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Abs t rac t .  In this paper, a. theoretical characterisation of the topolog- 
ical errors which arise during the approximation of Euclidean distances 
from discrete ones is presented. The continuous distance considered is 
the widely used Euclidean distance whereas we consider as discrete dis- 
tance the chamfer distance based on 3 x 3 masks. The objective is to 
obtain formal results from which algorithms for the exact solution of the 
Euclidean Distance Transformation using integer arithmetic can be de- 
rived. We conclude this study by presenting a global upper bound for a 
topologically-correct distance mapping, irrespective of the chamfer dis- 
tance coefficients, and identify the smallest coefficients associated with 
this bound. 

1 I n t r o d u c t i o n  

The main motivat ion of this work is to analyse the mapping  between continuous 
(Euclidean) and discrete (chamfer) distances on the unit square grid [7]. 

Section 2 first recalls general digital image processing terminology and the 
principles behind approximating continuous distances by discrete ones. In [3, 4], 
empirical results were presented to point out that  the pixel ordering induced 
by the chamfer (discrete) Distance Transformation (DT) only matches with the 
ordering induced by the Euclidean (continuous) Distance Transformation up 
to some upper bound. In Section 3, we establish this in mathemat ica l  terms 
and obtain a closed form solution for such upper  bounds for any given DT 
coefficients. The objective is first to characterise the topological errors in the 
mapping  between continuous and discrete distances, and then to derive distance 
bounds which guarantee an error-free t ransformation.  Finally, Section 3.3 details 
the characterisation of integer DT coefficients which are proved to be optimal  
for such a criterion. 

While studying in depth the calculation of Euclidean distance values using 
discrete distance functions, we will derive results concerning the decomposition 
of integer values which can then form the basis for the development of exact 
Euclidean Distance Transformation algorithms (see e.g., [8]). 

* Work supported by the EPSRC, UK (grant reference number GR/.J85271). 
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2 Def in i t ions  and N o t a t i o n s  

We consider throughout these pages that  the continuous distance used is the 
Euclidean distance dE defined as dE(p, q) = ~ ' v  - xq) 2 + (Yp - yq)2, where 
P = (xv, Yv) and q = (xq, yq). We introduce the notation for some standard 
functions. [x] is the smallest integer greater or equal to than x E IR and [x] 
is greatest integer smaller or equal to than x E IR. Then, round(x) = [xJ if 
LxJ <_ x _< [xj + ½. Otherwise, round(x) = Ix1. 

In approximating the Euclidean distance on the discrete grid, chamfer dis- 
tances were introduced in [5,6] and studied in [1,2]. Such discrete distances 
typically rely on the definition of local distances within a mask centred at each 
pixel. We will consider chamfer distances in relation to 3 x 3 masks. We define 
a as the length of the unit horizontal/vertical move (a-move) on the grid, and b 
as the length of the unit diagonal move (b-move) on the grid. Given two points 
p and q, the chamfer distance da,b(p, q) between p and q can be computed as 
follows. 

da,b(p, q) ----. kaa + kbb (1) 

where ka and kb represent the number of a- and b-moves on the shortest path 
from p to q on the grid. The conditions on a and b for da,b to be a distance are 
given in (2) below (see [9] and [12] for more details). 

0 < a < b < 2a (2) 

The number of a- and b-moves (ks, kb) on the shortest path from p to q can also 
be used to compute the Euclidean distance between p and q. 

dE(P, q) = ( ~  + kb) ~ + k~ (3) 

Without loss of generality, we restrict this study to a and b values such that  a and 
b are relatively prime (i.e., the Greater Common Divisor of a and b, gcd(a, b), is 
such that gcd(a, b) = 1). This corresponds to normalising the a and b coefficients 
to their minimal configuration. 

Forchhammer [3,4] pointed out that  topological errors occurred when de- 
ducing a Euclidean Distance Map from a Discrete Distance Map. This work 
was based on the distance inequalities to be satisfied during the generation of 
the Distance Map. From this study, he derived empirical results concerning the 
limitations of discrete distances in approximating continuous ones. In the next 
section, we formally detail these topological errors induced by the approxima- 
tion of continuous distances by discrete ones and present distance limits as upper 
bounds for the correctness of the Distance Maps. 

3 T o p o l o g i c a l  E r r o r s  

In [3,4], Forchhammer introduced the topological inconsistencies induced by the 
discrete distances when used as an approximation of the Euclidean distance. 



201 

Essentially, the ordering of the discrete distance does not match the ordering 
of the Euclidean distance. Consider the following example (see Fig. 1). Let the 
DT coefficients be a = 2, b = 3, and consider the three integer points (pixels), 
p = (0, 0), q = (10, 1) and r = (9, 4). The shortest path on the grid from p to 
q is given by ka = 9 and kb = 1 and that  from p to r is given by k~ = 5 and 
kb : 4. Using Equations (1) and (3), we have da,b(p, q) = 21, dE(p, q) = 1~-~,  
da,b(p, r) = 22 and dE(p, r) = v /~ .  If q and r are border pixels, the discrete DT 
will lead to consider q as the nearest border pixel to p (by the chamfer distance 
measure) giving an approximate Euclidean distance of x/]"0-i'. This is clearly 
incorrect since there is a smaller Euclidean distance between p and another 
border pixel (namely r) giving a Euclidean distance of Vr~. In other words, 
since, da,b(p, q) < d~,b(p, r) and dE(p, q) > dE(p, r), the ordering of d~,b differs 
from the ordering of dE. 

P 

Fig. 1. An example of a topological error. 

Given a pair of DT coefficients (a, b), we characterise the configurations for 
which this problem occurs precisely. First, we introduce how restrictions for the 
decomposition of a given discrete distance value D into a- and b-moves can be 
given by the solution to the Frobenius problem (see [11]). 

T h e o r e m  1. [11]. Given 0 < a < b such that (a,b) E IN ~ and gcd(a,b) = 1. 
Consider the equation: kaa + kbb = D (k~, kb) e ~ 2  I f  x = (a - i)(b - 1), then 
we have the following instances. 

(i) t f  D > X, there is always at least one solution (ka, kb). 
(ii) I f  D = X - 1, there is no solution. 

(iii) There is exactly i X values o l D  that have no solution. 
2 

We will use the solution to this classical problem to characterise the topological 
error introduced earlier. Two types of errors are distinguished and presented in 
Sections 3.1 and 3.2 respectively. 

3.1 T y p e  1 e r r o r  

Given a pair of DT coefficients (a, b) and three integer points p, q and r, a 
Type 1 error occurs between q and r relative to p if d~,b(p, q) = d~,b(p, r) and 
dE(p, q) # dE(p, r), More formally, we make the following definition. 

Def in i t i on  2. Type t error. Given a pair of DT coefficients (a, b) and a discrete 
distance value D, a Type 1 topological error occurs if there exist two integer 
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pairs (ka~,kb~) and (ka~,kb~) such that  k ~ a +  kb~b = kava + kb2b = D and 

+ + # + 
b 2 '  

An example for Type 1 error is illustrated in Fig. 2 where, (kay, kb~) represents 
the shortest path from p to q, and (ka2, kb2) the shortest path from p to r. In this 
example, the DT coefficients are a = 2 and b = 3, and the three integer points are 
p = (0, 0), q - (3, 0) and r - (2, 2). We obtain da,b(p, q) = d~,b(p, r) = D = 6, 
since k~ = 3, kb~ = 0 and ka2 = 3, kb~. = O. On the other hand, we have, 
dE(p, q) = 3 and dE(p, r) = V~. 

Fig. 2. The first instance of Type 1 topologicM error for (a, b) = (2, 3). 

L e m m a  3. [7] Given a pair of DT  coefficients (a, b) and a discrete distance 
value D, we assume that the existence condition (i) in Theorem 1 holds. Then, 
the maximal value kbm~x of kb such that k~a + kbm~b = D with k~ >_ 0 and 
kbm~ >_ 0 is given by: 

kbm. = [DJ - ~ ( ( D m o d b )  moda) (4) 

where ¢ is the implicit integer function such that: 
~b: {0, 1 , . . . , a -  1} ~+ {0, 1 , . . - , a -  1} and ¢((x.(2a - b)) mod a) ---- x. 

~b can be easily calculated as a one-to-one mapping of the set {0, 1 , - - . ,  a -  1} 
onto itself. For example (see Fig. 3), if a = 5 and b = 7, the mapping is given 

by {0, t , 2 ,3 ,4}  ~ {0,2 ,4 ,1 ,3}.  Therefore, if D = 86, say, we have [DJ = 12 
and (D mod b) rood a = 2. Hence, from Equation (4), kbm,~ = 12 - ¢(2) = 

12 - 4 = 8. We can also easily compute k~ = ~-kb=~b = 6. Lemma 3 would ~2 

allow us to have all the values of kb since these can be given by (kb~o~ -- in) with 

i =  0 , - . . ,  [ ~ J .  Therefore, the pairs (ha, kb) for the decomposition of D = 86 

are (6,S) and (13,3). 
Thus, Lemma 3 readily gives an exhaustive list of (ka, kb) pairs for decom- 

posing any discrete distance value D for any DT coefficients a and b. Note that,  
if Condition (/) in Theorem 1 is not matched (i.e., no possible decomposition), 
we obtain k b ~  < 0 (e.g., a = 3, b = 4~ X = 6, if D = 5 = X -  1, we obtain 
kb~,~ = --1). This simple test can prove useful when developing the mapping 
algorithms. 

D e f i n i t i o n  4. Given a pair of DT coefficients (a, b) and a discrete distance value 
D which can be decomposed in at least one manner, we define: 
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D=86 

Fig. 3. All decompositions for D = 86. 

- The set O = {(kay, kb~), i = 0 , . - . ,  n} as the exhaustive list of all possible 
decomposition pairs (i.e., D = kala + kbib, kai >_ 0, kb~ >_ 0 Vi = 0 , . . - ,  n 

= [kba-2~J). Note that  kbm,x = max4=0,...,n kbl and, kbl = kbmax 
/ / 

with n ia. 

Therefore, the set O can be fully computed using Lemma 3. 
- Ri(D) as the Euclidean distance associated with the pair (kay, kb~). From 

Equation (3), we have, 

R,(z)t = + kb )2 + ul (5) 

- Rmax(D) (resp. Rmin(D)) as the maximal (resp. minimal) Euclidean distance 
over all n + 1 possible decompositions. 

- 1 (resp. m) as the index in the set O of the decomposition (/ca,, kb,) (resp. 
(ka m, kbm)) leading to Rmax(D) (resp. Rmin(D)). 

Continuing with the example in Fig. 3, we had a = 5, b = 7 and D = 86. We 
obtained kbm~x = 8, n = 1 and O = {(6, 8), (13, 3)} (i.e., R0(86) = ~ and 
R1(86) = 2 ~ ) .  Hence, m = 0, l = 1 (i.e., Rmin(D) = R0(86) = ~ and 
Rmax(D) = R1(86) = v/2-~). Note that in [7], formulae for calculating m and l 
without the need of enumeration were derived. 

L e m m a  5. Charaeterisation of a Type 1 error. Given a pair of D T  coeffi- 
cients (a, b), a Type i error occurs for any discrete distance value D for which 
Rmax(D) • Rmin(D). 

Clearly, the first instance of D for which Rmax(D) 7 ~ Rmin(D) is D = ab. In this 
case,  ]~bmax = a,  n = 1, O .~- {(0, a) ,  (b, 0)},  ( i .e . ,  R 0 = a v ~  and R1 = b). Hence, 
Rmax(ab) ¢ Rmin(ab). Therefore, we define the following Euclidean distance 
limit when considering Type 1 errors only. 

De f in i t i on  6. Euclidean distance limit induced by Type 1 error, TQ (a, b). Given 
a pair of DT coefficients (a, b), and D = ab as the minimum discrete distance 
value for which Rm~(D) ¢ Rm~x(D), we define the Euclidean distance limit 
7~1(a, b) for Type 1 errors as follows. 

7~1(a, b) is the maximal Euclidean distance value deduced from a discrete 
distance value (i.e., using Equation (3)) up to which both discrete and continu- 
ous distance ordering match. More formally, 7~1 (a, b) is the maximal Euclidean 
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distance value R such that 3 ka, kb E P,~ such that R = V/~--a + kb) 2 + k 2 and 
R < Rmax(ab). 

In other words, /~max(ab) can be considered as a strict (i.e., non-feasible) Eu- 
clidean distance limit. In order to obtain a feasible limit, we search D ~ the 
maximal discrete distance value such that  Rmin(D') <: Rmax(ab) and consider 
~i(a,  b) = Rmin(D'). Using the previous study, we can easily design an algo- 
rithm to compute, for any pair of DT coefficients (a, b), the value of "/~1 (a, b). 
In Fig. 4, (7~I(a, b)) 2 is plotted for each pair of valid DT coefficients such that 
a < 1 0 .  

Fig. 4. Euclidean distance limit induced by Type 1 of topological error (7~i (a, b)) 2. 

The following table gives the corresponding discrete distance values D = ab 
and D t for some instances of DT coefficients (a, b). 

 tRm x(ab) 
231 6 16  
34 12 13 

5 1_ 35 36 

n l  (a, b) = Rmin(D')- ] 

3.2 T y p e  2 e r ro r  

Given a pair of DT coefficients (a, b) and three integer points p, q and r, a 
Type 2 error occurs between q and r, relative to p, if d~,b(p, q) < da,b(p, r) and 
dE(p, q) > dE(p, r). More formally, we make the following definition. 

Def in i t i on  7. Type 2 error. Given a pair of DT coefficients (a, b) and two dis- 
crete distance values D1 and D2, we assume that  ~ (kal, kbl)and (ka2, kb~) such 
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that  k~la + kblb = D1 and ka2a + kb~b = D2 (see Theorem 1). A Type 2 error 

occurs if, D1 < D2 and ( ~  + kbl) 2 + k~1 > ¢ ( k ~  + kb~) 2 + k~2. 

Fig. 5 illustrates an instance of Type 2 error between q and r, relative to p. In 
this example, the DT coefficients are a = 2 and b = 3. We consider p = (0, 0), 
q = (6,0) and r = (5, 3). Therefore, D1 = d~,b(p,q) = 12, since kal = 6 and 
kb~ = 0. We also obtain D2 = da,b(p,r) = 13, since ka~ = 2 and kb2 = 3. 
On the other hand, we have dE(p, q) = ~ and dE(p, r) = x /~ .  Therefore, 
d~,b(p, q) < da,b(p, r) and dE(p, q) > dE(p, r). 

.P 

......... -: ?,, 

. q 

Fig. 5. The first instance of Type 2 topological error for (a, b) = (2, 3). 

From a geometric viewpoint, given three integer points p, q and r such that  
D1 = da,b(p, q) < D2 = da,b(p, r), a Type 2 error occurs between q and r, relative 
to p, if there exists at least one integer point (namely, r) included in the area 
between the discrete disc of radius D1 centred at p and the Euclidean disc that  
contains this discrete disc. In Fig. 5, this area is illustrated by the shaded surface. 
A Type 2 error occurs between q and r, relative to p, since r lies in this shaded 
surface. 

The geometrical characterisation of Type 2 errors will, therefore, be investi- 
gated through the characterisation of the radius of the smallest Euclidean disc 
that contains the discrete disc of radius D for any given values of the DT coeffi- 
cients (a, b) and for any discrete distance value D. The radius of such a Euclidean 
disc was noted Rmax(D) in Section 3.1 (see Definition 4). Therefore, the geomet- 
rical characterisation of Type 2 error can be formally written as follows. 

L e m m a  8. Given a pair of D T  coefficients (a, b) and a discrete distance value 
D, a Type 2 error occurs in the discrete disc of radius D if there exists a discrete 
distance value D' > D such that Rmin(D') < Rmax(D)- 

Using this characterisation, the Euclidean distance limit 7~2(a, b) induced by 
Type 2 error can be defined as follows. 

Def in i t i on  9. Euclidean distance limit induced by Type 2 error, T~2(a, b) Given 
a pair of DT coefficients (a, b), and D, the minimum discrete distance value for 
which there exists a discrete distance value D' such that R m i n ( D ' )  < Rmax(D), 
we define the Euclidean distance limit T~2(a, b) for Type 2 errors as follows. 

Tt2(a, b) = Rmin(D') where D' is the smallest discrete distance value such 
that Rmin(D') < Rm~x(D). 



206 

In other words, if a Type 2 error occurs for the discrete distance value D (e.g., 
at point q in Fig. 5, with D = 12), we consider the Euclidean distance limit as 
the value Rmin(D ~) where D ~ is the discrete distance value at the second point 
for which Type 2 error occurred (e.g., point r in Fig. 5, and D l = 13). 

Using the previous study, we can also design an algorithm to compute, for 
any pair of DT coefficients (a,b), the value of 7~2(a, b). tn Fig. 6(A), (T42(a, b)) ~ 
is plotted for each DT coefficients pair such that a < 10. The table below gives 
the corresponding discrete distance values D and D ~ ~br some instances of DT 
coefficients (a, b). 

~2(a,b)  = nmin(D")] 

,/g 
,/i7 

Using the results of Sections 3.1 and 3.2, we can now define a combined Euclidean 
distance limit where no topological error of any type can occur. 

Def in i t ion  10. Global Euclidean distance limit, T~(a, b). Given a pair of DT 
coefficients (a, b), we define the global Euclidean distance limit T~(a, b) as the 
minimum between the distance limits induced by both Type 1 and 2 errors. 
Therefore, 7~(a, b) = min(7~l (a, b), n2  (a, b)). 

T~(a, b) represents the maximal achievable Euclidean distance when growing 
topologically correct discrete discs. Equivalently, given a pair of DT coefficients 
(a, b), for any discrete distance value D such that Rm~×(D) < T~(a, b), no topo- 
logical error (of Type 1 or Type 2) occurs in the discrete disc of radius D. In 
Fig. 6(B), (7~(a, b)) 2 is plotted for each DT coefficients pair such that  a < 10. 

a=3 

• Z ~ 

4 
2 

e 

Fig.6. A:(left) Distance limit induced by Type 2 error. B:(right) Global Euclidean 
distance limit for the correctness of the EDT. 



207 

Note that,  for large values of a and b, the limit induced by the Type 2 error 
dominates. Type 1 error only dominates for the smallest possible values of (a, b) 
(i.e., a=2, b=3). For any other pair, Type 2 error dominates. The following table 
summarises the distance limits obtained for some values of the DT coefficients 
(a,b). 

a b D 7 (a,b) Type 

In summary, the results in Sections 3.1 and 3.2 lead us to the characterisation of 
a Euclidean distance limit 7~(a, b) for any pair of DT coefficients (a, b). The Eu- 
clidean distance limit can readily give a discrete distance limit via the definitions 
of Rma× and Rmin (see Definition 4). 

3.3 G loba l  E u c l i d e a n  d i s t ance  l imi t  a n d  o p t i m a l  D T  coeff ic ients  

Our aim now is to determine, whether an optimal pair exists among all valid 
pairs of DT coefficients. We define optimality here as the smallest integer pair 
of DT coefficients which guarantees the maximum achievable Euclidean distance 
limit. Using the results plotted in Fig. 6(B), we could say that,  for all pair of 
DT coefficients such that  a < 10, the pair (3, 4) is a local optimum in the sense 
that  it is the smallest pair of DT coefficients that leads to a (local) maximum 
Euclidean distance limit (i.e., 7~(3, 4) = v /~ ) .  In order to extend this result to 
any pair of DT coefficients, we will use an analytical approach rather than the 
geometric approach which was used previously. 

As suggested in Lemma 5 and Definition 6, an analytical Euclidean distance 
limit induced by Type 1 errors can be estimated by Rmax(ab). Since this limit 
increases with the values of (a,b), we pointed out earlier that Type 2 error 
dominates for greater values of DT coefficients. Hence, we will mainly concentrate 
on an analytical study of Type 2 errors and finally combine the result with those 
of the previous study of Type 1 errors. The result of this study can be stated as 
follows. 

T h e o r e m  11. Euclidean distance limit and optimal DT coefficients Considering 
the chamfer distance da,b as a discrete distance, the maximal error-free Euclidean 
distance achievable is v / ~  and the smallest integer pair of DT  coefficients that 
achieves this limit is (a, b) = (3, 4). 

We introduce the idea behind the proof of Theorem 11 (full details of the proof 
of this result can be found in reference [7]). According to the conditions in (2) 
given by 0 < a < b < 2a, a pair of DT coefficients (a, b) is valid if and only if the 
integer coordinates (a, b) in the plane (x, y) tie in the positive quadrant of the 
plane (i.e., x >_ 0 and y > 0) and between the lines y = x and y = 2x. Moreover, 
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given a pair of integer values (a, b) satisfying (2), the only integer pair of DT 
coefficients which is exactly on the line y = ~x is the pair (a, b) itself since, by 
definition, gcd(a, b) = 1. In Fig. 7, the valid pairs (a, b) such that a _< 10 and 
b _< 11 are represented as dots (o) in the plane (x, y). 

Fig. 7. Representation of the valid pairs of DT coefficients for ~.he proof of Theorem 11. 

The approach for deriving an analytical expression of the Euclidean distance 
limit for Type 2 error (i.e., g2(a, b)) is made by decomposing the region of the 
plane (x, y) delimited by the lines y = x and y = 2x, by a line y = ~x, where 
(c~,/7) is an integer pair that matches the conditions for being a pair of DT 
coefficients (see Fig. 7). For each such pair (c~, fl), we characterise a Euclidean 
distance limit in each sub-region of the plane (x, y) delimited by the lines y = z, 
y = ~x and y = 2x. Given a valid pair (a',/7), and for any pair of DT coefficients 
(a,b) different from (a ,5) ,  two c a s e s  are possible, (i): ~ < ~ or (ii): } > ~. 
Case (i) includes the valid integer points in the sub-region below y = ~x  and 
above y = x, whereas Case (ii) includes the valid integer points in the sub- 
region above y = ~x and below y = 2x. The Euclidean distance limit T~2(a, b) 
is to be investigated for the two sub-regions separately and we will refer to this 
as ~'~inf(O~,/7) and ~sup(a',fl) for cases (i) and (ii) respectively. In the example 
illustrated in Fig. 7, a = 3,/9 = 4. Then, for instance, 7~(6,  7) will include the 
Euclidean distance limit 7~nf(3, 4), since r < ~. Similarly, 7¢2(5, 8) will include 
the Euclidean distance limit T~s~p(3, 4), since gg > 4 

Hence, given a pair of DT coefficients (a, b), the Euclidean distance limit for 
Type 2 errors induced by (a, b) (i.e., 7¢2(a, b)) will result from a combination of 
all Euclidean distance limits induced by the pairs (a, ,3) in the following way. 

( 7¢2(a, b) = min min (7~inf(~,/3)), min /3))] (nsup(2, 
/ 

Proof: Given a pair of DT coefficients (a, b) and an integer pair (ct,/7) such that 
0 < ~ < /7  < 2a and gcd(a,/7) = 1, we consider two cases: (/) ~ < -~ and, (ii) 
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b > ~. It will become apparent that the equality case represents a Type 1 error 
and, therefore, as noted earlier, will not be studied here. 

An investigation of cases (i) and (ii) leads to analytical expressions for the 
Euclidean distance limits induced by each case (£ e., 7~inf (a, 3) and 7~up (a,/~), 
respectively). Details for the development of such expressions can be found in 
reference [7]. Euclidean distance limits induced by all possible values of (a,/3) 
are summarised in the table below (in this case, Ix 1 is the smallest integer 
strictly greater than x). 

]] ~J~inf ( O~,/3) T~sup (~ , /~)  

, / 2(~-~) / + ~2 

, { (  [ ~ l : ~  2 ) + {2(2.~-~)I |2(2.~-p)| 

We can now list the values of the limits for the smallest possible values of a and 
3. The following table summarises the Euclidean distance limit values obtained 
when comparing b with ~ with the first possible values of a and/3. 

34[  
3 5  
45 i  
4 7  

vrg6 
, /337 

Now, each possible combination of a, b, a and/3 creates an increasing sequence 
when ordered such that a 2 +/52 increases (e.g., the expression of 7"~inf (a,  fl) when 

> ` /2 leads to the increasing sequence ` / ~ ,  ` / ~ ,  3`/'3-~, . . .) .  Therefore, all 
possible Euclidean distance limits will be obtained as soon as we obtain a limit 
value for any range of b Using the two first lines in the previous table, we deduce ~-. 

3 b b __~ 4 b 3 that, for y < ~ < 2, T~2(a, b) = v/8; for X ~, T~2(a, b) = x/~-4; for ~ _< ~ < 3, 
7~2(a, b) = v / ~ ;  for 1 < -~ < 4, T~2(a, b) = yri6, which fits exactly the results 
shown in Fig. 6(A). 

As pointed out earlier, T~l(a,b) increases with the values of the DT co- 
efficients. Hence, clearly T~(a,b) = Ti2(a, b) for any pair of DT coefficients 
(a,b) # (2,3). Now, 7~2(2,3) = 7Zsup(3,4) = ` / ~ ,  since ~ > 4. From the 
result of characterisation of Type 1 error, we obtain 7~1 (2, 3) = v~.  Therefore, 

3) = min(7¢l (2, 3), T 2(2, 3)) - Hence, the maximal Euclidean distance 
achievable is max{(a,b)} T~(a, b) = ~/1-7. Clearly, the first pair (a,b) which realises 
this maximum is (a, b) = (3, 4). Hence, Theorem 11 holds. E] 
In summary, we have extended the results derived from the geometrical study 
presented in Section 3. Theorem 11 states that, for any DT coefficients (a, b) 
such that 4 < b < 3 the topological order is preserved in any discrete disc of 
radius D such that Rmax(D) < ~/T7. In the design of algorithms which require 
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chamfer distances, it is wise to maintain small values of the discrete distances 
computed. In this context, the minimum DT coefficients for achieving the global 
upper bound of v / ~  is (a, b) = (3, 4). 

4 C o n c l u s i o n  

The problem of approximating continuous distances by discrete ones was con- 
sidered. We formally characterised topological errors which occur during the 
mapping of distances from the discrete to the continuous space. Distance lim- 
its up to which these errors are guaranteed not to occur were derived for any 
pair of DT coefficients. Among all DT coefficients, an optimal integer pair was 
characterised and shown analytically to correspond to a global optimum. 

As by-product of this study, we obtained results which give, without the need 
of enumeration, all possible decompositions of a discrete distance value into a 
combination of moves on a shortest path on the grid. Among applications, such 
results can readily be used for the development of exact Euclidean distance 
mapping algorithms (see e.g., [8]). 
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