
A Static Scheduling Heuristic for
Heterogeneous Processors

Hyunok Oh and Soonhoi Ha

The Department of Computer Engineering, Seoul National University, Seoul, 151-742,
Korea: e-maih {oho,sha}@comp.snu.ac.kr

This paper presents a static scheduling heuristic called best-
imaginary-level (BIL) scheduling for heterogeneous processors. The in-
put graph is an acyclic precedence graph, where a node has different
execution times on different processors. The static level of a node, or
BIL, incorporates the effect of interprocessor communication (IPC) over-
head and processor heterogeneity. The proposed scheduling technique is
proven to produce the optimal scheduling result if the topology of the
input task graph is linear. The performance of the BIL scheduling is com-
pared with an existing technique called the general dynamic level (GDL)
scheduling with various classes of randomly generated input graphs, re-
sulting in about 20% performance improvement.

1 I n t r o d u c t i o n

Thanks to the rapid development of networks, the distributed systems become a
promising workhorse to increase the computing power. These systems are usually
heterogeneous systems with significant overhead of interprocessor communica-
tion (IPC). The schedulers for such heterogeneous systems need to account for
IPC overhead and processor heterogeneity: a task takes different execution times
on different processors.

The proposed scheduling takes an acyclic precedence graph (APG) as an
input task graph in which a node represents a task and a directed arc is associated
with a number that specifies the amount of IPC overhead. We assume that the
execution time of a node Ni on a processor Pj, E(Ni, Pj), is known at compile-
time for each node-processor pair. If node Ni cannot be executed on processor
Pj, E(Ni,Pj) is infinite. An example APG and its node execution-time table
is shown in Fig. 1 (a). We also assume that interprocessor communication time
can be overlapped with computation time in a schedule.

The scheduling objective in this paper is to minimize the scheduling length
or makespan of the input APG. Since this scheduling problem is NP-hard in the
strong sense [2], we will rely on heuristics. As an existing scheduling heuristic for
heterogeneous scheduling problem, we will consider the General Dynamic Level
(GDL) scheduling technique developed by G.C.Sih and E.A.Lee [1]. We will
show that the proposed technique is more algorithmically appealing to generate

* This research is supported by the S.N.U. Research Fund

574

an optimal schedule for a special class of APG. Moreover, we obtain about 20%
performance improvement over GDL with randomly generated APGs.

2 G D L S c h e d u l i n g T e c h n i q u e

Both GDL and the proposed BIL scheduler are based on the list scheduling
ideal3]. Each node is assigned a priority, or the static level of the node. The list
scheduling schedules the runnable nodes in the decreasing order of priority. The
variants of list scheduling techniques differ in terms of how to assign priorities
to the nodes and on which processor a selected node is to be scheduled [4].

A popular choice of the static level is the critical path length of a node to
a terminal node. To compute the critical path in a heterogeneous system, the
GDL scheduler defines the assumed execution time of node Ni, denoted E* (Ni),
as the median execution time of the node over all processors. While the IPC
overhead is not considered in the static level computation, the GDL scheduler
considers it by adjusting the level, or the dynamic level, when the node becomes
runnable. Also, it includes the effect on the child node and the resource scarcity
cost in the dynamic level computation to overcome a major drawback of the list
scheduling algorithms: fail to consider the global effect of the current scheduling
decision.

Consider an example shown in Fig. 1 (a). The scheduling result from the
GDL heuristic is represented in Fig. 1 (b) with a Gant t chart that represents
on which processor and at which t ime each node is scheduled. When node A is
scheduled, the GDL still fails to consider the effect of the processor selection on
node C. Therefore, node A is scheduled on processor P0. As a result, it suffers
from the huge IPC overhead between A and B since node B should be scheduled
to processor P1 considering node C.

1

PO A I c

A 1 2 11 13 14 (b)
B 2 2

P0
(,) c o~ 1 P1 A] s]C

2 4 5
(c)

Fig. 1 An example to show the effect of descendant consideration

3 T h e P r o p o s e d B I L S c h e d u l e r

We define the static level, the best imaginary level (BIL), of a node as follows.

D e f i n i t i o n 1

BIL(Ni, Pj) = E(Ni, P.i)+ max [min(BIL(d,, Pj), r~n(BIL(dt, Pk) + d(Ni, dz))]
dzED(N,)

575

where d(Ni,dz) means the amount of IPC overhead between Ni and dz which is
in the descendant D(Ni).

The BIL of node Ni indicates the critical pa th length including the IPC over-
head assuming that the node is scheduled on processor Pj, based on the critical
assumption that all descendant nodes can be scheduled at the best times. Since
it is not always possible, we use the te rm best imaginary. Since it considers the
IPC overhead in its computat ion, the BIL of a node can be thought as the global
information of all descendant nodes under the optimistic assumption. The BIL
scheduler shows a drastic improvement with the example of Fig. 1 (a) as shown
in Fig. 1 (c). Node A is now scheduled on processor P1 since the scheduler con-
siders the effect of the far descendant C reflected in the BIL computat ion of
node A. In fact, the BIL scheduler produces the opt imal scheduling result if the
APG is linear.

T h e o r e m l . The BIL scheduler produces the optimal scheduling result if the
APG is linear

We can easily prove by induction tha t the BIL(Ni,Pj) indicates the shortest
finish t ime start ing from node Ni to the terminal node assuming that node iV/
is scheduled on processor Pj. The opt imal schedule length is nothing but the
min imum value of the BIL values of the s tar t ing node, N1. In other words,
mini BIL(N1, Pj) is the opt imal scheduling length. Since the BIL(NI, Pj) con-
tains the information on which processor the child node is to be scheduled, the
BIL scheduler completes the schedule once it determines the min imum value of
the BIL value of node N1.

3.1 N o d e S e l e c t i o n

As the scheduling proceeds, we adjust the level of a node Ni on processor Pj
to measure the best imaginary makespan, BIM. BIM is defined as follows:
BIM(NI, Pj) = T(Ni, Pj) + BIL(Ni, Pj), where the node Ni cannot be sched-
uled on processor Pj before T(Ni, Pj). Note tha t a runnable node has N different
BIM values, one for each processor, if the total number of processors is N.

Among the runnable nodes, we select a node to be scheduled aiming to min-
imize the performance penalty based on a pessimistic assumption for each node.
Suppose that the number of runnable nodes at a scheduling stage is k. We define
the priority of a node as the k-th smallest BIM value or the largest finite BIM
value if the k-th smallest BIM value is undefined. In case more than one node
have the same priority, we adopt a tie breaking policy in a recursive form: we
compare the (k - 1)-th BIMs of nodes that have the same k-th BIM.

3.2 P r o c e s s o r S e l e c t i o n

The next step is to determine the opt imal processor for the selected node. Even
though we are apt to select the processor associated with the smallest BIM value,
this selection scheme may not be opt imal since the BIL of a node is pessimistic

576

assuming the IPC overhead is visible. In case the parallelism of the APG is high,
the execution time becomes the more important factor than the IPC overhead
since the IPC overhead is likely to be hidden. Consider the example of Fig. 2
(a). When node A is selected, the number of runnable nodes is 4 and the number

,• 5 . ~ A F0 P1 9 14 19 24
9 5 P0 A I E D G ~

5 . ~ C B , 5 7 5 7 PI B] C F H I

D - 5 5 7 (b)

5 ~__j E 5 11 po B C E G
F 5 5 Pl A D F H

5 , ~ O 5 5 5 10 15 20
H 5 5 (c)

(a)

Fig. 2 An example APG to demonstrate the effect of graph parallelism

of processors is 2. Therefore, we may expect that on the average two nodes will
be scheduled on each processor before its child node is scheduled. It means that
the IPC overhead between nodes A and E is likely to be hidden while the BIL
fails to account for this fact as shown in Fig. 2 (b). Therefore, we define the
revised BIM as follows.

BIM*(Ni , Pj) = T(Ni, Pj) + BIL(Ni , Pj) + E(Ni, Pj) * max[k - 1,0]

Using this revised BIM value, we obtain the better result as shown in Fig. 2
(c). If more than one processor have the same revised BIM value, we select the
processor that makes the sum of the revised BIM values of other nodes on the
processor maximum.

4 E x p e r i m e n t s

To estimate the performance of the BIL scheduler, we used a random APG gen-
erator with various numbers of nodes and processors as well as graph parallelism.
We performed 100 experiments with 30, 50 ,100 ,150 ,200 ,250 ,300 ,350 ,400 and
500 nodes on 2, 3, 5, 7, 10, !2, 15, 20, 25 and 30 processors. It is repeated 10
times with different seeds for random number generation for each pair of nodes
and processors and averaged the results. We shows the performance improvement
over the GDL in Fig. 3 by varying the ratio of the IPC overhead and the average
execution times of nodes by 0.5, 1 and 2. Let C be the mean IPC overhead and
/~ be the average node execution time. For instance, C = 0.5 * /~ means that
the IPC overhead is a half of the average execution time. We observed that that
the performance improvement of the BIL scheduler becomes significant when
the number of processors is greater than 2. We conjecture the reason of perfor-
mance difference two-folds. First, as the number of processors grows, the effect
of graph parallelism would be decreased, so that the BIL scheduler considers

577

%Speedup improvement

130~

1207 ~:::-::.:.....::..:.::.::.:: "='-'::':~':::"
l l O ~ , ..

2 3 5 7 10 12 15 20 25 30

........... (a) (b) (c)
Fig. 3 Percentage improvement of the BIL scheduler over the GDL scheduler.
(a) c = 0.5 * ~ (b) c = E (c) c = 2 * E.

the IPC overhead more effectively. Second, the GDL examines only two proces-
sors for each node to consider the global effect (resource scarcity) of the current
scheduling decision.

The time complexity of this technique is O(n2p logp) in total, where n is the
number of nodes and p is the number of processors. While it is smaller in order
than the complexity of GDL, our experiments revealed that it takes about the
same time with the GDL scheduler because the coefficients of the BIL is larger.

5 C o n c l u s i o n

We have proposed a non-preemptive static scheduling heuristic called Best-
Imaginary-Level (BIL) scheduling for heterogeneous processors. The proposed
scheduling technique is proven to produce the optimal scheduling result if the
topology of the input task graph is linear. The performance of the BIL scheduling
was compared with an existing technique called the general dynamic level (GDL)
scheduling with various classes of randomly generated input graphs, resulting in
about 20% performance improvement.

The proposed scheduling is expected to be applicable to the large span of
target architectures from the network computing to the hardware/software code-
sign. Currently, we are building an environment to execute an input program
graph on such heterogeneous systems. For more general applicability, the heuris-
tic needs to be extended to consider the effect of resource limitation.

References

1. G.C.Sih and E.A.Lee, "A Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architectures", IEEE Trans. parallel and
distributed systems, vol. 4, no.2, pp. 175-187, Feb. 1993

2. J.K.Lenstra & A.H.G Rinnooy Kan, "Complexity of Scheduling under Precedence
Constraints", Operations Research 26, I (Jan-Feb 1978)

3. E.Coffman, Computer and Job-Shop Scheduling Theory, Wiley, New York, 1976
4. T.L.Adam, K.M.Chandy and J.R.Dickson, "A Comparison of List Schedules for

Parallel Processing Systems", Commun. ACM, vol. 17, no. 12, pp. 685-690, Dec.
1974

