
Application-Assisted Dynamic Scheduling on
Large-Scale Multi-Computer Systems

Ravi B. Konuru Jos6 E. Moreira Vijay K. Naik
{ ravik, moreira, vkn } @watson.ibm.com

IBM T. J. Watson Research Center
P. O. Box 218

Yorktown Heights, NY 10598-0218

Abstract. On multi-user large-scale multi-computers, application workload is
highly variable and typically unpredictable. In this paper, we present and analyze
the performance of three scheduling policies for such systems. Two of these are
static scheduling policies that assign resources at job startup time, but make no
subsequent changes in allocated resources. The third policy allocates resources
to jobs dynamically taking into account resource requirements of all jobs in the
system. We compare the performance of these three policies using the resource
reconfiguration infrastructure provided by the Distributed Resource Management
System (DRMS). On a variety of workloads we tested, our results indicate that,
among the three policies, the reconfigurable policy provided the lowest response
time for any given utilization.

I Introduction

Maximizing throughput while maintaining faimess in resource allocation to jobs is
an important resource management issue in high-performance computing systems. In
the past, on many large-scale parallel systems, jobs were scheduled on disjoint sets
of statically carved out processor partitions. Such static policies result in poor system
utilization and throughput. Current generation large-scale parallel systems have incor-
porated scheduling policies that allocate resources at job initiation. A drawback of these
policies is that once resources are committed to a job, they cannot be reallocated un-
til the job terminates. Hence, the resources cannot be adjusted quickly to changes in
demands, which in turn affects the performance adversely. Dynamic policies, that can
reshuffle allocated resources among new and running jobs, can adjust more quickly to
such changes and, thus, have the potential to deliver better system performance. To be
viable, execution of such dynamic policies should have low overheads and also the cost
of developing reconfigurable applications should not be high. Keeping this in mind, we
have implemented Distributed Resource Management System (DRMS) that provides
an environment for developing reconfigurable applications and provides the necessary
infrastructure to reconfigure such applications at run-time.

In this paper, we present and analyze the performance of three scheduling policies:
two that allocate resources when starting up a job, but make no subsequent changes
to these allocations, and a third that can dynamically reallocate resources among new
and executing jobs. We then describe the DRMS architecture and some details on the

622

infrastructure for application reconfiguration. Dynamic scheduling policies, such as
the one described in this paper, can make use of the DRMS infrastructure for dynamic
resource management. Our results show that, for a variety of workloads, the performance
of the system, in terms of job response time, is superior with the dynamic scheduling
policy. The rest of this paper is organized as follows. Section 2 presents the applications
used in our study. In section 3, the three policies implemented within the system are
described. Section 4 presents relevant aspects of the DRMS infrastructure. Section 5,
provides details regarding our performance experiments and analysis of the results.
Related research is discussed in section 6 and we finally conclude in section 7. The full
version of this paper is available as [6].

2 Applications

In this study, we used a job mix of 21 different computational fluid dynamics (CFD)
applications. These 21 applications were obtained by varying the problem size and
number of iterations of the three NAS Parallel Benchmarks [2] pseudo applications:
appbt, applu, and appsp. Table 1 lists our 21 applications, identified by the notation
application < size, iterations >. The applications have been grouped into three categories
(I,II,III) qualitatively representing small, medium, and large jobs. In Table 1, under
the job category, it is indicated the range of processor partition sizes allowed for the
execution of an application of that category. Also listed in that table are the execution
times, in seconds, when each application is run on its minimum and maximum allowed
processor partition. The memory-requirement and execution-time ranges represented
by these 21 applications is typical of supercomputing centers where both application
development (small data sets and fewer iterations) and production runs (larger data sets
and many iterations) are carried out simultaneously.

Table 1. Applications used in the experiments.

Job category Applic~ion Time on Time on Job ca~gorylApplicafion Time on Timeon
(PE range) <size,i~rs> minPEs(s) max PEs(s) (PE mnge) i<size,i~rs> min PEs(s) maxPEs(s)

appsp<64,200> 677 184 appsp<64,40000> 18332 6324
I appsp<64,400> 1271 344 appsp<80,20000> 18244 5348

(1,2,4) appsp<80,100> 827 203 appsp<102,10000> 1724fi 5195
appsp<80,200> 1419 361 appsp<126,5000> 1663~ 4746
appsp<64,5000> 4034 1327 III appbt<64,12000> 13811 4132
appsp<80,2500> 3995 1221 (8,12,16,20, appbt<80,6000> 1339~ 3961
appsp<102,1250> 3906 1176 24,28,32) appbt<102,3000> 1399(3702

II appbt<64,1600> 3554 1045 applu<64,32000> 2980(9538
(4,8,12,16) appbt<80,800> 3435 979 applu<80,16000> 1379(5237

!applu<64,4000> 7135 2169 applu<102,8000> 1699(5082
applu<80,2000> 3227 1036

All of our applications go through three phases during the course of their execution:
(i) setup phase, (ii) solution phase, and (iii) summary phase. The solution phase, which
represents the bulk of the execution time, consists of several iterations, each performing
the same number of operations. For the experiments reported in this paper, we started
with SPMD versions of the applications that were tuned for the IBM SP2 (see [11] and
references there in). We modified these by inserting DRMS annotations (see Section 4)

623

at the beginning of each iteration so that the applications can be potentially reconfigured
to execute on a different set of processors every fifth iteration.

3 Schedul ing Policies

We consider three scheduling policies for this study: (i) lazy scheduling (LS), (ii)
adaptive scheduling (AS), and (iii) reconfigurable scheduling (RS). In all cases, the
scheduler maintains arriving jobs in a queue prioritized on the arrival time. Each job
defines a list of processor partition sizes over which it can run. The policy allocates to
a job one of its eligible partitions.

The LS policy: Under the LS policy, the scheduler continuously scans the job arrival
queue and schedules the earliest job that can run on all or on a subset of the available
processors, giving it as many processors as it can take. LS is afirst tofit policy, with an
allocation preference towards maximum eligible number of processors. Once a job is
scheduled to run on a set of processors, that job runs till completion on those processors.
When the load is light, LS policy tends to schedule jobs in the order in which they
arrive (lower average queueing delays) and the number of processors allocated to a job
is towards the maximum requested by that job (smaller service time). When the load is
heavy, jobs requesting larger number of processors get lower priority (higher queueing
delays) and the number of processors allocated to a job tends to be towards its minimum
requested number of processors (longer service time).

The AS policy: Under the AS policy, whenever processors are available to schedule
jobs, the scheduler tries to schedule jobs in the order in which they arrived, but instead
of scheduling the earliest job on the maximum possible number of processors, it tries
to schedule as many of the currently waiting jobs in the arrival queue as possible. AS
is a maximum to fit with priority policy. Once a job is scheduled to run on a set of
processors, that job runs till completion on those processors. When load is light, this
policy behaves similar to LS, as each job is allocated closer to its maximum number of
processors. When load is heavy, the number of processors allocated to each job tends
to be closer to its minimum. This helps in reducing "fragmentation" of the processor
space at moderate to heavy loads and thus improves overall processor utilization.

The RS policy: Under the RS policy, when there are processors available, jobs are
scheduled in the same way as in the case of the AS policy. In addition, when not
enough free processors are available and there are jobs waiting to run, it tries to free up
processors from jobs that are currently running on more than their minimum number of
processors. Similarly, when there are no jobs waiting to be scheduled and free processors
are available, RS tries to expand one or more of the running jobs to run on a larger set of
processors. The policy incorporates parameters to determine the minimum time interval
between same job reconfigurations. The RS policy adapts processor partition sizes of
new and existing jobs to dynamic changes in the load. This policy performs the best
when jobs can be reconfigured as frequently as necessary and to any desired number of
processors. This flexibility is achieved at the cost of reconfiguring jobs that are already

624

running. The lower the reconfiguration costs and the more frequently and at a finer
granularity a job can be reconfigured, the better is the performance of the RS policy.

4 DRMS Infrastructure for Reconfigurable Scheduling

Figure 1 shows the main functional components of DRMS and the primary interactions
among these components. Resource scheduling is performed by the Resource Coordi-
nator (RC) and the Job Scheduler and Analyzer (JSA). The run-time management and
coordination of user applications is accomplished by the User Interface Coordinator
(UIC), RC, and the Task Coordinator and Run-time Monitor (TC). A run-time system
(RTS), linked to each application, coordinates with the extemal environment and prop-
agates resource requests from the program to the resource management components of
DRMS. It also implements the data distribution operations to support reconfigurable
applications. The user submits jobs and can interact with the system throughout the
course of the program execution via the UIC. For a more comprehensive description of
DRMS we refer the reader to [6]. In the rest of this section we discuss in some detail the
implementation of the job reconfiguration mechanism using the DRMS infrastructure.

Fig. 1. DRMS Architecture

The system-level allocation and scheduling decisions are made by JSA based on the
enforced scheduling policies. These decisions may use information such as application
supplied resource requests, job priorities, and current and expected workload. Policies
for making such decisions can be supplied and modified by system administrators. The
JSA communicates its decisions to RC, which interfaces with the applications.

Each user application has an associated TC, which consists of multiple agents,
one per processor on which the user application is scheduled for execution. A job
interacts with the resource management system via its designated TC. These interactions
occur only at user-specified points in the application execution called Schedulable
and Observable Points (SOPs)[3]. However, the TC coordinates external interactions
throughout the course of job execution. When the JSA decides to reconfigure a job
during the course of its execution, this decision is asynchronously delivered to the RTS
via RC and TC. At the next SOP, the RTS interprets the reconfiguration message, causes

625

synchronization among the tasks of the application, and communicates with the JSA.
After the initialization of the application's new processor partition, the RTS is informed
of the new partition information. Then the RTS, in conjunction with the TC, rearranges
the application data so that the program can run on the new set of processors. Thus, the
reconfiguration cost as seen by the application is the time elapsed between the initiation
of a resource request at an SOP to the time at which the application resumes execution
on the new set of allocated processors. Note that an application can also voluntarily
initiate a reconfiguration of its allocated set of processors. For this paper, we consider
only JSA-directed application reconfiguration.

For implementing reconfiguring policies such as RS, and also to allow applications
to modify their resources dynamically, applications must be reconfigurable, that is, they
must be able to accommodate changes in their processor partition during execution.
DRMS provides a set of language extensions and library functions for SPMD Fortran
programs that facilitate the task of designing reconfigurable applications. The extensions
are in the form of annotations (source-level comments) that are translated into executable
code by the DRMS compiler. These extensions implement the DRMS programming
model, a modified SPMD model. In the classical SPMD model, a group of processors all
execute the same code, with each processor applying the code to a different section of the
data set. In the DRMS model, a parallel program execution consists of the consecutive
execution of a number of SPMD stages, each on a (potentially) independent set of
processors.

We define a stage as a unit with its own resource requirements, data distribution, and
execution code. In our model, a stage consists of four sections: resource, data, control,
and computation sections. The resource section specifies the type and quantity of each
resource necessary for the execution of a stage. The data section specifies how the
global data structures should be distributed among the processors executing the stage.
The control section specifies values for variables that control the execution of code
inside a stage. Usually, the flow of this execution depends on resource allocation and
data partitioning. The computation section specifies the computations to be performed
in each processor, as well as the communication that occurs between processors.

5 Performance Analysis

The objective of this study is to evaluate the performance of the three scheduling
policies as implemented in the context of DRMS. We measured several performance
parameters of DRMS and used them in a DRMS system-level simulator, to evaluate the
three policies. In this section, we first present the results for performance parameters of
DRMS, followed by the steady-state performance characteristics of the three scheduling
policies, as obtained from simulation.

Performance results from DRMS: Performance parameters were measured from the
DRMS system running on a 32-node partition of the IBM SP2 [1] at NASA Ames
Research Center. We measured both the total reconfiguration time, as seen by each
application, and one of its components: the redistribution time. The redistribution time
is the time it takes to rearrange application data on the new set of processors. This

626

time is dependent on the problem size. The other components of reconfiguration, which
include acquiring and releasing processors, partition reconfiguration, and restarting the
application, depend not on the problem size but on the number of processors involved.

Table 2. Measured reconfiguration and redistribute costs for applications under DRMS.

Application

appsp<64>
appsp<80>
appsp< 102>
appbt<64>
appbt<80>
appbt< 102>
]apptu< 102>

Reconfiguration time
min (s) max (s)

4.51 7.17
5.35 5.35
6.42 20.40
4.07 12.30
6.07 7.21
7.80 9.31
5.35 11.6(

Redistribute time
min (s)] max(s)

1.15 1.94
1.69 1.69
3.52 6.66
1.31 2.74
2.37 4.90
4.08 5.94
1.42 3.44

Table 2 summarizes the reconfiguration and redistribute times measured for the
applications considered. Each application was reconfigured several times between par-
titions ranging in size from 4 to 32 processors. The table shows the maximum and
minimum reconfiguration and redistribution times observed for each application. For
purpose of simulation, we adopted times dependent only on the problem size and not
the particular application or partition sizes involved. For problem sizes of 64, 80, 102,
and 126 the reconfiguration times adopted were 8s, 1 Is, 17s, and 29s, respectively. The
redistribution times were 3s, 6s, 12s, and 24s, respectively.

The DR_MS System Simulator: Applications are modeled in the simulator at a very
high level. Each application type shown in Table 1 is characterized by its setup time,
its summary time, its iteration time, its number of iterations, and its reconfiguration and
redistribute times. The setup, summary, and iteration times for each processor partition
sizes were obtained through direct measurement. The central point of the simulator
is the job scheduler, which mimics the actions of the JSA in DRMS. The simulator is
event-driven, with 6 different types ofevents that trigger the job scheduler. At each of
these six events, the job scheduler is invoked in order to schedule jobs for execution
and decide which jobs need to be reconfigured.

Job arrival times are generated using an exponential distribution, with different
mean inter-arrival times for each job type. The mean inter-arrival time for a job type
is computed in order to deliver the desired system utilization. Measured performance
parameters are the response times and service times for each job type and for the job
mix as a whole. We measure both mean (#) and standard deviation (or) of n samples.
To reduce the correlation between successive samples, we use the batch means method
as described in [5]. After the system achieves steady state, the simulation runs until
the standard error (6 -- ~r/v/-n) of the response time is less than ~# for each job type
and also for the whole job mix. In our experiments, we use ~ = 0.01. The simulator
was validated by comparing its steady-state performance results to analytical results for
M/M/m queues [5], and also by comparing to some observed results in the real DRMS
system.

627

Performance comparison of the three policies: We present simulation results com-
paring the average response times under the three scheduling policies. Let E[R(p)]
denote mean response time under policy p, p 6 {AS, LS, RS}, when all jobs are con-
sidered together. Similarly, let E[R(p), k] denote the mean response time under policy
p, for jobs belonging to category k, k 6 {I, II, III}. For the ease of comparison, we
use the ratios E[R(AS)]/E[R(RS)] and E[R(LS)]/E[R(RS)]. We define utilization
as the job arrival rate times the ideal service time of the average job when executed
on all processors. The ideal service time of a job when executed on all processors is
determined as the execution time on a single processor divided by the total number of
processors. The workloads we use for our experiments are defined by the fraction of the
utilization produced by jobs from categories I, II, and III. For our experiments, we used
six workloads. We varied the fraction of utilization from category I from 5% to 55%
in steps of 10%, we kept the fraction from category II fixed at 25%, and we varied the
fraction from category III accordingly, from 70% to 20%. In our notation, a workload
of 05:25:70 means that 5%, 25%, and 70% of the utilization are from category I, II, and
III jobs, respectively. Within a category, applications arrive with the same rate. We did
not allow jobs from category I to be reconfigured.

Shown in Figures 2(a) and 2(b) are the response time ratios E[R(LS)]/E[R(RS)]
and E[R(AS)]/E[R(RS)], respectively, as function of utilization and workload. The
response time with RS policy is always better than with the other two policies, and
AS performs better than LS. For a given workload, the performance of RS first gets
better with increasing utilization and then the advantage diminishes at high utilization.
Similarly, as the proportion of small jobs in the workload is increased, the advantage of
RS policy initially increases and then it decreases.

We plot the average response times for the three policies in Figures 2(c)-(f), for all
jobs combined and for each category individually. For these experiments, we have used
a workload of 25:25:50. We observe that jobs from all categories benefit with RS policy,
but category I jobs benefit the most and category III jobs the least. Under RS policy, any
excess over a minimum number of processors allocated to medium and large jobs (i.e.,
category II and III jobs) can be taken away to schedule new jobs. This benefits the small
jobs the most since they can be accommodated more often, thus reducing their queueing
delays. AS policy performs significantly better than the LS policy for category I jobs.
For the other two categories, with a workload of 25:25:50, performance of AS is not
significantly different from LS. Thus, much of the gains obtained with RS policy are
because of its ability to reconfigure running jobs.

We conducted a series of four additional experiments to determine the sensitivity
of the RS policy to various parameters. For brevity, we only report here some general
observations. First, we repeated our simulations under an ideal condition in which re-
configuration takes zero time. We found that the average response time, for all jobs
combined, decreases by at most 10% as compared to the results reported in Figure 2.
In the second additional experiment, we allowed jobs of category I to reconfigure and
we found no significant difference in results. In the third additional experiment, we
restricted the range of valid partition sizes for each category. Valid sizes for category I
were { 1, 4 }, for category II { 4, 8, 16 }, and for category III{ 16, 32 } (compare to Ta-
ble 1). We found a significant negative impact on the average response time, especially

628

of =verage meponse ume L.StRS, Idl cm~s RICO Ol J~erage mspon=) ~ A~, all ~ l e g o ~ e s

70IX

j-

'~-_.~o. ~ ' X / / ~ o . ~ ~ 0.8 0 (~ . -

(a)
P~IaFO~sa l i ~ Ior vm~kkmd = (2'~.25,50), all Gmegexies

'o
x ~

0,9

(0
l l ~ I~ woddosa - (2'.25.,T)0), category II

40O0

3"ao0

3OOO

E

0.8 0.6 0,4 0.2

(b)
Response line I=" ~ - (25.2~.50), c=egor/ I

oLS

0.1 0.2 0.3 04 0 5 06 (] 7 Os 0.9

(d)
x 104 Response lime for workload. 125,25,501. category III

25

2

oLS
1.5

x~ .q

1

0,1 0.2 0,3 0.4 Os 0.6 0.7 08 0.9 051 0.1 0.2 03 0.4 O.S 06 O7 0,8
UlltLUSttOn krdltzal~on

(e) (0
Fig. 2. Average response times with AS, T,S, and RS policies.

at higher utilization. This impact can be explained by the diminished reco]ffiguration
flexibility of the applications. Finally, we performed an experiment where we varied the
minimum interval between reconfigurations for each application. A smaller reconfigura-
tion interval implies quicker response to load changes, but also implies potentially more
reconfiguration events and thus overhead. We varied the minimum interval between
reconfigurations from 2 to 20 times the recortfiguration time of the application, with
little impact on the average response time.

629

6 Related Work

Many studies have shown that dynamic partitioning policies can alleviate the problem
of adapting to workload changes, at the expense of additional reconfiguration overhead
[13, 15, 7, 4, 9, 12, 10, 14]. In particular, [15, 7, 4, 9] analyze the benefits of dy-
namic partitioning on uniform-access, shared-memory systems and show that dynamic
reconfiguration policies outperform all other space-sharing policies. In the realm of
private-memory (message-passing) systems, [12] have also demonstrated that dynamic
reconfiguration policies outperform the other policies. A discussion of the effects of
different processor scheduling policies, and reconfiguration overhead, in dynamically
reconfigurable systems can be found in [10, 8].

Our work differs from the previously mentioned research in that we have imple-
mented a working environment for a commercial message-passing system (IBM SP2)
that supports dynamic reconfiguration of processor partitions. We provide the language
extensions and run-time services that allow the user to easily port their existing SPMD
applications to execute on reconfigurable partitions. We also provide all the resource
control and scheduling mechanism to coordinate the execution of these jobs.

As an altemative to simulation, some authors have developed analytical performance
models of dynamically partitioned multiprocessors [8, 10, 14]. The available models,
however, were not appropriate for evaluating the DRMS system at the level of detail we
wanted.

7 Conclusions

We have implemented the Distributed Resource Management System (DRMS) for
the IBM SP2 as a framework for application-assisted dynamic scheduling on multi-
computer systems. The DRMS resource management and scheduling subsystem is
capable of taking full advantage ofreconfigurable applications by dynamically changing
their processor partitions as the system conditions change. We have measured the
performance of DRMS using reconfigurable parallel CFD applications, determining the
reconfiguration overhead to be in the range of 5-20s.

We have used the performance parameters of DRMS and our application suite to
perform a simulation study of reconfigurable vs . non-reconfigurable scheduling policies
under typical scientific an engineering workloads. The results from our study indicate
that the reconfigurable scheduling policy outperforms the other policies as long as the
job mix is such that there are sufficient job reconfiguration opportunities. However, not
all jobs need to be reconfigurable. Thus, the RS policy is ideally suited for multiprocessor
based supercomputing centers where the job mix has large variations with significant
fraction of the cycles being consumed by large and long running jobs. We have shown
that jobs from all categories benefit from a reconfigurable scheduling policy, even when
only a fraction of all jobs are reconfigurable. In several instances of our experiments,
the average response time across all categories was reduced by a factor of two.

Acknowledgements: This work is partially supported by NASA under the HPCCPT-I Coop-
erative Research Agreement No. NCC2-9000.

630

References

1. Agerwala, T., Martin, J. L., Mirza, J. H., Sadler, D. C., Dias, D. M., and Snir, M. SP2 system
architecture. IBM Systems Journal, 34(2): 152-184, 1995.

2. Bailey, D., Barszcz, E., Dagum, L., and Simon, H. NAS parallel benchmark results. IEEE
Parallel & Distributed Technology, 1:43--51, 1993.

3. Ekanadham, K., Moreira, J. E., and Naik, V. K. Application oriented resource management
on large scale parallel systems. In Dharma P. Agrawal, editor, Proceedings of the 1995 ICPP
Workshop on Challenges for Parallel Processing, pages 56~53, August 14 1995.

4. Gupta, A., Tucker, A., and Urushibara, S. The impact of operating system schedulingpolicies
and synchronization methods on the performance of parallel applications. In Proceedings of
the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
May 1991.

5. Jain, R. The Art of Computer Systems Performance Evaluation. John Wiley & Sons, New
York, 1991.

6. Konuru, R. B., Moreira, J. E., and Naik, V. K. Application-assisted dynamic scheduling
on large-scale multi-computer systems. Technical Report RC 20390, IBM Research Di-
vision, February 1996. Available at http://www.watson, ibm. com: 8080/main-
cgi-bin/search_paper.pl/entry_ids=7991 .

7. Leutenneger, S. T and Vernon, M. K. The performance ofmultiprogrammed multiprocessor
scheduling policies. In Proceedings of the ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 226-236, May 1990.

8. Madhukar, M., Leuze, M., and Dowdy, L. Petri net model of a dynamically partitioned
multiprocessors system. In Proceedings of the Sixth International Workshop on Petri Nets
and Performance Models, pages 73-82, October 3-6 1995.

9. McCann, C., Vaswami, R., and Zahorjan, J. A dynamic processor allocation policy for mul-
tiprogrammed shared-memory multiprocessors. ACM Transactions on Computer Systems,
11(2):146-178, May 1993.

10. McCann, C. and Zahorjan, J. Processor allocation policies for message-passing parallel
computers. In Proceedings of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 19-32, May 1994.

11. Naik, V. K. A scalable implementation of NAS parallel benchmark BT on distributed memory
systems. IBM Systems Journal, 34(2):273-291, 1995.

12. Naik, V. K., Setia, S. K., and Squillante, M. S. Processor allocation in multiprogrammed,
distributed-memory parallel computer systems. Technical Report RC 20239, IBM Research
Division, October 1995. Submitted to Journal of Parallel and Distributed Computing.

13. Park, K.-H. and Dowdy, L. W. Dynamic partitioning ofmultiprocessor systems. International
Journal of Parallel Programming, 18(2):91-120, 1989.

14. Squillante, M. S. Job Scheduling Strategies for Parallel Processing, volume 949 of Lecture
Notes in Computer Science, chapter On the benefits and limitations of dynamic partitioning
in parallel computer systems, pages 21 9-238. Springer-Verlag, 1995.

15. Tucker, A. and Gupta, A. Process control and scheduling issues for multiprogrammed shared-
memory multiprocessors. In Proceedings of the 12th.4 CM Symposium on Operating Systems
Principles, pages 159-166, December 1989.

