over one Gbyte of memory. A solution to this is to store

272

the trip matrix as a singly linked list which reduces the storage needed to about
five Mbyte but this requires that the cost matrix can be recomputed when needed
rather than stored. Unlike the trip data, the cost matrix is dense and cannot
be stored in sparse format. Repeatedly recalculating the Cij values as they are
needed dramatically reduces the memory requirements, however, this is achieved
at the expense of a large increase in the amount of computation. On a Sunsparc
10/41 workstation the singly constrained one parameter model took 17.6 hours
to run. The non linear optimisation routine performed 29 model evaluations in
the search for an optimal parameter. The doubly constrained version ran for 264
hours. It is clearly difficult to make much use of a model that runs for 11 days
before a single result is obtained. The question now is how much faster would
a parallel version run and what new applications a dramatic speed-up in model
performance might provide.

Initially the code was ported to the Kendall Square Research KSR1 parallel
super computer at Manchester University (Openshaw and Sumner, 1995). This
is a virtual shared memory MIMD with 64 processing units. Each processor is
a 20 Mhz super-scalar RISC chip with a peak 64 bit floating point performance
of 40 Mflop/s and 32 Mbyte of local memory.

The code was also ported onto the Cray T3D parallel supercomputer at
Edinburgh. The Cray T3D version runs on 256 DEC alpha processors each rated
at 150 Mflop/s with 64 Mbytes of memory, providing a peak theoretical speed of
38.4 Gflop/s for the whole machine. The same data parallel strategy was used for
the KSR. In both cases the parallelism was at the outer DO LOOP level, so that
in effect the computational load of the model was split into 10764 concurrent
pieces, one for each i value in equation 1. This is a fairly fine grained level of
within model parallelisation but was the highest level relevant to this model in a
parameter estimation context. Here the model subroutine was going to be called
50 to 100 times by a nonlinear optimiser as it searches for an optimal parameter
values and for this application there is no benefit in seeking to parallelise the
nonlinear optimisation algorithm itself.

Figure 1 shows the performance for both models with comparisons being
made to the KSR1. As can be seen performance scales extremely well and whilst
hardly surprising this is very reassuring.

It is interesting to note that one doubly constrained model evaluation on a
SunSparc 10/41 workstation took 91 hours of compute time compared to 171
seconds on the 256 processor T3D. It is now possible for the first time to easily
model journey to work patterns for the whole of Britain at the finest available
level of geographic data resolution. Furthermore, the compute times are now
sufficiently small to allow newer and more complex types of models to be inves-
tigated which are more compute intensive and more advanced forms of parameter
estimation procedures to be applied; (Diplock and Openshaw 1996).

273

T~IO - O~gm Gon.s#Jned
KSR - 0 1 i �9 C o n l s b J n e d ~ - .

2 0 0 0

1 0 0 0

S 0 0

. o

Fig. 1. Speed-up of models

4 Retail network optimisation

A major applied use for these models is to embed them in a spatial optimisation
framework (Birkin, et al., 1995). For example in a retail context or hospital plan-
ning situation, it is often of interest to determine which set of Dj values (in equa-
tion 1) will yield maximum profits or optimise some other performance indicator
of global network benefits. This involves solving a discrete nonlinear combina-
torial programming problem using various computationally intensive heuristics;
e.g: genetic algorithms, tabu search and simulated annealing. The quality of the
results now depends heavily on, put crudely, the number of times a model such
as that in equation 1 can be evaluated in a fixed time period on a realistically
sized spatial interaction dataset.

Consider the problem of optimising a national retail network using data for
2755 consumer origin zones and 822 destinations. The aim is to solve a massive
combinatorial optimisation problem that involves finding the best 60 sites from
822 alternative locations that maximise profits assuming consumers behave ac-
cording to the spatial interaction model: There are 822!/60! possible solutions.
This spatial network optimisation model can be written as:

2755 822

max:raise E E a J (DI) (7)
i=1 j = l

Tq = OiD~ Aie -~c'j (8)

2 822

Ai = 1 / E E D~ "e-'c'' (9)
k---1 j

The aim is to define a set of 0, 1 values for variable DJ such that the objective
X "~822 1 2 function is optimised and z-4=1 D~ = 60. The D~ values represent existing

competitor sites and are fixed. Obviously different sets of DJ will alter the total

274

market share attracted to these locations. Other constraints on the distribution
of D~ values may also be imposed; for example, minimum distances between
nearest non-zero D~ values should exceed a distance threshold.

When the serial code for this model was parallelised at the i loop level the
performance no longer scaled with the number of processors. This problem was
smaller than previously and the code was also heavily optimised with the result
that the amount of work being performed in the parallel regions rapidly became
less than the communication overheads. As the number of processors increased,
the performance peaked (at 16 processors) and then got worse. The problem
can be temporarily fixed for the T3D by increasing the amount of work being
done (i.e. removing some of the optimisation) but this defeats the objective of
maximising the number of model evaluations per hour. Another solution was to
make the entire model a parallel activity and not just the major loop. This was
possible because of the nature of the optimisation task in particular the simulated
annealing process used to optimise equation (7) was based on a single move
heuristic that used a local neighbourhood search. The search neighbourhood
could be of any size and by setting this to some integer multiple of the number of
processors being used then high levels of parallel efficiency and linear scalability
were achieved; see Table 1. This leads to a peak performance of 28.2 MFlops/PE
which is good for a Cray T3D.

It is interesting to note that tuning the serial code for the T3D resulted
in a single processor speed-up of 1097 times. Running on the T3D with 256
processors resulted in a combined speed-up of 2.8 million times compared to
the original serial code. As well as a speed up the new algorithm also produced
nearly twice as good a result as the serial version; see Figures 2a and 2b.

5 C o n c l u s i o n s

The paper describes the development of a parallel spatial interaction model and
some applications involving two of the largest flow matrix yet modelled. The
results are interesting both in their own right and also as a means of increasing
awareness of what high performance computing (I-IPC) in general, and parallel
super computing in particular, can offer. Increasingly geographical modellers are
being freed from the computational constraints that have existed ever since the
early years of the quantitative revolution. As Openshaw (1994b) points out, this
could be the dawn of a major new era in geography, the beginning of what can
be termed 'computational geography'; defined as new computationally intensive
ways of doing geography. HPC is not just a means of making old models run
two or three orders of magnitude faster but much more significantly it creates
an opportunity to solve many previously unsolvable problems, to develop new
computationally based technologies and to create entirely new ways of thinking
about and doing all kinds of geography not all of which were previously quan-
titative. Hopefully the results reported here will help stimulate awareness and
assist in this process of exploiting HPC in geography and the social sciences.

275

Fig. 2. a) The optimal dealer network found with the serial code, b) The optimal dealer
network found using the improved algorithm on the Cray T3D

Acknowledgment: This research was funded by the EPSRC (Grant number
GR/K43933).

References

Birkin, M., Clarke, M., and George F.: The use of parallel computers to solve nonlinear
spatial optimisation problems: an application to network planning. Environment
and Planning A, 27,(1995) 1049-1068

Diplock, G., Openshaw, S.: Using simple Genetic Algorithms to calibrate Spatial In-
teraction Models. Geographical Analysis, (forthcoming)

Harris, B.: Some notes on parallel computing with special reference to transportation
and land use modelling. Environment and Planning A, 17, (1985), 1275-1278

Openshaw, S.:Some geographical applications of high performance computing. Working
Paper 94/18, School of Geography, Leeds University, (1994a)

Openshaw, S.: Computational Human Geography: towards a research agenda. Envi-
ronment and Planning A, 26, (1994b), 499-505

Openshaw, S.: Census Users Handbook GeoInformation International, Cambridge,
(1995)

Openshaw, S. and Sumner, R.: Parallel spatial interaction modelling on the KSR1-64
supercomputer, Working Paper 95/15, School of Geography, University of Leeds,
(1995)

