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Abstract. In this paper we study the relative expressibility of the infinitary *-continuity condition 

(*-cant) < a * > X  ~ V n < a n > x  

and the equational but weaker induction axiom 

Ond) X ^ [a*](X =[a lX)  --- [a*]X 

in Propositional Dynamic Logic. We show: (1) under ind only, there is a first-order sentence distinguishing 
separable dynamic algebras from standard Kripke models; whereas (2) under the stronger axiom *-cant, the 
class of separable dynamic algebras and the class of standard Kripke models are indistinguishable by any 
sentence of infinitary first-order logic. 

I.  Introduction 

Propositional Dynamic Logic (PDL), introduced by Fischer and Ladner [FL], is the propositional version 

of Dynamic Logic [Prl ,  see also H]. It is a maximally succinct vehicle for the illustration of fundamental 

principles of program/asser t ion interaction, since all but the absolutely essential structure is excluded (in 

particular any structure on the domain of computation). The theory is captured axiomatically in the deductive 

system of Segerberg [So], proved complete by Parikh [Pa, see also KP]. PDL combines and generalizes 

classical propositional logic (for the assertions), the calculus of regular events (for the programs), and modal 

logic (for their interaction). The three components fit together neatly into a simple but mathematically rich 

system. Results of a fundamental nature have been established which perhaps would not have been apparent 

in a more powerful system [K1-4,Pr3-5,KP]. 

This paper deals with a fundamental  principle of looping, namely that looping is inherently infinitary. 

Simpler programming language constructs, such as composition and conditional tests, are captured up to 

isomorphism by their equations [K1], whereas looping cannot be so captured [RT,K3,K4]. This principle is 

quite evident in programming language semantics and data type specification (see for example [Sa]). In this 

paper we illustrate this principle in the context of PDL with two results comparing the expressive power of the 

familiar PDL induction axiom 

(ind) X ^ [a*] (X = [a]X) -- [a*]X 

and the stronger *-continuity condition 

(*-cant) < a * > X  ~- V n < a n > X  . 

The *-continuity condition says that < ~ * > X  is the join or least upper bound of the propositions <c~n>X with 

respect to implication. A proof that *-cant implies ind can be found in [K1]. The axiom *-cant appeared in 

the original definition of dynamic algebras [K1], but later V. Pratt recommended dropping it in favor of ind, 
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allowing more models. We shall adopt Pratt's more general definition and call dynamic algebras *-continuous if 

they satisfy *-cont. All dynamic algebras arising in practice, including and especially the standard Kripke 

models, are *-continuous. 

In [K1] it was shown that any separable dynamie algebra is represented by a (possibly nonstandard) 

Kripke model. (A dynamic algebra is called separable [Kt] if < a > X  = <f l>X for all X implies a = ft. A 

Kripke model is standard if a* is the reflexive transitive closure of binary relation a, otherwise it is 

nonstandard.) In [K3,RT,K4] it was shown that there exist separable *-continuous dynamic algebras that are 

not represented by any standard Kripke model. 

Pratt [Prl] used universal algebraic techniques to show that dynamic algebras and standard Kripke models 

share the same equational theory, giving an alternative proof to the completeness of the Segerberg axioms. In 

this paper we prove the following two results, which compare the expressive power of the two axioms ind and 

*-eont: (1) there is a first-order sentence that distinguishes separable dynamic algebras from standard Kripke 

models; but (2) the class of  separable *-continuous dynamic algebras and the class of  standard Kripke models 

agree on all sentences of  the infinitary language L ~ .  These two results are proved in sections 2 and 3, 

respectively. In section 4 we discuss the effect of allowing an equality symbol between elements of the Kteene 

(or regular) sort of a dynamic algebra. We show in that section that the infinitary condition afl*~ = V n a/3n~ 

allows a natural axiomatization of the equational theory of regular events. It is known that no purely 

equational axiomatization exists [R]. 

It is assumed the reader is familiar with PDL and dynamic algebra. PDL was first defined in [FL], and 

this reference remains the best introduction. Definitions, basic properties, and examples of dynamic algebras 

can be found in [K1-4,Prl-3]. 

Let L be the usual two-sorted language for PDL and dynamic algebra, consisting of primitive symbols a, 

b,... (for the Kleene or program sort) and P, Q,:.. (for the Boolean sort). Terms a, ~ .... for the Kleene sort 

and X, Y,... for the Boolean sort are built up using the usual Boolean operators ^ ,  v ,  ~ , 0 ,  and 1, the 

binary Kleene operators u (choice) and ; (composition), the unary operators - (reverse) and * (iteration), and 

the nullary operators A (identity) and 0 .  In addition there are the modal operators < > and [ ] by which the 

two sorts interact. 

I f  the defined Boolean operator --- is considered an equality, then L can be considered an equational 

language. Any PDL formula X has an equivalent equational formula X --- i, and each equation X --- Y is a 

PDL formula. Thus with no loss of generality we can assume L contains an explicit symbol = for -= and 

insist that all atomic formulas are equations. L then extends naturally to the first-order language L~0 ~ by 

adding propositional connectives, eountably many variables ranging over Kleene elements, countably many 

variables ranging over Boolean elements, and quantifiers ¥, ] which can be applied to variables of either sort. 

L ~  can be extended to the infinitary language L~I ~ by allowing countable conjunctions and disjunctions. 

The symbols v , ^ , and ~ will refer to both the Boolean algebra operators and the first-order logical 

connectives; the intent will always be clear from context. 
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Since well-formed expressions allow the equality symbol between Boolean elements only, there is no direct 

way to express identity between Kleene elements. The closest L,o,~ can come to this is the functional 

equivalence of a and 13, via the relation ~ of inseparability: 

a~13  iff g X < a > X =  <13>X. 

Thus to say that the dynamic algebra (K,B,<>) is separable is the same as saying that K does not contain two 

distinct inseparable elements. The property of separability is not first-order expressible, as Lemma 3.1 below 

shows, but it would be if there were an equality symbol for Kleene elements. 

2. A first-order sentence that distinguishes separable dynamic algebras from standard Kripke models 

In this section we show that, in the absence of the *-continuity condition, there is a first-order sentence 

that distinguishes separable dynamic algebras from standard Kripke models. Thus, without *-cont, standard 

Kripke models and separable dynamic algebras can agree only on first-order sentences involving at most a few 

alternations of quantifiers. The entire construction is an implementation of the following idea: An atom of a 

Boolean algebra is a minimal nonzero element. An element X of a Boolean algebra is said to be atomless if 

there does not exist an atom Y _< X. An element X is said to be atomic if no nonzero Y _< X is atomless, or in 

other words, if every nonzero Y _< X has an atom Z _< Y. The properties of being an atom, atomless, or 

atomic are first-order expressible. We construct an dynamic algebra (K,B,<>) whose Boolean algebra B is a 

subalgebra of the direct product of an atomic Boolean algebra and an atomless Boolean algebra. K has a 

program 8 such that both the atomic part and the atomless part of B are preserved under appfication of <8>,  

but the neither part is preserved under <8*>. The structure (K,B,<>) therefore violates the first-order 

property "for any a, if < a > X  is atomless whenever X is, then < a * > X  is atomless whenever X is." On the 

other hand, any standard Kripke model has this property, since < a * > X  = Un<~n>X, and if all elements of a 

family of sets are atomless, then their union is. 

Now we give the explicit construction of the dynamic algebra (K,B,<>).  Let w be a copy of the natural 

numbers and let R + be a copy of the nonnegative real numbers disjoint from ~0. Let S be the disjoint union 

~uR  + Points of S will be denoted x,y . . . . .  

Let B,0 be the Boolean algebra of finite and cofinite subsets of ~, and let BI~+ be the Boolean algebra of 

subsets of R + consisting of finite unions of intervals [x,y) or [x,~). Note that B~0 is atomic and BR+ is 

atomless. The Boolean algebra B is the following family of subsets of S: 

B = { U uV  l U e B,~, V e BII+, and U is bounded iff V is bounded } . 

The atoms of B are the singleton subsets of ~0. Thus if X e B, then X is atomic iff X _c ~0, and X is atomless 

iff X _c R+. Note that neither o~ nor R + is an element of B. 

Now we define a Kleene algebra K of binary relations on S. Let ~ be the following binary relation: 

= {(x,y) I x ,yE w a n d  ] y - x l  <- 1 } 

u { (x,y) I x,y ~ R + and l Y - x l  < 1 } . 
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Note  tha t  8 = 8% since the def ini t ion is symmetr ic  in x and  y. 

Let  K be the set  of binary relat ions genera ted  by  6, the zero relat ion O, the ident i ty  relat ion 2~, and the 

to ta l  re la t ion S 2 = S x S under  the s tandard  opera t ions  u (set  union) ,  ; ( re la t ional  composi t ion) ,  and - 

(reverse).  

Lemma2 .1 .  K = { 0 , 8  0 , 81 ,8  2 . . . .  , S  2} . 

Proof. Clearly everything on the right side of the equat ion  is in K. For  the reverse  inclusion, since the set 

on the r ight  contains  the generators  0, 8, 2, = 8 °, and S 2 of K, i t  remains  to show tha t  i t  is closed under  the 

operat ions  u, ; ,  and - .  Suppose a , /3  are of the form 0, S 2, or ~n Then so are a;fl  and  a -  (recall 8 = 8- and 

therefore  8 n ~ (Sn)-). Also, ~u/3 is easi ly seen to be of this form if e i ther  a or /3  is e i ther  0 or S 2. Finally,  if 

a = 8 m,/3 = 8 n for some m, n, then since 8 is reflexive (i.e. X c 8), ~mtjdn is e i ther  8 TM if m > n, or 8 n if m < n. 

[ ]  

In order  to make  ( K , B , < > )  into an dynamic algebra,  we need to define the Kleene algebra operat ions u, 

; ,  - ,  and  * on K and the scalar  mult ipl icat ion < >  on K x B. The operat ions  u, ; ,  and - will have their  

s tandard interpretat ions.  For  0 and  X, define X* = 0* = ~,, and  for any other  a ~ K, define a* to be the total  

re la t ion S 2. We can  give < >  i ts  s tandard interpreta t ion,  since in l ight  of L e m m a  2.1 i t  is easy  to see that  if 

X ~  B t h e n < a > X E B f o r a n y a ~ K .  

We claim now that  ( K , B , < > )  is a separable  dynamic algebra.  I t  is cer tainly separable,  since it is clear 

from Lemma 2.1 that  if a ~ /3  then  < a > { 0 }  # </3>{0}. All  axioms for dynamic algebras not  involving * must  

hold, since all operators  other  than  * have their  s tandard interpretat ion.  Therefore  i t  remains to show 

< a * > X  = X v < c t > < a * > X ,  

< a * > X  = X v < a * > ( ~ X  ^ < a > X )  . 

A simple calculat ion suffices for each case: If  X = 0 then  bo th  sides of both  equat ions  are 0. If  a = 0 or X, 

then a* = X, so both  sides of both  equat ions are X. Finally,  if X # 0 and a = S 2 or a = 8n, n _> 1, then both  

sides of the first equat ion and the left  side of the second are S, thus i t  remains to show that  the right side of 

the second is S. This is true if X = S ;  if X # S ,  then  < a > X  is str ict ly larger  than X, so . X A  < a > X  is 

nonempty ,  and therefore  < a * > ( . X  ^ < a > X )  = S. We have proved 

Lemma 2.2. ( K , B , < > )  is a separable  dynamic  algebra.  [ ]  

Now we cons t ruc t  a sen tence  a of L ~  sat isf ied by every  s tandard  Kripke model  but  v io la ted  by  

(K ,B ,<>) .  A Kleene e lement  a is said to preserve atomless elements if < a > X  is a tomtess  whenever  X is. 

Define 

a t o m ( X )  = X # O  ^ ¥ Y  ( O _ < Y < _ X - - * ( O = Y v Y = X ) )  

a tomless (X)  = YY < X ~ a t o m ( Y )  

pres (a )  = VX a t o m l e s s ( X ) - ~  a t o m l e s s ( < a > X )  

o = ¥ ~  pres (a )  --* pres (a*)  , 
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The formulas a tom(X)  and atomless(X) say that  X is an a tom and atomless,  respect ively;  pres(a)  says that  c~ 

preserves  a tomless  element.s; and the sentence o says that  for any a, if a preserves a tomless  e lements  then so 

does a*. 

Theorem 2.3. Let  ( K , B , < > )  be the dynamic algebra constructed in Lemma 2.2. Then ( K , B , < > )  ~ ~ a  

but  A ~ o for all s tandard Kripke models  A. 

Proof. ( K , B , < > )  violates  a since X • B is a tomless  iff X c R +, and 3 preserves such sets, whereas  ~* 

does not, since < 8 * > X  = S for any nonzero X. 

On the other  hand, for any s tandard Kripke model  A, if B preserves  a tomless  elements ,  then for any 

a tomless  X, < ~ n > X  is a tomless  for all  n. Since A is s tandard,  < f i * > X  = U n < f i n > x ,  thus if < f i * > X  were to 

contain an a tom Y, then Y must  intersect  some <18n>X, and thus Y _< </~n>X since Y is an atom, contradic t -  

ing the fact  tha t  < f l n > x  is atomless.  Therefore  < f l * > X  must  be atomle~s. Since X was arbi t rary,  fl* 

preserves a tomless  elements.  [ ]  

3. The power of  *-continuity 

In this sect ion we show tha t  the class of *-continuous dynamic algebras and the class of s tandard Kripke 

models  share the same L,01~ theory. The proof  uses the Lowenhe im-Skolem theorem for inf ini tary logic [Ke] 

in conjuct ion with results ob ta ined  in [K4]. 

Le t  A = ( K , B , < > )  be  a *-cont inuous  dynamic  algebra.  Recal l  the def ini t ion tha t  a ~ f i  iff 

< a > X  = <18>X for all X, and 'that A is called separable if a ,-~/3 implies a = 18 for any a, ft. This proper ty  

cannot  be expressed by any infini tary sentence over  the language L, as Lemma 3.1 below shows. 

The re la t ion ~ is a dynamic  algebra congruence.  Moreover ,  i t  is easi ly  checked tha t  ~ respects  *- 

continuity,  This allows us to construct  the quot ient  a lgebra A/,,~ = ( K / ~ , B , < > ) ,  where 

K/~- = { a / ~  [ a • K }  

and a/~-, is the ~-c lass  of m Thus A / ~  is a *-continuous and separable ,  and A is separable  iff A and A/,-~ are 

isomorphic.  

Lemma 3.1. A and A / ~  are equivalent  with respect  to all L ~ w  sentences.  

Proof. Let  f:A --~A/~. be the canonical  homomorphism which takes  a to  a / ~  and X to X. We show by 

induct ion on  formula s t ructure  tha t  for any L~,~ formula ¢P(at,...,ak,X 1 . . . . .  Xm) wi th  parameters  a l , . . . , a  k • K, 

X 1 . . . . .  X m e B, 

A ~ ~b(a I . . . . .  ak,X 1 . . . . .  Xm) 

iff A/,.~ ~ ~ ( f ( a l )  . . . . .  f (ak) ,X 1 . . . . .  Xra ) . 

If ~ is atomic, then  it is an equat ion  be tween  e lements  of B; since < a > X  = < f ( a ) > X  for any a and X, the 

two statements ~(O~l,...,ak,Xl,,,.,Xm) and if(f ( a l )  . . . . .  f ( ak) ,Xl  ... . .  X m) express the same property of B. If  e2 is 

a negat ion or a finite or countable  join or meet,  then  the induct ion step is immediate .  If ~ is of the form 3X 
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qJ(al,... ,ak,X 1 ..... Xm,X), then 

A ~ q iffA ~ q:(a 1 ..... ak,X I ..... Xm,X) for some X e B 

iff (by the induction hypothesis) there is an X ~ B such tllat 

A / ~  ~ ~(f(al)  ..... f(e~k),X l ..... Xm,X ) 

iff A / ~  ~ 3X $(f(al)  ..... f(ak),X 1 ..... Xm,X ) . 

Finally, suppose $ is of the form 3a hb(al,...,O:k,a,XD...~Xm). Then 

A ~ ~ iff for some a e K, A ~ q~(a I ..... ak,a,X 1 ..... Xm) 

iff (by induction hypothesis) for some f(a) ~ K /~ ,  

A/~ ~ ~(f(a I) ..... f(~k),f(a),Xl ..... X m) 

iff A / ~  ~ 3a qJ(f(al) ..... f(ak),a,X 1 ..... Kin) . []  

Lemma 3.2. Any countable separable *-continuous dynamic algebra is isomorphic to A/,~ for some 

standard Kripke model A. 

Proof. This was proved in detail in [K4, Theorem 5]. We outline the proof here for the sake of 

completeness, and to give an idea of the techniques involved. 

Let (K,B,<>) be a separable *-continuous dynamic algebra. If the construction of the representation 

theorem of [K1] is carried out, the result is a (possibly nonstandard) Kripke model with the same dynamic 

algebra (K,B,<>). Elements of B are now subsets of a set S of states, elements of K are binary relations on S, 

and all the operations have their standard Kripke model interpretations with the possible exception of * 

In spite of the fact that < a * > X  need not be On<an>x, the *-continuity condition guarantees that 

< a * > X  is the least element of B containing On<an>X. In the topology on S generated by the elements of B, 

this says that sets of the form < a * > X - O n < a n > X  are nowhere dense. Therefore, if K and B are both 

countable, then the union of all such sets, call it M, is meager. The Baire Category Theorem then implies that 

every nonnutl X E B intersects S -  M; using this fact, it can be shown [K4, Theorem 4] that all points of M 

can be dropped from the Kripke model without changing the dynamic algebra. 

The resulting Kripke model B may still be nonstandard, for although now < a * > X  = On<an>X, it is still 

not necessary that a* be the reflexive transitive closure of a. However, the elements of K, taken as primitive, 

generate a standard Kripke model A, using reflexive transitive closure instead of *. Since 

< a * > X  = Un<an>x,  this process introduces no new Boolean elements. Using this and the fact that B is 

separable, it is then easy to show that B ~ A/,% thus A is the desired standard model. [ ]  

We are now ready to prove the main theorem of this section. 

Theorem 3.3. The class of standard Kripke models and the class of *-continuous dynamic algebras share 

the same L,~t, ~ theory. 

Proof. Let 4' be any sentence of L,o w. We wish to show that $ is satisfied by some standard Kripke 

model iff 4' is satisfied by some *-continuous dynamic algebra. 
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( -+ ) This direction is trivial, since every standard Kripke model is a *-continuous dynamic algebra. 

( ~ - )  Suppose 4~ is satisfied by some *-continuous dynamic algebra. By the downward 

L6wenheim-Skolem theorem for infinitary logic [Ke], 4~ is satisfied by a countable *-continuous dynamic 

algebra B. By Lemma 3.1, ¢, is also satisfied by the countable *-continuous dynamic algebra B / ~ ,  and B/,~ is 

separable, thus by Lemma 3.2, B / ~  ~- A / ~  for some standard Kripke model A. Again by Lemma 3.1, A ~ % 

[]  

4. Equality between Kleene elements 

The results of the previous section depend heavily on the fact that equality between Kleene elements 

cannot be expressed. Thus a natural question at this point is how the L =, L ~ ,  and L~x,0 theories of dynamic 

algebras, *-continuous dynamic algebras, and standard Kfipke models relate, where L = is L is augmented with 

an equality symbol = for Kleene elements. 

Separability is expressible in LS~, so the analog of Lemma 3.1 fails, since non-separable standard Kripke 

models exist. However, this condition can be weakened without affecting the main results of [K1-4,Prl-3]. 

Let us call a Kleene algebra K inherently separable if there exists a separable dynamic algebra over K. We shall 

call a dynamic algebra (K,B,<>)  inherently separable if its Kleene algebra K is. Then every standard Kripke 

model is inherently separable, since the Boolean algebra ean be extended to the full power set. This says that 

inherent separability is necessary for representation by a standard Kripke model; in [Kt]  it was shown to be 

sufficient for representation by a nonstandard Kripke model. Non-inherently separable dynamic algebras have 

been shown to exist [K1, ex. 2.5]. A problem posed in [K1], still open, is whether every nonstandard Kripke 

model is inherently separable; this problem is interesting because a positive answer would say that inherent 

separability is necessary and sufficient for representation by a nonstandard Kripke model. 

It follows from the completeness of the Segerberg axioms for PDL that the class of all dynamic algebras 

and the class of standard Kripke models have the same L equational theory. Pratt proved that separable 

dynamic algebras and standard Kripke models have the same L = equational theory [Prl]. It is an easy 

observation that this theory is shared by the inherently separable dynamic algebras as well. However, as Pratt 

observed, the class of all dynamic algebras satisfies strictly fewer equations a =/3 than the class of standard 

Kripke models. In fact, since there is no finite equational axiomatization of the equational theory of regular 

events [R], it follows that even with the addition of finitely many equational axioms a =/3, there is always an 

equation true in all standard Kripke models, and false in some (non-inherently separable) dynamic algebra. 

Thus pure equational logic, although adequate for the L theory of dynamic algebras, fails in L =. 

In [K1] a finite set of axiom schemata for Kleene algebras was given, all of which were equations of the 

form a =/3, except for the infinitary *-continuity condition 

a/3*v = V~ a f l~"  . 

([K1] omitted one equational axiom for the reverse opera tor- ,  which we postulate here: a < an-a.) In contrast 

to the failure of pure equational logic, this simple infinitary extension completely characterizes the L = 

equational theory of the standard Kripke modeis, as Theorem 4.1 below shows. Moreover, it does so in a very 
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natural  and intuit ive way, since no reference is made  to the Boolean part  of dynamic algebra.  

Theorem 4,1. The *-continuous Kleene algebras and the algebras of binary relat ions satisfy the same set  

of equat ions a =/3.  

Proof .  One direct ion is trivial. For  the o ther  direction,  let X be the set  of primitive symbols  and let  

X - = { a -  f a E X } .  Str ings x, y E  ( X u X - ) *  are just  te rms a wi thout  u or  * and  wi th  - appl ied  on ly  to 

primitive symbols.  For  y E ( X u X - ) * ,  let  I Y I denote  the length of y, and let  y'- denote  the str ing obta ined by 

reversing the order  of the symbols  in y and changing all the signs. Wri te  y --~ x if x can  be ob ta ined  from y via 

repea ted  appl ica t ion  of the rule a a - a - - ~  a. For  example ,  ab -c - cbb -c - a - -~  a b - c - a  in one step. Fo r  any 

x c ( X u X - ) * ,  let  M x be  the b inary  re la t ion  a lgebra  consis t ing  of  I x l  + 1  s ta tes  s o . . . . .  s~x I and re la t ions  

(si_i,si) ~ a iff the i th symbol  of x is a, and (si,si_l) ~ a fff the i th symbol  of x is a-.  Cer ta in ly  ( s 0 , s l x l )  E x in 

M x . 

We claim that  the following four s ta tements  are equivalent :  

(i) x < y in all *-continuous Kleene algebras 

(ii) x < y in all binary relat ion algebras 

(iii) (So,S I x I ) ~ y in M x 

(iv) y --~ x .  

The implicat ions (i)--~ (ii)--~ (iii) are trivial. (iii)--~ (iv) follows from the observat ion tha t  if y describes a 

path from s o to s I x I '  and if I Y I > I x [, then  there must  be a zigzag in y of the form zz-z  for some substr ing 

z of x. (iv) --~ (i) is proved by repeated applicat ion of the Kleene algebra axiom a < a a - a .  

Let  a be a Kleene  te rm with k occurrences  of *. The *-cont inui ty  condi t ion  implies  tha t  in all *- 

cont inuous Kleene algebras,  

a = V a ( m l , , _ , m k )  , 

where a ( m l , . . . , m  k) denotes  the *-free te rm obta ined  by replacing the i da occurrence of * in a by m i e ~, and 

the join is t aken  over  all  k- tuptes (ml , . . . ,m  k) e ~ k  But the Kleene a lgebra  axioms al low any *-free term to be 

wr i t ten  as a finite join of s tr ings in ( X u X - ) * ,  thus there is a countable  set  Ia c_ ( X u X - ) *  such that  a = V I~ in 

any  *-cont inuous Kleene algebra.  

Now suppose tha t  a = /3  in all  binary re la t ion algebras.  Then V ta = V I13 in all  b inary  relat ion algebras,  

and we need only show tha t  this  implies tha t  V I a = V I~ in all *-continuous Kleene algebras  as well. For  any  

x E I~, since x < V I~ in al l  binary relat ion algebras,  i t  cer ta inly holds  in  the algebra M x const ructed  above. 

Since (s0,s I x I ) e x and since join is set  union in M x, (s0,s I x I ) ~ Y for some y ~ I~. By (iii) ~ (i) above,  x < y 

and thus x _< V I~ in all  * -cont inuous  Kleene  algebras.  Since x E I~ was  arbi t rary ,  V I~ <_ V I~ in  al l  *- 

cont inuous  Kleene algebras. The reverse inequal i ty  holds by a symmetr ic  argument .  [ ]  

Without  the assumption of inherent  separabil i ty,  *-continui ty does not  go much f~rther: 
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Theorem 4.2. There is a universal Horn sentence of L~,~ true in all standard Kripke models but violated in 

a (non-inherently separable) *-continuous dynamic algebra. 

Proof. The property "if a < k then a 2 = a" is clearly valid in all standard Kripke models. In [K1] an 

example was given of a Kleene algebra violating this property [K1, ex. 2.5]. This Kleene algebr~ can be made 

into a dynamic algebra over the two-element Boolean algebra in a straightforward way. F'I 

Even with the assumption of inherent separability, the LS~,~ analogy of Theorem 3.3 fails: 

Theorem 4.3. There is an LS1,~ sentence true in all standard Kripke models but false in some inherently 

separable *-continuous dynamic algebra. 

Proof. In [K4], a countable separable *-continuous dynamic algebra (K,B,<>)  was constructed such that 

(K,B,<>)  is not isomorphic to any standard Kripke model. By Scott's theorem [Ke], there is a sentence a of 

L~I ~ that characterizes (K,B,<>)  up to isomorphism on countable models, thus (K,B,<>)1= a but no 

countable standard Kripke model satisfies o. Therefore no standard Kripke model of any cardinality can 

satisfy a, since the downward L6wenheim-Skotem theorem would give a countable subalgebra satisfying o, and 

such a subalgebra would still be representable as a standard Kripke model. []  

Thus the question remains: for what fragments of LS1 ~ do inherently separable *-continuous dy/~amie 

algebras and standard Kripke models agree? In particular, do they agree on all sentences of L~,?  

5. Conclusion 

A disadvantage of the *-continuity axiom is that, unlike the induction axiom, it is not equational, and 

therefore is not expressible within the language of PDL. However the emphasis on equational specifications 

and finitary deductive systems is in a way unreal is t ic . .Looping is inherently infinitary and nonequational; 

simpler programming language constructs, such as composition and conditional tests, are captured up to 

isomorphism by their equations [K1], whereas looping cannot be so captured [K3,RT,K4]. Thus the equational 

approach must eventually be given up if we are ever to bridge the gap between algebraic and operational 

semantics. The *-continuity condition is an example of how to do this without sacrificing algebraic elegance. 

Besides the theoretical advantage of descriptive precision, the *-continuity condition has a practical 

advantage as well: it is easier to use, since it is simpler in form than the PDL induction axiom. We have found 

that it is often easier to start a PDL proof with *-cont, using induction informally on the n appearing in the 

definition of *-eont, and then later massage the proof to replace applications of *-eont with applications of ind. 
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