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Abstract 
The Supercover of a Euclidean object is the set of the pixels or voxels intersected by the 
object. The Supercover of 2D lines and 2D triangles are defined analytically. Some 
geometric properties, localization, and generation algorithms are given. The same is done 
for 3D lines, planes, and 3D triangles. 
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1. In troduct ion  

The Supercover of a continuous (Euclidean) object is the set of the pixels or voxels 
9 

intersected by the object, where a pixel (resp. voxel) is a unit square (resp. cube) of R- 

(resp. R 3) centered on a point of integer coordinates (integer point) of Z 2 (resp. Z3), the 
discrete plane (resp. space). This concept of discretization is not new. Recently, Cohen 
and Kaufman [Cohe95] reactivated this concept for volume graphics purposes. In fact, 
supercovers have interesting properties of tunnel-freeness, and interesting properties 
under set operations. More recently, [ASA96] introduces for the first time discrete 
analytical descriptions of the Supercover of a 2D line defined by two rational points, and 
of a 3D plane defined by three non-colinear rational points. Thus, discrete analytical 
modelling becomes possible. 

While in [ANF97] we extended [ASA96] by introducing discrete analytical descriptions 
of the Supercover of a 3D line, of a polygon, and of a polyhedron for discrete geometric 
modelling purposes, giving their generation algorithms, in the present paper, we develop 
systematically the geometric properties of the Supercover of a 2D line, of a 2D triangle, of 
a 3D line, of a 3D plane, and of a 3D triangle. We develop also the basic generation 
algorithms as well as point localizing algorithms. The complexity of our algorithms, in 
the general case, is proportional to the number of generated points, and can be improved 
using usual optimisation techniques. 

The paper is organised as follows. In section 2 we present the notations and the main 
definitions used in this paper. In section 3.1 we give formula for the Supercover of points 
and of boxes; in section 3.i, for i=2,3, we deal with the definition, properties and 
algorithms of the supercovers of primitives of dimension i. We conclude in section 4. 
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The algorithms are elementary" consequences of the main theorems. The main theorems 
are the characterization of the Supercover of : 

(1) a 2D straight line (resp. 3D plane) by an arithmetic line (resp. plane); 
(2) a 3D straight line by the Supercover of  its 3 projections on the orthotropic planes: 
(3) a 2D or a 3D triangle by set operations on the preceding supercovers. 

The proofs are either very elementary or long, technical, and without giving more light on 
the asserted propositions. We give thus only sketches for some of them. 

2. Preliminaries 

The set of the real numbers is noted R, the set of  the rational numbers Q, the set of the 
integers Z, and the set of the strictly positive integers N*. Lx] is the greatest integer less 

than or equal to x. [x] is the least integer greater than or equal to x. If not specified 

differently, I P l ,  where--P is rational, is a Euclidean remainder: ~P--l=p_qlP-]. The 
(qJ q [ q )  LqJ 

~eatest common divisor of the integers al ..... a,, is noted gcd(ai ..... an). The dimension 
of the space is noted n. In this article we limit ourselves to dimension ! to 3. A discrete 
point is a point in Z n. A discrete object is a set of discrete points. A Euclidean, also called 
continuous, object is a set of points in R". For a discrete object A, ~" = Z" kA. 

Apixel V(X), X(x) a ID discrete point, is defined by the Euclidean interval [ x - ~ , x + + ] .  
A pixe[ V(X), X(x,y) a 2D discrete point, is defined by the Euclidean square 

I t l [x--f,x+-~]×[y-v,y+½]- A voxet V(X), X(x,y,z) a 3D discrete point, is defined by 

the Euclidean cube[x--~,x+½]x[y-+,y+½]x[z-~,z+~]. Each pixet (voxet) has a 
unique corresponding discrete point and vice-versa. 

The Supercover S '~ of a Euclidean object S is the set of all the discrete points X with 
corresponding pixel (voxel) V(X) such that V( X) ~ S ¢- 0 .  

For a 2D point A(x,y), Ax=(x) and A,.=(y) are 1D points resulting of the orthogonal 
projections of  A on Ox and Oy. For a 3D point A(x,y,z), A~=(x), A,.=(y) ~4:=(z) are 1D 
points resulting of the orthogonal projections of  A on Ox, Oy and Oa respectively. For a 
3D point A(x,y,z), Ax,,=(x,y), A,~=(x,z) and A,:=(y,z) are 2D points resulting of the 
orthogonai projectionsofA on Oxy, Oxz and Oyz respectively. 

Let T be a 2D discrete object, then T" = {(x,y,z) [ (y,z)~ T and x ~Z} ; 1 ~ = {&,y,z) i 
(x ,z)~TandyeZ} and T~= {(x,y,z) I (x ,y)~Tandz~Z}.  

Two discrete points X(xl ..... x,,) and Y(Yt ..... y~) are two k-neighbours if lx~-y) <_ 1 for 

i~[I,n] and k~n-.dL~=t~-y~t. Two discrete points are k-adjacent if they are k- 
neighbours but not equal. The proposed notation is adapted to extensions to higher 
dimensions. A k-path in a discrete object A is a sequence of discrete points all in A such 
that consecutive pairs of points are k-neighbours. A discrete object A is k-connected if 
there is a k-path between two arbitrary points in A. For B a subset of a discrete object A. 
B is k-separating in A if A L,9 is not k-connected. A discrete object is said to be k- 
separating if it is k-separating in Z". Let A be a k-separating discrete object such that 7 
has exactly two k-connected components. A k-simple point in A is a discrete point p such 
that A ~ is k-separating. A simple point in A is a discrete point that is a k-simple point for 
some k. 

Let's consider three different Euclidean points A, B, and C. The Euclidean line containing 
A and B, is noted AB. The Euclidean line segment joining A to B is noted (AB). The 
Euclidean 3D plane containing A, B, and C is noted ABC. The Euclidean triangle with 
vertices A, B and C is noted (ABC). 
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A discrete straight line and a discrete plane have been analytically defined by J.-P. 
Reveilles in the discrete domain as solutions of  a double Diophantine inequation 
[Reve91]: 

A discrete 2D line is defined by: L(d,a,b, co)= {(x.y)~Z']O<_ ax +by+d <co}: 

a discrete 3D plane is defined by: P(d,a,b.c, co)= {(x,y,z)~Z3tO<_ax +by+cz +d <co} 

where a,b,c,d E Z n, co E N*, gcd(a,b)=l for the 2D line and gcd(a,b,c)=t for the 3D 
plane. 

The coefficients of the discrete analytical line (resp. plane) (and also the components of 
the normal vector) are a, b (and c). co is called the arithmetical thickness and d the 

translation constant of the line (plane). FI( L,X )=ax + by +d and IT( P,X )=ax + by+cz. +d are 
called the control value of L and P respectively in X. 

We can suppose without loss of generality that gcd(a,b)=l for a 2D discrete line because 
if gcd(a,b)=u>l then L(d,a,b, co)= L(hr, j,z-,z..co) where co'=L~-J+l if {7} > {~}and 

co'= L~J else. An equivalent result is verified for the discrete 3D plane. 

A discrete object is said to be k-nmnetfree if a k-path can "go through" the discrete object 

without intersection. In our case, a discrete analytical 2D line T=L(d,a,b, co) (resp. 3D 

plane T=P(d,a,b,c, co)) has a k-tunnel if there exists two k-neighbour discrete points A 

and B satisfying FI(T,A)<O and FI(T,B) >_ co. A discrete object that is 0-tunnel free is said 
to be tunnel free. 

A 2D discrete line L(d,a,b, co) is tunnel free if and only if co>tat+lbl; it is tunnel free and 

without simple points if and only if co = lal+ [hi [Reve91 ]. A 3D discrete plane P(d, a, b, c, co) 

is tunnel free if and only if co>_lal+lbl+M; it is tunnel free and without simple points if and 

only ifco=tal+lbl+tci [Andr921 [AS95]. 

Boxld(A,B), where A(xa) and B(xs) are 1D Euclidean points, is the Euclidean interval 
[min(x a, xs),max(x a, xB) ]. Box2d(A,B), where A(x~,YA) and B(xB, yB) are 2D Euclidean 
points, is the Euclidean rectangle Box2d(A,B) = Boxld(A x, B)  x Boxld(A,,B,). 
Box3d(A,B), where A(xa, yA, zA) and B(xB,yB, zB) are 3D Euclidean points, is the Euclidean 
box defined by Box3d(A,B) = Boxld(A,B)  x Boxld(A,.,B) x Boxld(A:,B._). 

A 2D discrete point (3D discrete point) in a t-path (resp. 2-path) L is called a Jordan point 
if and only if it has exactly two 1-adjacent (resp. 2-adjacent) points in L. A 1-path (resp. 
2-path) L in 2D (resp. 3D) is called a Jordan curve (also called by some authors a simple 
curve) if and only if each point of  L is a Jordan point. An umbrella at a point Y in a 2D I - 
path (resp. 3D 2-path) is a triple (X, Y,Z), where X and Z are the two l-adjacent (resp. 2- 
adjacent) points to Y in the path. 

An umbrella at a point Y in a 3D 2-connected plane is a circular permutation (up to its 
orientation) of unit squares incident to Y, included in the plane, and such that (I)  two 
consecutive squares in the permutation share a common edge, and (2) only two squares 
share a common edge. A point in a 2-connected discrete plane P is called a Jordan point if 
and only if it has exactly one umbrella incident to it. If any point of a 2-connected plane is 
a Jordan point then the plane is a 2-manifold [Fra95b] [Fra95a]. 
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3. Supercover Primitives: Properties and Algorithms 

In this section, we are going to examine the properties of several ID, 2D, and 3D 
Supercover primitives, and provide algorithms for them. The main mathematical results 
are the theorems. A Supercover primitive can have two main types of algorithms. The 
first type is a generation algorithm that generates all the discrete points of the Supercover 
of a Euclidean primitive. The second type is a localization algorithm that tells us if a given 
discrete point belongs or not to the Supercover of a Euclidean primitive. While all the 
primitives have an associated localization algorithm, only the finite sized primitives have 
an associated generation algorithm. An example for this is the 2D line. We propose a 
generation and localization algorithm for the Superoover of a 2D line segment joining two 
points but only a localization algorithm for the Supercover of  a complete 2D line. Note 
that by brute-force, it is always possible to generate the Supercover of a primitive by 
localizing all its points in a given finite sized region. 

This section is divided in three subsections corresponding to the Supercovers of boxes 
and points, and for 2D and 3D primitives. We don't  give all the details of the algorithms 
since it would be too tong but the complete algorithms are available, in a C-language 
source file, at the Supercover Home Page : 

http : / / d p t - i n f o .  u-strasbg, fr/-nehlig/Supercover, html 

The aim of this feature is to allow easy access to a basic Discrete Geometry Library for 
comparisons, tests and developments. Future revisions will include primitives for more 
complex objects, extensions on higher dimensions as well as bubble-free Supercovers. 

3 .1  Supercover  Boxes  a n d  Po in t s  

Let's consider for what follows the 3D ration'N points A(xa/R.,ya/R,za~), 

B(xB/R,y~/R,zB/R), and C(xB/R,y~/R,zJR), with xa,yA, % xo,yB, z B, XoYoZ  c ~ Z 3 and 

R~N*. Let 's  consider also the 3D discrete point Q(xe, yQ, zQ), xe, yQ, z Q ~ Z. This point is 
used in the following localization algorithms. 

Proposition 1: Supercover Boxes: 

. . . . . . . .  [t 2min(xA.xB)+R 2m~,x(xA,xB)+R ] 
1D box: (A~B~) ~ = t~ox,ata~,tJ.~) =L[ ~ -1 

J'L 7,~ j j  

2D box: Box2d(A~,,B ~,) ~ = Boxld(A.~,B.~)~ × B o x  l d (A , ,B . ) '<  

3D box: Box3d(A ,B)  °" = Box2d(A,~.,B~,.) ~ × B o x l d ( A . , B : ) %  

2D triangle bounding bo×: 

B o×_triang2d(A ~,.B~ Cx.,.) ~' = Box2d(A,B)  °~ ~ Box2d(B, C) ~ u Box2d(C.A) o, 

Box triang2d(A~,B~. C~.,.) °' = Boxld(min(A~.,BeC,),  max(A~,A,.,A:)) ~ 

× Box  ]d(min(A~, B,., C,), max(A~,B,., C,.)) ~°. 

3D triangle bounding box: 

Box triang3d(ABC) '~ = Box3d(A,B)  °~ u Box3d(B, C) ~ w Box3d(C.A)~ 

Box triang3d(ABC) ~' = Box_triang2d(A,,,B,,. ,  C~,) °~ 

× Boxld(min(A=,B:,C:),max(A:,B=,C=))C 
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The Supercover of a discrete point :s simply a particular case of an interval, therefore : 

Proposition 2: Supercover of  a ID point A: A'°= Boxld(A,A)', 

Supercover of  a 2D point: A ~ = Box2d(A,A)% 

Supercover of  a 3D point." A ~ = Box3d(A,A)% 

The Supercover of a ID (resp. 2D, 3D) point is composed of 1 or 2 (resp. I or 2 or 4. 1 
or 2 or 4 or 8) discrete points. A localization algorithm and a generation algorithm for 
points are immediately deduced, 

3 . 2  Dimens ion  2 

In dimension 2, we study the supercovers of a 2D line defined by two rational points, a 
2D line segment joining two rational points and a 2D triangle defined by three rational 
points. Let's consider for what follows the 2D rational points A(xA/R, ya/R), B(xe/R, 

yJR),  and C(xc/R, yc/R), with x A, YA, XB, YB' XO YC ~ Z and R ~N ' .  Let's consider also 

the 2D discrete point Q(xa,yQ), with xo,y Q ~ Z. This point is used in the following 
localization algorithms. 

3.2.1 2D Supercover line 

Let's consider the two points A and B and define dx = xs-x a and dy = Ys-Ya. 

If dx=dy=O it means that A=B and therefore AB ~ =A% We'll assume for what follows 
that A and B are two different points. 

aS, b ...... -dx . and d = -axA-by a. Let's define: a = GCD(ak.@) and GCD(~,dy) 

The points A and B belong to the Euclidean line L: ax+by+d/R=O. For what follows we 

CO ] R ( t a l * l b O + z d t  t R ( l a t + - t b O - 2 d  [ 
call I=-L 2/~ j and % =  2R j. The Supercover of L=AB is 

given by: 

Theorem 3: Supercover of a 2D straight line: 

AB ~ = {(x, y) ~ Z2[o), <_ ax + by <_ co,_ } = L(-co/,a,b, co,_- co , + l ) . . 

The Supercover AB ~ is a Reveitlts 2D discrete line of arithmetical thickness co = co,+/- 

cot When d/R=k, an integer, and lal+lbl even or d/R=k+l/2 and lai+lbl odd then co 
=lal+lbl+L The discrete line is then l-connected with simple points located at 4-bubbles. 
In all the other cases, co =lal+lbl and the line is a l-connected Jordan line. that is without 
simple points; these lines are called standard lines. Note that, if R=I, that is, if A and B 

are integer points, then cot= -ca),: moreover, the control values in A and B are 0. 

A 4-bubble in a 2D (resp. 3D) discrete line is a set of four different integer points 
P,P2,Pj, P~ where P~ is a l-adjacent (resp. 2-adjacent) of P2, P, ofp~, P: of P~ and P~ of  
P r  

Ex. In the Supercover of the Euclidean 2D line x+y=O any point belongs to a 4-bubble. 
The same holds for the line y=1/2, arm for the line x+2y+1/2=O. 
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Proposition 4: Location o f  4-bubbles: 

Let 's  suppose that the equation of the Supercover AB '° is: coz<_ax+by<_ co_,, with O<2a<_b. 

The Supercover AB ~ has 4-bubbles if and only if o)=--co,+ l-coj=a+b+ 1. The control values 

at the points of a 4-bubbte are cot, toe. co,-a or coz+a. The simple points are the points of  

control value co~ and co,. • 

Sketch of  proof" According to [Reve91]. a discrete line is 4-connected, without simple 
points, if and only if its arithmetical thickness is a+b; a Supercover line has thus a bubble 
if and only if its arithmetical thickness is a+b+l. Let r be the remainder at a point with 
minimum x coordinate and maximum v coordinate, belonging to a given bubble. The 
remainders at the other three points of the bubble are then r+a. r+b, and r+a+b, and these 

4 numbers have to belong to the [coj , co_,] interval. The only solution is r = c.o~, and 

r+a+b = c.o z. The last part of the proposition can similarly be obtained. 

Proposition 5: Let L be a Supercover 2D line, and let p a point of L, If p does not 
belong to a 4-bubble, then p is a Jordan point. • 

A line is not of finite size, therefore we'll  only propose a localization algorithm for this 
primitive. A localization algorithm Super localline2d(A.B,Q) can be deduced 
immediately from theorem 3. 

3.2.2 2D Supercover line segment 

It is easy to see that the Supercover of a Euclidean 2D line segment joining two rational 
points A and B is given by: 

Proposition 6: Supercover of  a 2D discrete line segment: 

(AB) °~ = AB '° ('5 Box2d(A,B) °'. " 

A localization algorithm Super_local_lineseg2d(A,B,Q) can be immediately deduced. 

The design of an efficient generation algorithm Super gen_lineseg2d(A,B) is however 
more complicated. Let 's consider dx = xa.x A , dy = YB-Ya ,used in the computation of the 

coefficients of the discrete line AB°L If dx or dy are null then it means that A=B or that 
we have a horizontal or a vertical line. All three cases can be handled by 
Super_gen_box2d(A,B). 

Now, let 's suppose that 0 <_dy <_dx. This can be obtained by symmetry. The first thing we 

do is to compute the coefficients a,b, co~,co,_ of the 2D Supercover line according to 

theorem 3 and the bounding box Box2d(A,B)~=[xa, xj] x [Ya, Yj]. We can now use an 
incremental generation algorithm where (Xd, Y J) will be the first point to be generated and 

(x:,yl) the last. The control value /7  of  the incremental algorithm is initialized with 

I'I=axj+bzi. At each loop of the algorithm we advance x and adjust P by an increment of 

a. As long as we have P<CO, we continue. Once this is not true anymore, we have to 
increment y. In order to detect if there is a 4-bubble, we decrement then x by 2. If this 
point belongs to the line then there was a 2-bubble at that point and we generate it. else we 
simply continue by incrementing x in the regular loop. The algorithms stops when it 
reaches the point (xj, yl). 

3.2.3 Supercover 2D triangle 

Let 's call Tthe triangle T=(ABC). Let 's  first assume that the three points are non aligned 

because else we have simply T ~= (AB)~w (BC)~'w (CA) ~'. 
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Let's assume the Cartesian equation of the Euclidean line A B  is alx+b~y+d/R=O defined 
so that a~xc+blyc+d/R >0. In the same way, the equation of B C  is a~v+b,v+dJR --0 
defined so that a~a+b,_3q+d,JR >0 and the equation of CA is a p:+b3y+djR =Odefihed so 
that asxs+b ~yB+d.iR >0. 

Let's consider now the Supercovers of these three lines: 

AB°': Co~<_alx+bly<_pt; BC~: co,_<_.a.-.v+b,y<__p, and CA~: co~ <_agc+b~y<_p~. 

Let's call H k the discrete half space a~.v+bzy >_ [o k and I¢ the discrete half space a~.r+b~v> Pk, 
k=1,2,3, then: 

Theorem 7: Supercover o f  a 2D rational triangle: 

T ~ = (ABC) '° = H I ~ 11, c~ H~ ~ Box_ t r iang2d(ABC ~) 

T ~' = (ABC)~= ((AB) ~ u (BC) '°w (CA)  ~' ~ (11 n I ,  ~ I~)) c~ Box  triang2d(ABC) ~. • 

We call interior of 7 ~ the integer set I~ ~ / 2  n / ~  ; it can be empty. We call boundary of 7 ̀0, 

the set ((AB) '° ~ (BC)" u (CA) °') ~ Box_triang2d(ABC) °'. Thus, T ~ is the union of its 

interior and its boundary. Moreover, the interior and the boundary of T ~ do not intersect. 

Note that the intersection with the Supercover of  the bounding box Box_triang2d(ABC) ~ 

is necessary to define the boundary of  T% because the intersection of (AB) '° and (BC)% 

for example, can contain points outside 7 ~, as shown on the following example: AB is the 
line y = 0, A C  is x - 9y = 0, and A = (0, 0), B and C have positive abscissa; the point (-1, 

0) belongs to AB'°c~ A C  ~ but not to T ~. 

A localization algorithm Super_ loca l t r iang2d(A ,B ,C ,Q)  is simple to design with the 
results of proposition 6 and theorem 7. 

The design of a generation algorithm is slightly more complicated. We can of course 
generate the triangle by brute-force by testing what points of the Supercover of the 
bounding box belong to the Supercover triangle with help of the localization algorithm. 
This is however not efficient. A more efficient method consists in an adaptation of the 
classical scanline filling algorithm. We won't  describe here the algorithm which would be 
too long. Let's just remark that if we have a discrete line L: ag~ <_alx+bly<.pl, with a>O, 

then for a given y=yi we - 1 ~ I - - - x - <  l ~  By doing that for two lines it is 
1 _ _ 1  

have 

easy to determine a span of pixels to fill up. 

3.3  Dimension 3 

In dimension 3, we study the supercovers of  a 2D line defined by two 2D rational points. 
a 3D line segment joining two rational 3D points, a 3D plane defined by three 3D rational 
points and a 3D triangle defined by three rational 3D points. Let's consider for what 
follows the 3D rational points A(xffR,ya/R,ZA/R), B(xB/R,yB/R,zs/R), and 

C(XB/R ,y~ /R , zJR) ,wi th  xa,ya,za, xwye, z w Xc, YoZ c ~ Z 3 and Re N*. Let's consider also 

the 3D discrete point Q(xo, yo, zo), xe .yo , zo  e Z. This point is used in the following 
localization algorithms. 

3.3.1 Supercover of a 3D straight line 

Let's consider the two points A and B and define d.v = x~-xa, dy = YB-Y~ and dz = :.B-z~. 
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If dv=dy=dz=O it means that A=B and therefore AB'°=A% We'll  assume for what follows 
that A and B are two different points. 

Theorem 8: Supercover o f  a 3D straight line: 

ABe'= (Ax,B,,°'): (~ (A,~<'°)' n (A,~,:°') ~ 

AB °' = P(-col,al, b j,O,p~-wl + l ) n P(-co,,a,,O,b,_,p,_-oJz+ I) ~, P(-O9,a3,b~,pj-(-os+ l )  

where A,.,.B,,~'= L ( -~ ,a l , b  l,pl-(_ol+ t ): Ax=B<*' = L(-go~,a~,be, p,-(.O~+ l ) 

and A,=B~.: °' = L(-~oj, as, b¢,p.¢-oo¢+l) . ~ 

Sketch, o f  proof" t) (A~,B~,.°'): v~ (A.~=*') ,~ ~ (A ~,.°')xD Ab*'.  This part is obvious. 2) 

Ab°'D (A,,B¢,5): n (A~fl.~=°')"r~ (A,:B,.z°')L This inclusion is due to following lemma: Let D 
be a Euclidean 3D line and let (u ,v ,w)  be an integer coordinate point such as the 
projection of D on the (x,y) (resp. (y,z),  (z,x)) plane intersects the pixel of centre (u,v) 
(resp. (v,w), (w,u)) of this plane, then D intersects the voxet of centre (u,v,w). • 

The analytical definition of  the Supercover 3D lines is based on three 2D lines 
(respectively in the planes xy ,  yz  and Lv) or three planes. It can be proved that two of  
them are, generally, not enough, as it can be seen in Figure, 1. This is a major difference 
with classical definitions. The fact that the intersection of three discrete planes defines a 
discrete line creams a symmetry in the 3D line that does not exist in classical definitions. 

It is easy to see that a 3D Supercover line is 2-connected; it can be a 2-connected Jordan 
curve (that is without a simple point); but it can have simple points if it contains 4- 
bubbles, like a 2D Supercover line, or 8-bubbles. An 8-bubble in a 3D line or plane is a 
set of eight discrete points forming a I x 1 x I unit cube. A 8-bubbte in a 3D segment is 
visible on the Figure 2. In the same Figure and in Figure 1, a 4-bubble in a 3D segment is 
also visible. 

A line is not of finite size, therefore we'll  only propose a localization algorithm for this 
primitive. A localization algorithm Super  local l ine2d(A,B,Q) can be deduced 
immediately from theorem 8. 

3.3.2 Supercover of a 3D straight line segment 

It is easy to see that the Supercover of  a Euclidean 3D line segment joining two rational 
points A and B is given by 

Proposi t ion 9: Supercover o f  a 3D line segment: 

(AB)  °' = AB°' ~ Box3d(A ,B) ' .  • 

Figure 1 shows an example of a Supercover 3D segment. 

Proposi t ion 10: Supercover o f  a 2D line segment  in 3D space: 

Let's suppose that ze-za=O ; then (AB) °' = (A~,B~,) °" x Box ld(A:,B:) °'. " 

A localization algorithm Super local_lineseg2d(A,B,Q) can be immediately deduced. 
The design of an efficient generation algorithm Super genlineseg3d(A,B) is, however. 
more complicated. Let 's consider d r  = xB-xa.dv = YB-YA, and dz = ze-za. If two or three 
of the three dx, dv and dz are null then it means that A=B or that we have a line parallel to 
an axis. All these cases can be handled by Super gen_box3d(A,B).  Let's suppose that 
only one is equal to zero, & = 0  for instance. We generate a 2D segment and apply 
proposition 6. 
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Now, let's suppose that O<_dz<_dy<_dx. We know from theorem 8 that a point (x,y,z) 
belongs to the 3D line if (x,y) belongs to A,,B,~Y, if (y,z) belongs to A~:B,: °~ and if (x,z) 

belongs to Ax:B~: ~. What we do therefore is to run three 2D line segment generation 
algorithms together. At each step we verify that all three conditions are verified. 

3.3.3 Supercover 3D plane 

Let 's  consider the three rational 3D points A, B, and C. 

Let 's define dx=(yB-yA)(Zc-ZQ-(yC-ya)(ZB-Za), d.V=(ZB-Za)(Xc-Xa)-(Zc-ZA)(XB-Xa), and 
dz=(xs-xa)(yc-ya)-(Xc-Xa)(yc-yA). 

Ifdx=dy=dz=O then it means that AB and AC are collinear and do not define a 3D plane 
but a 3D line or a 3D point. We' l l  assume for what follows that A, B and C are three non 
aligned points. 

&, a'_- 
Let 's define: a = GCD(&,dy, dz)' b =-OCD(d.dy, dz)' C = GCD(dx.dy, d:) and d = -axa-by a- 

CZA. The points A, B and C belong to the Euclidean plane P: ax+by+cz+d/R=O. 

We note c ° l = - l R ( l a l + l b l + l c l ) + 2 d  and co ,_=lR( la l+lb i+lc l ) -2d  j 

The Supercover of P=ABC is theh given by: 

Theorem 11: Supercover of  a 3D plane: 

P°~= ABC~' = {(x, y,z) ~ Z3lco, <__ ccr + by + cz < COz } = e(-cona, b,c, co,_-co, + l ). o 

The Supercover po, is a Reveilles 3D discrete plane of arithmetical thickness co =co_-+ l-coz- 
When d/R=k, k integer, and lal+lbl+lc[ even or d/R=k+l/2, k integer, and lal+lbl+lcl odd 

then co=lal+lbl+lcl+l. The discrete plane is 2-connected, tunnel free and it has 8-bubbles. 

In all the other cases, co=lal+lbi+lcl. The discrete plane is then 2-connected, tunnel free. 
and without simple points (it is a 2-manifold [Fra95b] or [Fra95a]). Note that, if R=I, 
that is, irA, B and C are integer points, then co~=-m,.; moreover, the control values in A, 
B and C are 0. 

Proposi t ion  12: Control value at a 8-bubble: 

Let 's  suppose that the equation of the Supercover P°'is: co~<_ax+by+cz<_co,, with 

O<_a<_b<.c. The Supercover p,o contains 8-bubbles if and only if o)=co_, +l-co~ = 

a+b+c+l. The control values at the points of a 8-bubble are coz, co~+a, cot+b, coj+a+b, 
cot+c, cot+c+a, co~+c+b, co~+a+b+c = co,. • 

P r o p o s i t i o n  13: Let P be a Super,cover plane, and let p a point of P. If p does not 
belong to a 8-bubble then p is a Jordan point. • 

Because the intersection of two non parallel Euclidean planes is a Euclidean line we have: 

Theorem 14: Intersection of 3D Supercover planes: 

Let's consider two 3D rational points A and B. The intersection of the supercovers of all 

the Euclidean planes containing AB is equal to AB °'. • 

Since a 3D plane is not finite, we propose only a localization algorithm called 
Super local_plane3d(A,B,C,Q). With help of theorem I I the algorithm design is straight 
forward. 
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3.3.4 Supercover 3D triangle 

Let's call T the triangle T=(ABC). Let's first assume that the three points are non aligned 
because else we have simply T ~ = (AB)°'w (BC)~u (CA) ~. 

Theorem 15: Supercover of  a 3D triangle: 

T~= (ABC) °~ = (T~.):~ ( T~) '~  ( ~°z)'c~ ABC '~. 

A Supercover 3D triangle is shown in Figure 2. 

Note that, like in theorem 8, two of the three triangles Z¢,, T,:, T,.,. are not enough, as it 
can be shown on examples. Furthermore, as any polygon can be filed using triangles, the 
Supercover of a polygon is defined as the union of the Supercovers of a tiling set of 
triangles. 

A localization algorithm Super locaLtriang3d(A,B,C,Q) is easy to design with theorem 
15, The generation algorithm Super..gen_triang3d(A,B, C) of a 3D triangle is actually 
much easier to implement than the 2D algorithm. After having dealt with the degenerate 
cases and so being sure that the three points are not aligned we can compute the 
coefficients of the Supercover of the Euclidean plane P=ABC. 

Let's suppose that the Supercover of P is equal to po,: Co~ _<ax+by+cz- co,. Let's suppose 

here, without loss of generality that c>0. Now we generate the 2D Supercover triangle T~. 

and for each (xl, y ,) belonging to ~ we compute all the corresponding (xi, y~,z~) belonging 

t° P°~" We kn°w t h a t -  - ~ ~ ]'ax' +b-Y'-C°'°[ - < z S - - c  [ ~ j -  - . F o r e a c h ( x , , y , . z Q w e d o a  

localization Super_local_triang2d(A,:,B,.,C,:,(y.zQ) and a localization 
Super_local_triang2d(A~eB,:, C~=,(x~,zk)), We generate(xi, Y~,Z k) if and only if the point 
(Yl, Z~) belongs to ~ and if (xpzk) belongs to r~. 

4 .  Conc lus ion  

We have defined the Supercover of continuous objects. We have then found out analytical 
description, by the way of inequalities (sets of Diophantine equations), of the basic 
primitives of the geometry: 2D straight lines, segments and triangles, 3D straight lines. 
planes and triangles. We have given geometric properties concerning the arithmetical 
thickness of the lines and of the planes, and the bubbles. Basic algorithms for localization 
and for generation have been given; they are adaptations of classical algorithms for 
continuous primitives. 

With these primitives and algorithms a discrete geometric modelling whose primitives are 
polygons and polyhedra is possible; the first results are shown in [ANF97]. 

New discrete geometric problems are in order~ The main one is: is it possible to use 
discrete 2t3 straight lines, and discrete planes, whose thickness is lesser than that of 
Supercovers, and verifying analogous theorems, especially an analogue of theorem 14? 
Examples show that it is not the case of naive planes of [Reve91] and naive lines of 
[FR95]. 
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Figure 1: The Supercover of a 3D segment 

Figure 2: The Supercover of a 3D triangle 
The vertices are of  one ccdor, the edges are each (~[a different colo~; 

the iszterior is o[another color 


