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This paper presents a static scheduling heuristic called best- 
imaginary-level (BIL) scheduling for heterogeneous processors. The in- 
put graph is an acyclic precedence graph, where a node has different 
execution times on different processors. The static level of a node, or 
BIL, incorporates the effect of interprocessor communication (IPC) over- 
head and processor heterogeneity. The proposed scheduling technique is 
proven to produce the optimal scheduling result if the topology of the 
input task graph is linear. The performance of the BIL scheduling is com- 
pared with an existing technique called the general dynamic level (GDL) 
scheduling with various classes of randomly generated input graphs, re- 
sulting in about 20% performance improvement. 

1 I n t r o d u c t i o n  

Thanks to the rapid development of networks, the distributed systems become a 
promising workhorse to increase the computing power. These systems are usually 
heterogeneous systems with significant overhead of interprocessor communica- 
tion (IPC). The schedulers for such heterogeneous systems need to account for 
IPC overhead and processor heterogeneity: a task takes different execution times 
on different processors. 

The proposed scheduling takes an acyclic precedence graph (APG) as an 
input task graph in which a node represents a task and a directed arc is associated 
with a number that  specifies the amount  of IPC overhead. We assume that the 
execution time of a node Ni on a processor Pj, E(Ni, Pj), is known at compile- 
time for each node-processor pair. If node Ni cannot be executed on processor 
Pj, E(Ni,Pj) is infinite. An example APG and its node execution-time table 
is shown in Fig. 1 (a). We also assume that  interprocessor communication time 
can be overlapped with computation time in a schedule. 

The scheduling objective in this paper is to minimize the scheduling length 
or makespan of the input APG. Since this scheduling problem is NP-hard in the 
strong sense [2], we will rely on heuristics. As an existing scheduling heuristic for 
heterogeneous scheduling problem, we will consider the General Dynamic Level 
(GDL) scheduling technique developed by G.C.Sih and E.A.Lee [1]. We will 
show that the proposed technique is more algorithmically appealing to generate 
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an optimal schedule for a special class of APG. Moreover, we obtain about 20% 
performance improvement over GDL with randomly generated APGs. 

2 G D L  S c h e d u l i n g  T e c h n i q u e  

Both GDL and the proposed BIL scheduler are based on the list scheduling 
ideal3]. Each node is assigned a priority, or the static level of the node. The list 
scheduling schedules the runnable nodes in the decreasing order of priority. The 
variants of list scheduling techniques differ in terms of how to assign priorities 
to the nodes and on which processor a selected node is to be scheduled [4]. 

A popular choice of the static level is the critical path length of a node to 
a terminal node. To compute the critical path in a heterogeneous system, the 
GDL scheduler defines the assumed execution time of node Ni, denoted E* (Ni), 
as the median execution time of the node over all processors. While the IPC 
overhead is not considered in the static level computation, the GDL scheduler 
considers it by adjusting the level, or the dynamic level, when the node becomes 
runnable. Also, it includes the effect on the child node and the resource scarcity 
cost in the dynamic level computation to overcome a major drawback of the list 
scheduling algorithms: fail to consider the global effect of the current scheduling 
decision. 

Consider an example shown in Fig. 1 (a). The scheduling result from the 
GDL heuristic is represented in Fig. 1 (b) with a Gant t  chart that represents 
on which processor and at which t ime each node is scheduled. When node A is 
scheduled, the GDL still fails to consider the effect of the processor selection on 
node C. Therefore, node A is scheduled on processor P0. As a result, it suffers 
from the huge IPC overhead between A and B since node B should be scheduled 
to processor P1 considering node C. 
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Fig. 1 An example to show the effect of descendant consideration 

3 T h e  P r o p o s e d  B I L  S c h e d u l e r  

We define the static level, the best imaginary level (BIL), of a node as follows. 

D e f i n i t i o n  1 

BIL(Ni, Pj) = E(Ni, P.i)+ max [min(BIL(d,, Pj), r~n(BIL(dt, Pk) + d(Ni, dz))] 
dzED(N,)  
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where d(Ni,dz) means the amount of IPC overhead between Ni and dz which is 
in the descendant D( Ni ). 

The BIL of node Ni indicates the critical pa th  length including the IPC over- 
head assuming that  the node is scheduled on processor Pj, based on the critical 
assumption that  all descendant nodes can be scheduled at the best times. Since 
it is not always possible, we use the te rm best imaginary. Since it considers the 
IPC overhead in its computat ion,  the BIL of a node can be thought  as the global 
information of all descendant nodes under the optimistic assumption.  The BIL 
scheduler shows a drastic improvement  with the example of Fig. 1 (a) as shown 
in Fig. 1 (c). Node A is now scheduled on processor P1 since the scheduler con- 
siders the effect of the far descendant C reflected in the BIL computat ion of 
node A. In fact, the BIL scheduler produces the opt imal  scheduling result if the 
APG is linear. 

T h e o r e m l .  The BIL scheduler produces the optimal scheduling result if the 
APG is linear 

We can easily prove by induction tha t  the BIL(Ni,Pj) indicates the shortest 
finish t ime start ing from node Ni to the terminal  node assuming that  node iV/ 
is scheduled on processor Pj. The opt imal  schedule length is nothing but the 
min imum value of the BIL values of the s tar t ing node, N1. In other words, 
mini BIL(N1, Pj) is the opt imal  scheduling length. Since the BIL(NI, Pj) con- 
tains the information on which processor the child node is to be scheduled, the 
BIL scheduler completes the schedule once it determines the min imum value of 
the BIL value of node N1. 

3.1 N o d e  S e l e c t i o n  

As the scheduling proceeds, we adjust the level of a node Ni on processor Pj 
to measure the best imaginary makespan,  BIM. BIM is defined as follows: 
BIM(NI, Pj) = T(Ni, Pj) + BIL(Ni, Pj), where the node Ni cannot be sched- 
uled on processor Pj before T(Ni, Pj). Note tha t  a runnable node has N different 
BIM values, one for each processor, if the total  number  of processors is N. 

Among the runnable nodes, we select a node to be scheduled aiming to min- 
imize the performance penalty based on a pessimistic assumption for each node. 
Suppose that  the number  of runnable nodes at a scheduling stage is k. We define 
the priority of a node as the k-th smallest BIM value or the largest finite BIM 
value if the k-th smallest BIM value is undefined. In case more than one node 
have the same priority, we adopt a tie breaking policy in a recursive form: we 
compare the (k - 1)-th BIMs of nodes that  have the same k-th BIM. 

3.2 P r o c e s s o r  S e l e c t i o n  

The next step is to determine the opt imal  processor for the selected node. Even 
though we are apt to select the processor associated with the smallest BIM value, 
this selection scheme may  not be opt imal  since the BIL of a node is pessimistic 
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assuming the IPC overhead is visible. In case the parallelism of the APG is high, 
the execution time becomes the more important  factor than the IPC overhead 
since the IPC overhead is likely to be hidden. Consider the example of Fig. 2 
(a). When node A is selected, the number of runnable nodes is 4 and the number 
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Fig. 2 An example APG to demonstrate the effect of graph parallelism 

of processors is 2. Therefore, we may expect that  on the average two nodes will 
be scheduled on each processor before its child node is scheduled. It means that  
the IPC overhead between nodes A and E is likely to be hidden while the BIL 
fails to account for this fact as shown in Fig. 2 (b). Therefore, we define the 
revised BIM as follows. 

BIM*(Ni ,  Pj) = T(Ni,  Pj) + BIL(Ni ,  Pj) + E(Ni, Pj) * max[ k - 1,0] 

Using this revised BIM value, we obtain the better result as shown in Fig. 2 
(c). If more than one processor have the same revised BIM value, we select the 
processor that makes the sum of the revised BIM values of other nodes on the 
processor maximum. 

4 E x p e r i m e n t s  

To estimate the performance of the BIL scheduler, we used a random APG gen- 
erator with various numbers of nodes and processors as well as graph parallelism. 
We performed 100 experiments with 30, 50 ,100 ,150 ,200 ,250 ,300 ,350 ,400  and 
500 nodes on 2, 3, 5, 7, 10, !2,  15, 20, 25 and 30 processors. It is repeated 10 
times with different seeds for random number generation for each pair of nodes 
and processors and averaged the results. We shows the performance improvement 
over the GDL in Fig. 3 by varying the ratio of the IPC overhead and the average 
execution times of nodes by 0.5, 1 and 2. Let C be the mean IPC overhead and 
/~ be the average node execution time. For instance, C = 0.5 * /~ means that  
the IPC overhead is a half of the average execution time. We observed that that  
the performance improvement of the BIL scheduler becomes significant when 
the number of processors is greater than 2. We conjecture the reason of perfor- 
mance difference two-folds. First, as the number of processors grows, the effect 
of graph parallelism would be decreased, so that  the BIL scheduler considers 
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Fig. 3 Percentage improvement of the BIL scheduler over the GDL scheduler. 
(a) c = 0.5 * ~ (b) c = E (c) c = 2 * E.  

the IPC overhead more effectively. Second, the GDL examines only two proces- 
sors for each node to consider the global effect (resource scarcity) of the current 
scheduling decision. 

The time complexity of this technique is O(n2p logp) in total, where n is the 
number of nodes and p is the number of processors. While it is smaller in order 
than the complexity of GDL, our experiments revealed that  it takes about the 
same time with the GDL scheduler because the coefficients of the BIL is larger. 

5 C o n c l u s i o n  

We have proposed a non-preemptive static scheduling heuristic called Best- 
Imaginary-Level (BIL) scheduling for heterogeneous processors. The proposed 
scheduling technique is proven to produce the optimal scheduling result if the 
topology of the input task graph is linear. The performance of the BIL scheduling 
was compared with an existing technique called the general dynamic level (GDL) 
scheduling with various classes of randomly generated input graphs, resulting in 
about 20% performance improvement. 

The proposed scheduling is expected to be applicable to the large span of 
target architectures from the network computing to the hardware/software code- 
sign. Currently, we are building an environment to execute an input program 
graph on such heterogeneous systems. For more general applicability, the heuris- 
tic needs to be extended to consider the effect of resource limitation. 
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