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Abstract. On multi-user large-scale multi-computers, application workload is 
highly variable and typically unpredictable. In this paper, we present and analyze 
the performance of three scheduling policies for such systems. Two of these are 
static scheduling policies that assign resources at job startup time, but make no 
subsequent changes in allocated resources. The third policy allocates resources 
to jobs dynamically taking into account resource requirements of all jobs in the 
system. We compare the performance of these three policies using the resource 
reconfiguration infrastructure provided by the Distributed Resource Management 
System (DRMS). On a variety of workloads we tested, our results indicate that, 
among the three policies, the reconfigurable policy provided the lowest response 
time for any given utilization. 

I Introduction 

Maximizing throughput while maintaining faimess in resource allocation to jobs is 
an important resource management issue in high-performance computing systems. In 
the past, on many large-scale parallel systems, jobs were scheduled on disjoint sets 
of  statically carved out processor partitions. Such static policies result in poor system 
utilization and throughput. Current generation large-scale parallel systems have incor- 
porated scheduling policies that allocate resources at job initiation. A drawback of  these 
policies is that once resources are committed to a job, they cannot be reallocated un- 
til the job terminates. Hence, the resources cannot be adjusted quickly to changes in 
demands, which in turn affects the performance adversely. Dynamic policies, that can 
reshuffle allocated resources among new and running jobs, can adjust more quickly to 
such changes and, thus, have the potential to deliver better system performance. To be 
viable, execution of  such dynamic policies should have low overheads and also the cost 
of  developing reconfigurable applications should not be high. Keeping this in mind, we 
have implemented Distributed Resource Management System (DRMS) that provides 
an environment for developing reconfigurable applications and provides the necessary 
infrastructure to reconfigure such applications at run-time. 

In this paper, we present and analyze the performance of  three scheduling policies: 
two that allocate resources when starting up a job, but make no subsequent changes 
to these allocations, and a third that can dynamically reallocate resources among new 
and executing jobs. We then describe the DRMS architecture and some details on the 
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infrastructure for application reconfiguration. Dynamic scheduling policies, such as 
the one described in this paper, can make use of the DRMS infrastructure for dynamic 
resource management. Our results show that, for a variety of workloads, the performance 
of the system, in terms of job response time, is superior with the dynamic scheduling 
policy. The rest of this paper is organized as follows. Section 2 presents the applications 
used in our study. In section 3, the three policies implemented within the system are 
described. Section 4 presents relevant aspects of the DRMS infrastructure. Section 5, 
provides details regarding our performance experiments and analysis of the results. 
Related research is discussed in section 6 and we finally conclude in section 7. The full 
version of this paper is available as [6]. 

2 Applications 

In this study, we used a job mix of 21 different computational fluid dynamics (CFD) 
applications. These 21 applications were obtained by varying the problem size and 
number of iterations of the three NAS Parallel Benchmarks [2] pseudo applications: 
appbt, applu, and appsp. Table 1 lists our 21 applications, identified by the notation 
application < size, iterations >. The applications have been grouped into three categories 
(I,II,III) qualitatively representing small, medium, and large jobs. In Table 1, under 
the job category, it is indicated the range of processor partition sizes allowed for the 
execution of an application of that category. Also listed in that table are the execution 
times, in seconds, when each application is run on its minimum and maximum allowed 
processor partition. The memory-requirement and execution-time ranges represented 
by these 21 applications is typical of supercomputing centers where both application 
development (small data sets and fewer iterations) and production runs (larger data sets 
and many iterations) are carried out simultaneously. 

Table 1. Applications used in the experiments. 

Job category Applic~ion Time on Time on Job ca~gorylApplicafion Time on Timeon 
(PE range) <size,i~rs> minPEs(s) max PEs(s) (PE mnge) i<size,i~rs> min PEs(s) maxPEs(s) 

appsp<64,200> 677 184 appsp<64,40000> 18332 6324 
I appsp<64,400> 1271 344 appsp<80,20000> 18244 5348 

(1,2,4) appsp<80,100> 827 203 appsp<102,10000> 1724fi 5195 
appsp<80,200> 1419 361 appsp<126,5000> 1663~ 4746 
appsp<64,5000> 4034 1327 III appbt<64,12000> 13811 4132 
appsp<80,2500> 3995 1221 (8,12,16,20, appbt<80,6000> 1339~ 3961 
appsp<102,1250> 3906 1176 24,28,32) appbt<102,3000> 1399( 3702 

II appbt<64,1600> 3554 1045 applu<64,32000> 2980( 9538 
(4,8,12,16) appbt<80,800> 3435 979 applu<80,16000> 1379( 5237 

!applu<64,4000> 7135 2169 applu<102,8000> 1699( 5082 
applu<80,2000> 3227 1036 

All of our applications go through three phases during the course of their execution: 
(i) setup phase, (ii) solution phase, and (iii) summary phase. The solution phase, which 
represents the bulk of the execution time, consists of several iterations, each performing 
the same number of operations. For the experiments reported in this paper, we started 
with SPMD versions of the applications that were tuned for the IBM SP2 (see [11] and 
references there in). We modified these by inserting DRMS annotations (see Section 4) 



623 

at the beginning of  each iteration so that the applications can be potentially reconfigured 
to execute on a different set of processors every fifth iteration. 

3 Schedul ing  Policies  

We consider three scheduling policies for this study: (i) lazy scheduling (LS), (ii) 
adaptive scheduling (AS), and (iii) reconfigurable scheduling (RS). In all cases, the 
scheduler maintains arriving jobs in a queue prioritized on the arrival time. Each job 
defines a list of processor partition sizes over which it can run. The policy allocates to 
a job one of its eligible partitions. 

The LS policy: Under the LS policy, the scheduler continuously scans the job arrival 
queue and schedules the earliest job that can run on all or on a subset of the available 
processors, giving it as many processors as it can take. LS is afirst tofit policy, with an 
allocation preference towards maximum eligible number of processors. Once a job is 
scheduled to run on a set of processors, that job runs till completion on those processors. 
When the load is light, LS policy tends to schedule jobs in the order in which they 
arrive (lower average queueing delays) and the number of processors allocated to a job 
is towards the maximum requested by that job (smaller service time). When the load is 
heavy, jobs requesting larger number of processors get lower priority (higher queueing 
delays) and the number of processors allocated to a job tends to be towards its minimum 
requested number of processors (longer service time). 

The AS policy: Under the AS policy, whenever processors are available to schedule 
jobs, the scheduler tries to schedule jobs in the order in which they arrived, but instead 
of  scheduling the earliest job on the maximum possible number of processors, it tries 
to schedule as many of the currently waiting jobs in the arrival queue as possible. AS 
is a maximum to fit with priority policy. Once a job is scheduled to run on a set of 
processors, that job runs till completion on those processors. When load is light, this 
policy behaves similar to LS, as each job is allocated closer to its maximum number of  
processors. When load is heavy, the number of processors allocated to each job tends 
to be closer to its minimum. This helps in reducing "fragmentation" of the processor 
space at moderate to heavy loads and thus improves overall processor utilization. 

The RS policy: Under the RS policy, when there are processors available, jobs are 
scheduled in the same way as in the case of the AS policy. In addition, when not 
enough free processors are available and there are jobs waiting to run, it tries to free up 
processors from jobs that are currently running on more than their minimum number of 
processors. Similarly, when there are no jobs waiting to be scheduled and free processors 
are available, RS tries to expand one or more of the running jobs to run on a larger set of 
processors. The policy incorporates parameters to determine the minimum time interval 
between same job reconfigurations. The RS policy adapts processor partition sizes of  
new and existing jobs to dynamic changes in the load. This policy performs the best 
when jobs can be reconfigured as frequently as necessary and to any desired number of 
processors. This flexibility is achieved at the cost of reconfiguring jobs that are already 



624 

running. The lower the reconfiguration costs and the more frequently and at a finer 
granularity a job can be reconfigured, the better is the performance of the RS policy. 

4 DRMS Infrastructure for Reconfigurable Scheduling 

Figure 1 shows the main functional components of DRMS and the primary interactions 
among these components. Resource scheduling is performed by the Resource Coordi- 
nator (RC) and the Job Scheduler and Analyzer (JSA). The run-time management and 
coordination of user applications is accomplished by the User Interface Coordinator 
(UIC), RC, and the Task Coordinator and Run-time Monitor (TC). A run-time system 
(RTS), linked to each application, coordinates with the extemal environment and prop- 
agates resource requests from the program to the resource management components of 
DRMS. It also implements the data distribution operations to support reconfigurable 
applications. The user submits jobs and can interact with the system throughout the 
course of the program execution via the UIC. For a more comprehensive description of 
DRMS we refer the reader to [6]. In the rest of this section we discuss in some detail the 
implementation of  the job reconfiguration mechanism using the DRMS infrastructure. 

Fig. 1. DRMS Architecture 

The system-level allocation and scheduling decisions are made by JSA based on the 
enforced scheduling policies. These decisions may use information such as application 
supplied resource requests, job priorities, and current and expected workload. Policies 
for making such decisions can be supplied and modified by system administrators. The 
JSA communicates its decisions to RC, which interfaces with the applications. 

Each user application has an associated TC, which consists of multiple agents, 
one per processor on which the user application is scheduled for execution. A job 
interacts with the resource management system via its designated TC. These interactions 
occur only at user-specified points in the application execution called Schedulable 
and Observable Points (SOPs)[3]. However, the TC coordinates external interactions 
throughout the course of job execution. When the JSA decides to reconfigure a job 
during the course of  its execution, this decision is asynchronously delivered to the RTS 
via RC and TC. At the next SOP, the RTS interprets the reconfiguration message, causes 



625 

synchronization among the tasks of the application, and communicates with the JSA. 
After the initialization of the application's new processor partition, the RTS is informed 
of the new partition information. Then the RTS, in conjunction with the TC, rearranges 
the application data so that the program can run on the new set of processors. Thus, the 
reconfiguration cost as seen by the application is the time elapsed between the initiation 
of a resource request at an SOP to the time at which the application resumes execution 
on the new set of allocated processors. Note that an application can also voluntarily 
initiate a reconfiguration of its allocated set of processors. For this paper, we consider 
only JSA-directed application reconfiguration. 

For implementing reconfiguring policies such as RS, and also to allow applications 
to modify their resources dynamically, applications must be reconfigurable, that is, they 
must be able to accommodate changes in their processor partition during execution. 
DRMS provides a set of language extensions and library functions for SPMD Fortran 
programs that facilitate the task of designing reconfigurable applications. The extensions 
are in the form of annotations (source-level comments) that are translated into executable 
code by the DRMS compiler. These extensions implement the DRMS programming 
model, a modified SPMD model. In the classical SPMD model, a group of processors all 
execute the same code, with each processor applying the code to a different section of the 
data set. In the DRMS model, a parallel program execution consists of the consecutive 
execution of a number of SPMD stages, each on a (potentially) independent set of 
processors. 

We define a stage as a unit with its own resource requirements, data distribution, and 
execution code. In our model, a stage consists of four sections: resource, data, control, 
and computation sections. The resource section specifies the type and quantity of each 
resource necessary for the execution of a stage. The data section specifies how the 
global data structures should be distributed among the processors executing the stage. 
The control section specifies values for variables that control the execution of  code 
inside a stage. Usually, the flow of this execution depends on resource allocation and 
data partitioning. The computation section specifies the computations to be performed 
in each processor, as well as the communication that occurs between processors. 

5 Performance Analysis 

The objective of this study is to evaluate the performance of the three scheduling 
policies as implemented in the context of DRMS. We measured several performance 
parameters of DRMS and used them in a DRMS system-level simulator, to evaluate the 
three policies. In this section, we first present the results for performance parameters of 
DRMS, followed by the steady-state performance characteristics of the three scheduling 
policies, as obtained from simulation. 

Performance results from DRMS: Performance parameters were measured from the 
DRMS system running on a 32-node partition of the IBM SP2 [1] at NASA Ames 
Research Center. We measured both the total reconfiguration time, as seen by each 
application, and one of its components: the redistribution time. The redistribution time 
is the time it takes to rearrange application data on the new set of processors. This 
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time is dependent on the problem size. The other components of reconfiguration, which 
include acquiring and releasing processors, partition reconfiguration, and restarting the 
application, depend not on the problem size but on the number of processors involved. 

Table 2. Measured reconfiguration and redistribute costs for applications under DRMS. 

Application 

appsp<64> 
appsp<80> 
appsp< 102> 
appbt<64> 
appbt<80> 
appbt< 102> 
]apptu< 102> 

Reconfiguration time 
min (s) max (s) 

4.51 7.17 
5.35 5.35 
6.42 20.40 
4.07 12.30 
6.07 7.21 
7.80 9.31 
5.35 11.6( 

Redistribute time 
min (s)] max(s) 

1.15 1.94 
1.69 1.69 
3.52 6.66 
1.31 2.74 
2.37 4.90 
4.08 5.94 
1.42 3.44 

Table 2 summarizes the reconfiguration and redistribute times measured for the 
applications considered. Each application was reconfigured several times between par- 
titions ranging in size from 4 to 32 processors. The table shows the maximum and 
minimum reconfiguration and redistribution times observed for each application. For 
purpose of simulation, we adopted times dependent only on the problem size and not 
the particular application or partition sizes involved. For problem sizes of  64, 80, 102, 
and 126 the reconfiguration times adopted were 8s, 1 Is, 17s, and 29s, respectively. The 
redistribution times were 3s, 6s, 12s, and 24s, respectively. 

The DR_MS System Simulator: Applications are modeled in the simulator at a very 
high level. Each application type shown in Table 1 is characterized by its setup time, 
its summary time, its iteration time, its number of iterations, and its reconfiguration and 
redistribute times. The setup, summary, and iteration times for each processor partition 
sizes were obtained through direct measurement. The central point of  the simulator 
is the job scheduler, which mimics the actions of the JSA in DRMS. The simulator is 
event-driven, with 6 different types ofevents that trigger the job scheduler. At each of 
these six events, the job scheduler is invoked in order to schedule jobs for execution 
and decide which jobs need to be reconfigured. 

Job arrival times are generated using an exponential distribution, with different 
mean inter-arrival times for each job type. The mean inter-arrival time for a job type 
is computed in order to deliver the desired system utilization. Measured performance 
parameters are the response times and service times for each job type and for the job 
mix as a whole. We measure both mean (#) and standard deviation (or) of  n samples. 
To reduce the correlation between successive samples, we use the batch means method 
as described in [5]. After the system achieves steady state, the simulation runs until 
the standard error (6 -- ~r/v/-n ) of  the response time is less than ~# for each job type 
and also for the whole job mix. In our experiments, we use ~ = 0.01. The simulator 
was validated by comparing its steady-state performance results to analytical results for 
M/M/m queues [5], and also by comparing to some observed results in the real DRMS 
system. 
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Performance comparison of the three policies: We present simulation results com- 
paring the average response times under the three scheduling policies. Let E[ R(p)] 
denote mean response time under policy p, p 6 {AS, LS, RS}, when all jobs are con- 
sidered together. Similarly, let E[ R(p), k ] denote the mean response time under policy 
p, for jobs belonging to category k, k 6 {I, II, III}. For the ease of comparison, we 
use the ratios E[ R(AS) ]/E[ R(RS) ] and E[ R(LS) ]/E[ R(RS) ]. We define utilization 
as the job arrival rate times the ideal service time of the average job when executed 
on all processors. The ideal service time of a job when executed on all processors is 
determined as the execution time on a single processor divided by the total number of 
processors. The workloads we use for our experiments are defined by the fraction of the 
utilization produced by jobs from categories I, II, and III. For our experiments, we used 
six workloads. We varied the fraction of utilization from category I from 5% to 55% 
in steps of 10%, we kept the fraction from category II fixed at 25%, and we varied the 
fraction from category III accordingly, from 70% to 20%. In our notation, a workload 
of 05:25:70 means that 5%, 25%, and 70% of the utilization are from category I, II, and 
III jobs, respectively. Within a category, applications arrive with the same rate. We did 
not allow jobs from category I to be reconfigured. 

Shown in Figures 2(a) and 2(b) are the response time ratios E[ R(LS) ]/E[ R(RS) ] 
and E[ R(AS) ]/E[ R(RS) ], respectively, as function of utilization and workload. The 
response time with RS policy is always better than with the other two policies, and 
AS performs better than LS. For a given workload, the performance of RS first gets 
better with increasing utilization and then the advantage diminishes at high utilization. 
Similarly, as the proportion of small jobs in the workload is increased, the advantage of 
RS policy initially increases and then it decreases. 

We plot the average response times for the three policies in Figures 2(c)-(f), for all 
jobs combined and for each category individually. For these experiments, we have used 
a workload of 25:25:50. We observe that jobs from all categories benefit with RS policy, 
but category I jobs benefit the most and category III jobs the least. Under RS policy, any 
excess over a minimum number of processors allocated to medium and large jobs (i.e., 
category II and III jobs) can be taken away to schedule new jobs. This benefits the small 
jobs the most since they can be accommodated more often, thus reducing their queueing 
delays. AS policy performs significantly better than the LS policy for category I jobs. 
For the other two categories, with a workload of 25:25:50, performance of AS is not 
significantly different from LS. Thus, much of the gains obtained with RS policy are 
because of its ability to reconfigure running jobs. 

We conducted a series of four additional experiments to determine the sensitivity 
of the RS policy to various parameters. For brevity, we only report here some general 
observations. First, we repeated our simulations under an ideal condition in which re- 
configuration takes zero time. We found that the average response time, for all jobs 
combined, decreases by at most 10% as compared to the results reported in Figure 2. 
In the second additional experiment, we allowed jobs of category I to reconfigure and 
we found no significant difference in results. In the third additional experiment, we 
restricted the range of valid partition sizes for each category. Valid sizes for category I 
were { 1, 4 }, for category II { 4, 8, 16 }, and for category III{ 16, 32 } (compare to Ta- 
ble 1). We found a significant negative impact on the average response time, especially 
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Fig. 2. Average response times with AS, T,S, and RS policies. 

at higher utilization. This impact can be explained by the diminished reco]ffiguration 
flexibility of the applications. Finally, we performed an experiment where we varied the 
minimum interval between reconfigurations for each application. A smaller reconfigura- 
tion interval implies quicker response to load changes, but also implies potentially more 
reconfiguration events and thus overhead. We varied the minimum interval between 
reconfigurations from 2 to 20 times the recortfiguration time of  the application, with 
little impact on the average response time. 



629 

6 Related Work 

Many studies have shown that dynamic partitioning policies can alleviate the problem 
of adapting to workload changes, at the expense of additional reconfiguration overhead 
[13, 15, 7, 4, 9, 12, 10, 14]. In particular, [15, 7, 4, 9] analyze the benefits of dy- 
namic partitioning on uniform-access, shared-memory systems and show that dynamic 
reconfiguration policies outperform all other space-sharing policies. In the realm of 
private-memory (message-passing) systems, [ 12] have also demonstrated that dynamic 
reconfiguration policies outperform the other policies. A discussion of the effects of 
different processor scheduling policies, and reconfiguration overhead, in dynamically 
reconfigurable systems can be found in [10, 8]. 

Our work differs from the previously mentioned research in that we have imple- 
mented a working environment for a commercial message-passing system (IBM SP2) 
that supports dynamic reconfiguration of processor partitions. We provide the language 
extensions and run-time services that allow the user to easily port their existing SPMD 
applications to execute on reconfigurable partitions. We also provide all the resource 
control and scheduling mechanism to coordinate the execution of these jobs. 

As an altemative to simulation, some authors have developed analytical performance 
models of dynamically partitioned multiprocessors [8, 10, 14]. The available models, 
however, were not appropriate for evaluating the DRMS system at the level of detail we 
wanted. 

7 Conclusions 

We have implemented the Distributed Resource Management System (DRMS) for 
the IBM SP2 as a framework for application-assisted dynamic scheduling on multi- 
computer systems. The DRMS resource management and scheduling subsystem is 
capable of taking full advantage ofreconfigurable applications by dynamically changing 
their processor partitions as the system conditions change. We have measured the 
performance of DRMS using reconfigurable parallel CFD applications, determining the 
reconfiguration overhead to be in the range of 5-20s. 

We have used the performance parameters of DRMS and our application suite to 
perform a simulation study of reconfigurable vs .  non-reconfigurable scheduling policies 
under typical scientific an engineering workloads. The results from our study indicate 
that the reconfigurable scheduling policy outperforms the other policies as long as the 
job mix is such that there are sufficient job reconfiguration opportunities. However, not 
all jobs need to be reconfigurable. Thus, the RS policy is ideally suited for multiprocessor 
based supercomputing centers where the job mix has large variations with significant 
fraction of the cycles being consumed by large and long running jobs. We have shown 
that jobs from all categories benefit from a reconfigurable scheduling policy, even when 
only a fraction of all jobs are reconfigurable. In several instances of our experiments, 
the average response time across all categories was reduced by a factor of two. 

Acknowledgements: This work is partially supported by NASA under the HPCCPT-I Coop- 
erative Research Agreement No. NCC2-9000. 
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