
Flexible Scheduling for Non-Deterministic, And-parallel
Execution of Logic Programs

Kish Shen 1 and Manuel V. Hermenegildo 2

Department of Computer Science, University of Manchester, United Kingdom
2 Department ofComputer Science, T.U. ofMadrid (UPM), Spain

I Introduction and General Approach

We summarise our study of an important (but rarely examined) aspect of parallel execu-
tion in logic programming (LP): memory management, and the closely related issue of
scheduling. We examine these issues in the context of implicit and-parallelism in non-
deterministic programs, because it presents some of the most general problems (see [8]
for justifications). This abstract is a highly condensed version of [8], and the reader is
referred to that paper for details.

We use the "sub-tree" (or "multi-sequential" approach), where the computation is
divided into "chunks" (tasks) which are worked on by individual processing agents
(workers) cooperatively in parallel. To retain much of the sequential efficiency of state
of the art sequential LP systems while achieving performance improvements through
parallelism, each task is executed by the worker in much the same way as in a sequential
implementation, except that parallel work can be made available for other idling workers
during such execution.

Like in sequential LP systems, efficient memory management of parallel LP systems
can be achieved by doing stack-based memory management, though parallelism intro-
duces extra complications. Each worker has its own stack, and the stack of a sequential
implementation thus becomes a distributed stack, with its state physically distributed
across the various workers' stacks, but logically forming a single stack structure. For
non-deterministic and-parallelism, where forking and joining of tasks can occur, addi-
tional data structures are needed to link and manage the physical distribution of the stack.
These structures - - markers - - form the basis of the marker scheme, first introduced
in [2]. Essentially, when each worker is working on a task, it uses its stack in much the
same way as a sequential implementation would, but when it finishes the task and picks
up another task to work on, a marker is allocated onto the stack to separate the memory
areas used by the new task from those used by the old one and also to logically link and
help manage the various sections of stacks used by the tasks. However, as pointed out
in [2], the ability of Prolog to perform search, i.e. backtrack and try different alternative
solutions, presents special problems for a distributed stack scheme - the problems of
"trapped goals" and "garbage slots" (also referred to as "holes" in or-parallel systems):
in a sequential system, backtracking causes the stack to shrink in size, and subsequent
execution of an alternative causes the stack to grow again. By the same token, in a dis-
tributed stack scheme when a task backtracks, the stack section representing the task
first shrinks and then grows again. However, because a worker's stack contains all the
stack sections of the tasks it executed, the stack section that is being backtracked may
not be at the top of the stack, and such stack sections are "trapped" by the stack sections
following it on the worker's stack.

636

One way to avoid such problems, proposed in [2], is to restrict the scheduling of tasks
so that a worker selects only tasks which would be executed in a sequential system later
than the task it just completed ("appropriate" tasks). This ensures that backtracking can
only occur in the topmost stack section of a worker but at the cost of having to determine
appropriateness of tasks during scheduling and reducing parallelism. The reduction in
parallelism can be partially overcome by allocating multiple stacks to each worker, but
at the cost of a higher amount of (virtual) memory allocation, since each stack should be
big enough to avoid high reallocation costs if it becomes full.

Because of these problems, alternative solutions were developed which lift the re-
striction on scheduling and allow backtracking in non-topmost stack sections. The pur-
pose of this paper is to briefly sketch this newer approach which allows for flexible
scheduling, and to present our experimental results which support our belief that the
new approach is better than the previous proposal. For concreteness (and also because
our experiments were performed on it), we shall discuss the scheme as implemented in
the dependent and-parallel system DASWAM [5], which has many similarities to the
scheme originally developed for the independent and-parallel &-Prolog [3]. A similar
scheme has since also been implemented in the &ACE system [1].

2 A New Approach Allowing Flexible Scheduling

The new approach basically separates the shrinking from the subsequent regrowth of a
stack section. In a sequential system, and in the original restricted scheduling scheme,
backtracking causes the stack to shrink by popping items off the top of stack, and then
when execution resumes, items are reallocated at the top of the same stack. In the new
approach, shown in Fig. 1 if backtracking occurs in a non-topmost stack section the stack

a) Backtrack in the original section

-T
Continuation M a r k e r "

i~i~i~i~ ~

b) Resuming forward execution in a new section

_ooO,.'- ~ <~

c) Purlher baektra~kia into old section

Figure 1. New Approach to Backtracking

is shrunk in that section, but subsequent regrowth occurs at a new location: the top of the
stack of the worker that will execute the next alternative. This is done by introducing a
specialised marker - the continuation marker - which links the partially shrunken old
stack section and the new "regrowth" stack section together. Fig. la shows the shrinking
of a non-topmost stack section during backtracking: the still allocated memory is shown

637

in dark gray, and the deallocated memory is shown in white with a diagonal dotted line
across it. After backtracking, a continuation marker is allocated in the stack in which the
task is to be continued, and it carries sufficient information to allow backtracking to take
place in the previous stack section, by having pointers into that previous stack section,
as shown in Fig. lb. If backtracking occurs in the new stack section, and it continues to
the continuation marker, further backtracking is facilitated by following the pointer in
the continuation marker to the old section. The old section is shrunk further, and then
forward execution is resumed after updating the pointer in the continuation marker, as
shown in Fig. lc. If the whole section is shrunk to nothing, it can be unlinked entirely.

3 Evaluation of the impact of flexible scheduling

In order to evaluate the impact of the flexible scheduler for a fixed amount of virtual
memory consumption we have compared the speedups obtained for the restricted sched-
uler and the flexible scheduler using the same number of stacks. We used ten programs,
two of which can be considered as application type programs: 'Orsim', which is a sim-
ulator used for studying or-parallelism, and 'Ann' , an automatic program paralleliser.
Both of these programs are quite complex and contain over 1000 lines of source Pro-
log code. The other programs are simpler benchmark type programs, although some of
them imply large executions. Excepting 'Qsort ' , they were chosen because they provide
reasonably good speedups, as we expect the differences between the two schedulers to
show up most clearly for programs with large speedups. 'Qsort' is used to see how a
program with lower speedups would behave under the two schedulers.

We wish to compare the two schedulers in a machine independent way, so that our
results are as generally applicable as possible, i.e. we are interested in the parallelism
extracted by the two schedulers. To do this, we used the pseudo-parallel DASWAM
system, which simulates parallelism, and obtains speedup figures which can be consid-
ered as the amount of parallelism available in the model, because it does not take hard-
ware and software overheads for parallelism into account. Such idealised speedups are
of great importance, because they allow for machine independent evaluation, better in-
terpretation of actual parallel results, and even meaningful comparison between systems
which exploit different types of parallelism (see [10, 11, 9, 7]). Note that such a compar-
ison favours the restricted scheduler, as it does not take the cost of checking if a goal is
suitable for execution or not into account in the computation of the speedups. In addition
to comparing the two schedulers, we also ran the programs with an actual parallel imple-
mentation of DASWAM on a 26 processor Sequent Symmetry using the flexible sched-
uler. Nine of the ten programs show some differences in the speedups obtained by the
two schedulers (bt_cluster was the only program that showed no difference), and these
are shown in Fig. 2, along with the actual speedups from the parallel implementation.
The actual speedups generally agree very well with the simulated speedups of the flexi-
ble scheduler, and in some cases they are so close that the lines representing the speedups
are difficult to separate in the graphs. This shows that indeed the simulated speedups are
meaningful, reaffirming the results from other studies [6]. For the nine programs, the
results show that the flexible scheduler produces better, and in some cases much better,
speedups than the restricted scheduler, for the same number of stacks. In practice, we
expect the differences to be perhaps greater, because of any cost in checking for "ap-
propriate goals". The figures also provide information on the speedups attainable with
the restricted scheduler if an unbounded number of stacks were allowed: in this case the
restricted scheduler would achieve at most the same speedup as the flexible scheduler

6 3 8

D e r l v

!'!
N u m b e r o f w m k e x s

l i:ii)iiii !!!!i!!i:!!i:iii!!',!

N u m b e r o f workers

: Boyer (wff2)

N u m b e r o f workers

20 M a r x (s iz~3O) Qsort (L--4~)

~ 6 . .~ : i ! i i i . , I . ~ : ' z 4 . ~ :....,,. i i " ,

i4 . .~. . .! . . . i . . .~i ~ '~ i ~ : 2 .0 - - - - ' ,
n . . i . . i - . i . . ! . . i- ~ r s -..-'

,,, s . . ! . . ! . . ! . . ; , ~ : l : ~ :-i' I [

22 , T a k ~ N = I 4) 26 A n n (11~ c l a u s) .

2 0 l . . i . . i . . i . . ~ . . i . . i i . :: i : ~ - ~ i i : i i : i . . i - . . . ! . :..:.

l S t - - ~ - - ~ - - ! ; i i i--] ', i . -~ . : 2,?.] : : : - : . ~--" : ' 1 6 - ~ , , 20 " - ' ~ - ' - i I . . . ~ . A . . ~ ;

| 0 --~---i---',---~ ~ ~ ~z - - i - - i - +
~ 1 o . . . ~ . ' , ',

6 : .
4 : ' ~ [',..~ : . : . . : . . : . . : . . . L . L . L . L .

N u m b e r o f workers

3 2 H a n o i (D = I ~
30 : q : ~ : ~ ' ' '

24 . . - : . - : - . : . . : . : . - : :

~ 16 ~. A .

::i:::::: 'I
4 : -i '

N u m b e r o f workers

30 O r s l m (on ' A t l a s ' }
28 --~--~ : ~ - i L ~ ' i , - . , ~ : ~ ~ : ' "
26 . . . ~ . . : . A . A A : ; , ; : , ~ r

2 2 - i . . ; : : A : J :

18Li - i . 1,6t

2

0 ;~ 4 o ~ i v t ' z [~ x ~ [~ b ~ z z a 2 o 2 ~ J v . ~
Number o f workcn~

S i m u l a t e d R e s t r i c t e d ~ S i m u l a t e d F l e x i b l e] A c t u a l F l e x i b l e

Figure 2. Comparison of speed-ups for the two scheduling strategies

(the difference limited by the cost of determining appropriateness of goals and chang-
ing stacks), and the number of stacks that would be required to achieve the this speedup
can then be read from the graphs: it is equal to the number of workers needed for the
restricted scheduler (with one stack per worker) to achieve this speedup. While in some
cases (such as Matrix). this does not imply a high number of stacks, in others (such as
Ann) this number can be very high (sometimes
proportional to the depth of parallel recursions).
Another disadvantage for the restricted sched-
uler is that we have found its speedup to be quite
sensitive to the ordering of body goals in re-
cursive clauses. There is insufficient space to
present a more detailed analysis of the results;
the interested reader is again referred to [8].

In addition to comparing the parallelism ex-
tracted, we also evaluated the memory perfor-
mance of both schedulers in detail. Again, only
a brief summary of this can be presented here.
In Table 1 'Seq.' gives the total number of

Prog Seq. par llexl0 resl0
Boyer 7365x 24.0• 23.2• 23.4x
Orsim 609213• 1.42• 1.42x 1.42x
Tak 142x 346• 330• 291x
[Hanoi 163372x 14.2• 13.8• 13.8•
Ann 46893x 1.15• 0.98• 1.05x
Occur 247680• 1.23x 1.64• 1.25x
Deriv 63058• 7.00x 6.81• 6.82•
Matrix 5870• 10.9• 10.9• 10.8x
Qsort 11223• 3.54• 3.47• 3.47x
Cluster 5024 x 7.27 • 7.07 • 7.07 •

Table 1. Memory Usage Comparisons

words of memory used by the (sequential) programs running on a sequential WAM. All
the other columns are the amount of memory usages relative to this number: 'par ' for
the annotated program on one worker, ' f lexl0' for the annotated program on 10 work-
ers with the flexible scheduler, and ' res l0 ' for the annotated program on 10 workers

639

with the restricted scheduler. Briefly, these results show that the flexible scheduler does
not consume significantly more (physical) memory than the restricted scheduler (and
it obviously consumes much less virtual memory, if the number of stacks is left un-
bounded). However, both schedulers sometimes consume significantly more memory
than a sequential implementation. This memory consumption result, although shown
to be smaller than that of other and-parallel systems using alternative memory manage-
ment schemes [8], strongly justifies recently proposed optimizations for special cases
such as deterministic computations [2, 4]. However, note that the memory consumption
only tends to be much larger for small, benchmark type programs; the memory consump-
tions for the more realistic application-typeprograms (Orsim and Ann) are not excessive
compared to the sequential consumption (Ann in fact consumes somewhat less memory
in parallel because of parallelisation derived optimizafions). The results also show that
the memory consumption does not seem to increase significantly with more workers.
Also, not shown by the summary here (but discussed in [8]), the memory usage is more
evenly distributed across the workers for the flexible scheduler.

Finally, in [8] we also point out that the new data marker introduced can be applied
to allow the efficient handling of the very general form of suspension that can occur in
systems which support concurrency or combine several types of and-parallelism. We
believe that the results are applicable to many and-parallel (and, also, or-parallel) sys-
tems.

References

1. G. Gupta, M. V. Hermenegildo, E. Pontelli, and V. Santos Costa. ACE: And/Or-parallel
Copying-based Execution of Logic Programs. In Proc. ICLP, 1994.

2. M. V. Hermenegildo. An Abstract Machine Based Execution Model for Computer Architec-
ture Design and Efficient Implementation of Logic Programs in Parallel. PhD thesis, U. of
Texas at Austin, 1986.

3. M.V. Hermenegildo and K. J. Green. &-Prolog and its Performance: Exploiting Independent
And-Parallelism. In D. H. D. Warren and P. Szeredi, editors, Logic Programming: Proceed-
ings of the Seventh International Conference, pages 253-268. The MIT Press, 1990.

4. E. Pontelli, G. Gupta, D. Tang, M. Carro, and M. Hermenegildo. Improving the Efficiency
of Nondeterministic And-parallel Systems. Computer Languages Journal, 1996. In Press.1

5. K. Shen. Studies of And/Or Parallelism in Prolog. PhD thesis, U. of Cambridge, 1992.
6. K. Shen. Initial Results from the Parallel Implementation of DASWAM. Accepted at Joint

International/Symposium of Logic Programming, 1996.
7. K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism. J. of Logic

Prog., 1996. In Press.
8. K. Shen and M. V. Hermenegildo. Flexible Scheduling and Memory Management Scheme

for Non-deterministic, And-parallel Execution of Logic Programs. Technical Report, 1995.
9. K. Shen and M. V. Hermenegildo. High-level Characteristics of Or- and Independent And-

parallelism in Prolog. Int. J. of Parallel Prog., 1996. In Press.
10. K. Shen and D. H. D. Warren. A Simulation Study of the Argonne Model for Or-Parallel

Execution of Prolog. In Proc. Fourth SLP, 1987.
11. P. Szeredi. Performance Analysis of the Aurora Or-Parallel System. In Proc. NACLP, 1989.

1 Articles in press and technical reports
"http://www. c l ip . dia. f i . up,.. es/".

are available at

