
PROOF RULES DEALING WITH FAIRNESS

Krzysztof R. Apt

University of Rotterdam

- Extended Abstract -
*l

Ernst-Rildiger Olderog

University of Kiel

Abstract. we provide proof rules allowing to deal with two fairness

assumptions in the context of Dijkstra's do-od programs. These proof

rules are obtained by considering a translated version of the original

program which uses random assignment x:=? and admits only fair runs.

The proof rules use infinite ordinals and deal with the original programs

and not their translated versions.

1. Introduction

One of the troublesome issues concerning non-deterministic and parallel

programs is that of fairness. This assumption states roughly speaking

that each possible continuation is scheduled for execution sufficiently

often. The meaning of a continuation depends on the language considered.

For example, in the case of Dijkstra's guarded commands a possible contin­

uation is a branch guarded by a guard evaluating to true. "Sufficiently

often" can be interpreted here in a variety of ways the simplest of them
being 11 eventually".

The aim of this paper is to develop a simple proof theoretic approach

to the issue of fairness. This approach was originally suggested in APT
& PLOTKIN (1].

We restrict our attention to Dijkstra's do-od-prograrns whose compo­
nents are simple while-programs. Each fairness assumption (we study here

two of them) can be incorporated here by providing an appropriate equi­

valent version of the original program which uses the random assignment

x:=? (set x to an arbitrary non-negative integer) for scheduling purposes

Author'.s addresses: K.R. Apt, Faculty of Economics, University of
Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands;
E.-R. Olderog, Institut filr Inforrnatik und Praktische Mathematik
Christian-Albrechts-Universitat Kiel, Olshausenstr. 40-60, D-2300 Kiel 1,
West Germany.

*> h T e full version of this paper is available as Bericht Nr. 8104
Institut filr Informatik und Praktische Mathematik, University of Kiel,
March 1981, and has been submitted for publication.

and admits only fair computations. By applying to this version of progra

Hoare-style proof-rules considered in APT & PLOTKIN [1] we arrive at
proof rules dealing with fairness. It should be stressed that these proc

rules deal with the original program - the applied transformations are
"absorbed" into the assertions leaving the program in question intact.
Using these proof rules total correctness of do-ad-programs under the
assumption of (weak and strong) fairness can be proved. The proof rules

use infinite ordinals.
The use of such infinitistic methods seems to be needed in view of

the results of EMERSON & CLARKE [3] who show that termination under
fairness assumption is not first order definable. The results of APT
& PLOTKIN [1] imply soundness and relative completeness of our system
for a special type of assertion languages - those which allow the use

of the least fixed point operator and ordinals.

2. Definitions

We consider programs of the form

where the Bi are quantifier-free formulas and the Si are deterministic
while-programs. We have a simple model of state in mind, viz. er: 'IJaA..~X
~denotes here the set of program variables and :D is a domain of an
interpretation. Thus the meaning of a subprogram Si is a partially defint
mapping .Af.(Si) from states to states. To state the notions of fairness
and total correctness properly we employ so-called computation sequences
of s defined as follows: For i e { 1 , •.. , n} and states cr, cr' we write

cr-4cr1 iff f=Bi(cr) and .M.(Si)(cr) cr' and

cr-4 iff f= Bi(o-) and M..(Si) Co-l is undefined.

Computation sequences of S are now exactly those sequences 5 of states
which fall into one of the following cases:

10 i1 i2 im-1
S cr1 ~ 0"2 ~- ·· --7 c::rm

where ij E {1, ... ,n} and f= (1B1 A •• ·A•Bn) (o-m).

Then s is said to properly terminate.
i1 i2 i -1 c:; 1 --'-t er 2 --=-7 _m __

where ijE{1, •.. ,n}.

Then $ is said to fail.

2

i. 1 i. J- J
~ C!"j ~ •••

where ijE {1, ... , n} and S is infinite.

Then S is said to di verge.

(Note that all finite sequences :S of maximal length must fall into the

cases 1° or 2° because B. (a-) is always defined, i.e. I= B. (cr) or
l l

I= •Bi (C") holds.)

A computation sequence S of S is said to be weakly fair iff S is

either finite (i.e. properly terminates or fails) or infinite, i.e. of

the form

cr-1
i.

O' -4 j

with ij E {1, •.. ,n}, but then fulfils the following condition

Vi E {1, ... ,n} ((VjelN P=Bi(crj))~(3jelN ij = i)) *)

i.e. if Bi is almost always true then the i-th component is infinitely

often chosen. In other words we explicitly disallow infinite sequences

s with

3ie{1, ... ,n}
oO oO

\;;ljEIN I= Bi(crj) A \lje!N ij * i) .

A computation sequence s of s is said to be strongly fair iff .S is

either finite or infinite, i.e. o~ the form
i1 i2 ij s cr1~cr2~··· crj~···

with ij E {1, ... ,n}, b~ then fulfils the foll~ing condition

Vi E {1, ... ,n} ((3jell\J l=B.(o- .))~(3jelN i.= ill
l J J

i.e. if Bi is infinitely often true then the i-th co~ponent is infinitely

often chosen. In other words we explicitly disallow infinite sequences

r with

""' "° 3iE{1, ... ,n} (=1jEIN l=Bi(crj)AVjefN ij * i)

Now we can state precisely what we understand by total correctness of

programs with or without fairness assumptions. For arbitrary first order

formulas P and Q we define:

~ ~

*) The quantifier V means "for all, but finitely may" and ::I means
"there exist infinitely many".

3

f= {P} S {Q} [under weak (strong) fairness assumption]

iff every [weakly (strongly) fair] computation sequence of S

starting in a state CJ with ~ P (o-) -

is properly terminating, i.e. is of the form

i
-24 cr', and cs' fulfils I== Q (cr').

Thus under fairness assumption we need not bother about unfair compu­

tation sequences.

3. The Transformations

Let

s = do B1~s1 D ••• a Bn-:> Sn od.

We consider the weak fairness assumption first. We use the following

transformation

* Tweak(S) =if B1-+turn:=1 a ... 0 Bn~turn:=n D 1(B1v ... vBn)~skipfi;

for i: = 1 to n do z [i] : =? od;

do

[I Bi/\ turn=i ~

Si;

if 1Bivmini.,; O then turn:=indexi;

z [turn J :=? fi;
forj:=1tondo

if j'i:turn then if Bj then z [j]: =z [j] -1

else z [j]:=? fi fi
od

od

where i ranges from 1 to n.

The random assignment z [i]: =? means "Set z [i] to an arbitrary non­

negative integer". mini and indexi are shorthands defined as follows

-{min f z[j] J Hi I\ B.} if V B.
mini - J j*i J

+ oO otherwise

4

if V B.
j*i J

otherwise

We require that turn and z [1 J , ... ,z[n] are variables of sort{1, •.. ,n}

resp. integer which do not occur in s.
Some informal explanations may help to

only weakly fair runs: If z [j J > O holds,

* understand why Tweak (S) admits

z [j J is equal to the number

of times B. is still to be continuously true before control is switched
J

to Sj (via turn:=j). Since more than one z [j] can become O at the same

time, we allow z [j J to be negative. Each time when B. is true buts.
J J

is not executed z [j] gets decreased by 1. If B. is not true, z [j]is
J

reset to an arbitrary non-negative value. turn=i means that the i-th

component has the control. Control is transferred to another component

if 1Bi holds or there exists a j•Fi with Bj and z [j)~o. In both cases

control gets transferred to the least component j with the minimal z [j]

for which at this moment Bj holds. If no such j exists, then all guards

B1 , ••• ,Bn are false and the program terminates.

We now pass to the issue of strong fairness. As basis for our proof

rule we take the following transformation

if B 1 ~ turn: =10 ... Q Bn-+ turn:=n Q 1 (B 1v ... vBn) ~skip fi;

for i:= 1 ton do z [i]:=? od;

do

0 Bi I\ turn=i ~

od

s . ; do B . A , v B . -+ s . od;
1 ~ 1 j~i J 1 ~

if -iBi v mini~ O then turn:=indexi;

z[turn]:=? fi;

for j:=1 ton do

if j*turnABj then z[j]:= z[j]-1 fi

od

where i ranges from 1 to n.

This transformation is very similar to the one used for the case of weak

fairness. The main difference is that the value of z [j] is not reset

in the case when Bj is false.

The following lemma relates T:eak(S) and T:trong(S) to Sand is of

independent interest.

5

Lemma 1
(a) If S is a weakly (strongly) fair computation sequence

of s then an element-wise extension ~· of ~ is a

computation sequence of T~eak(S) (T:trong(S)) ·

* * (b) If S • is a computation sequence of Tweak (S) (Tstrong (S))

then its element-wise restriction s to the variables of
s is a weakly (strongly) fair computation sequence of S.

* * Intuitively this lemma states that Tweak (S) (Tstrong (S)) admits exactly
all weakly (strongly) fair computation sequences of S.

4. The Proof Rules

The transformed programs use random assignments. In APT & PLOTKIN [1)
proof rules have been developed which allow to prove total correctness
of such programs. The relevant proof rule is the following

p 0 ~ 3cx. p (<X)

p(O) ~ -,(B 1 v

p(cx)A o<>O

{3(3<0< p((3 l} i=1, ..• ,n

[J B -7 S od { Q } n n - o

where Si are while-programs allowing random assignments and where 0<

and ~ are ordinals.

Below we use the following notation

z = (z [1], ... ,z [n]), ~ = (~[1], ... , ~[n])
z-i 1 = (y,, ..• , yn)

{z[j]-1
where y. =

J z (j]

[z·.~J = <Y1, ••• ,ynl

where

if jh and Bj

otherwise

if B.
J

otherwise

Applying the above proof rule to T* (S) d · weak we erive the following

6

Proof rule for weak fairness (n ~ 2)

1° P0AV (B.~turn=i)~Vz ~ o ::Icx: p(o<:,turn,z)
i l.

20 p (O,turn, Z) -l> /\I (B./\ turn=i) A QO
i l.

p (oc ,turn, z)A oc > o~v
i

4io (i=1, ... ,n)

{ p (0< , i, z).11. ex> 0 I\ Bi}

Si

(BiA turn=i)

{ ((-, Biv mini~ 0) I\ indexi =k ~

V~J..o Vz[k] ~o 3{3<0<: p(f3,k, [2-k1·.~'Jll

(B . .11. min.> o ~ V~J..O p(o<,i, [z-.1·z]ll
l. l. ·- l. ~

under weak fairness assumption

where ex, (3 are ordinals and turn,z [1], ... ,z[n] variables not

occurring freely in P0 ,Q0 or B1 , ... ,Bn,s 1 , ... ,sn.

* An analogous rule for strong fairness can be derived from Tstrong(S).

These proof rules can be considerably simplified in the case of two

guards.

Corollary (to Lemma 1).

turn, z [1 J , ... , z [n J
For all formulas P and Q without free variables

the following holds

under weak fairness assumption

iff

I=
I=

{P} S {Q}

{P} T:eak (S) { Q} (under no assumption)

and similarly for the strong fairness assumption.

5. An Example

We provide here a natural example for fairness suggested by P. Cousot.

Let L be a complete lattice (with ordering ~and least element~) which

fulfils the finite chain property, i.e. every strictly increasing

~-chain in Lis finite. Further on, let fi: Ln~L be monotone for

i=1, ... ,n and A,x,I,lfp(f 1 , ... ,fn) be the following abbreviations:

7

X) and :i: = (..L , • • • , ..L) (n times).
! ""•I n ,.

denotes the least fixed point of the monotone lfp{f,, ... ,
I

operator (f 1,. .. ,fn): Ln-+Ln.

Then using our proof rules we can prove
, _ -1

1_ X"'L j

i\-+ x1:=f1 (x) D ••• a A-+Xn:=fn(x) od

(f 1, ••• ,fnl}

under weak (resp. strong) fairness assumption

where I= refers to validity in L. (This correctness result is a special
case of a more general theorem proved in COUSOT [2] .) The full proof
can be found in the full version of the paper.

[1] APT, K.R. & G.D. PLOTKIN, A Cook's Tour of countable nondeterminisrn,
Technical Report, Department of Computer Science, University of Edin­
burgh, 1980 (to appear in Proc. ICALP 81).

COUSOT, P., Asynchronous iterative methods for solving a fixed point
system of monotone equations in a complete lattice, Rapport de
Recherche No 88, L.A. 7, Universite Scientifigue et Medicale de
Grenoble, 1977.

(3] EMERSON, E.A. & E.M. CLARKE, Characterizing correctness properties
of parallel programs using fixpoints, in: Proc. ICALP 80, Lecture
Notes in Computer Science 85, Springer Verlag, pp. 169-181, 1980.

8

