
Storage Allocation Strategies for Recursive
Attribute Evaluators

Kazunori Mizushima 1 and Takuya Katayama 2

t PFU Limited, 658-1 Tsuruma Machida Tokyo 194-8510, Japan
2 JAIST, 1-1 Asahidai Nomi Ishikawa 923-1292, Japan

1 I n t r o d u c t i o n

One of the features of attribute grammars is their evaluators can be gener-
ated automatically by mechanical transformations, and many research efforts
have been focused on generating efficient evaluators. Generally, it is considered
that the efficiency depends mainly on storage allocation for attributes. However
there is a correlation between the storage allocation and evaluation order of
attributes[I, 2]. This makes the allocation difficult.

Most researches on the storage allocation are divided into two categories:
one gives priority to evaluation order and the other to storage allocation. The
former method such as [1, 3, 4, 5, 11] first firms up the evaluation order, and
then allocates attributes to storage. Conversely, the latter method such as [2, 7,
10, 13] first makes some allocation for attributes, and then examines whether
an evaluable order exists under that allocation or not and chooses evaluable and
the most optimized one. The latter allows us to get more optimized allocation
than the former. However, the allocation problem of the latter is known to be
NP-complete [2, 13].

In this paper we propose an allocation strategy in order to solve the problem
within a practical amount of time. We suppose the class of attribute grammars
is absolutely non-circular and their evaluator is a recursive attribute evaluator
proposed in [6]. The structure of this paper is as follows. In Section 2, we explain
notations used in this paper and the recursive evaluator. In Section 3, restrictions
on the allocation are introduced and a formal definition of allocation problem
is given. Reduction theorems to solve the a~ocation problem within a practical
amount of time are proved in Section 4. Basic method called single-chain is
suggested in Section 5 and two improved methods are suggested in Section 6.
Section 7 is the conclusion.

2 N o t a t i o n s and R e c u r s i v e Eva lua tors

Attribute grammars are extension of context-free grammars (abbreviated CFGs)
and are defined by (G, A, F). G = (VN, VT, P, S) is a CFG, where VN, VT, P, and
S respectively stand for nonterminals, terminals, production rules, and a start
symbol. Each production rule p E P is represented as p : X0 -+ X1 X2 . . . X~
neglecting terminal symbols.

A is a set of attributes. Each nonterminal X E VN has a subset A[X] of A.
A[X] is a disjoint union of the set INH[X] of inherited attributes, which pass

51

its value from the root of a derivation tree to the leaves, and the set SYN[X] of
synthesized attributes, which pass its value from the leaves to the root. When a
nonterminal Xk(0 < k < n) in a production ru l ep : Xo --+ X1X2. . .Xn has an
attribute a E A[Xk], we say that p has an attribute occurrence a.Xk.

F is a set of semantic functions. We assume that semantic functions are
in Bochmann normal form, and a semantic function fp,a.xk is associated with
attribute occurrence a.Xk such that a e SYN[Xo] or a E INH[Xk] (1 < k < n).
fp.a.xk specifies how to compute the value of a.Xk from values of other attribute
occurrences in the rule p. We call the special semantic function v = w a copy
rule where w is an attribute occurrence.

Semantic functions in the rule p yield dependency graph among attribute
occurrences: This is called the attribute dependency graph DGp = (DVp, DEp)
for the production rule p:

DV, = {a .Xk t 0 < k < n, a e A[Xk]}

D E v = { (v l , v2) I v2 needs vl for its evaluat ion}

We call the edge of copy rule a copy edge and call other edges function edges.
Let the production rule p : Xo -'+ XtX2 . . . Xn be applied at the root of

deriwation tree T and let Tk be the k-th subtree of T. A dependency graph
DG[T] for the T is recursively constructed in the following way:

DG[T] = (DV[T], DE[T]),
n

DV[T] = DV~ U U DV[Tk],
k = l

DE[T] = DE~ U LJ DE[Tk],
k = l

and DGtv = (DV~, DE~) is the graph obtained from DG v by replacing every at-
tribute occurrence a.Xk in the p by the corresponding attribute instance a.Xk.nk
in the tree T, where nk is the root node of Tk.

For any tree T with the root labeled by Xo E VN, if a path from i.Xo.no (i E
INH[Xo]) to 8.Xo.no (s E SYN[Xo]) exists, we write (i,s) E IO[Xo] and call
it an io edge. The augmented dependency graph DG; for the production rule p
is defined as follows:

DG; = (DV~, DE~),

DV2 = DVp,
DE~ = DEp U {(a.Xk, b.Xk) I 1 < k < n, (a, b) e IO[Xk]}.

Example I (Attribute Grammar G1). Attribute grammar G1 and its augmented
dependency graphs is illustrated in Fig. 1. This grammar computes the value
and the length of fractional binary notation[6].

52

G = (VN, V'/', P, S)
S = F
V2v = { F , L , B }
v ~ = { 0 , 1 }

Production Rules
p02 F --+ L

p l : L - + B

p2 : L - ~ BL1

Attributes
INtt[F] = (~
SYN[F] = {va~, len}
INH[L] = {pos}
SYN[L] = {val, len}
INn[B] = {pos}
SYN[B] = {val} p3: B ~ 0 val.B = 0

p4 : B --+ 1 val.B = 2 -p°s 'B

pO pl p2 p3

. pos i]il

' ' , ~!i ~ ~ 0
::::::i m = f !~!i , " , ~

D function edge - - - -¢~ copy edge *- io edge

Semantic Functions
pos.L = 1
val.F = val.L
len.F = len.L
pos.B = pos.L
val.L = val.B
len.L = pos.L
pos.B = pos.L
pos.L1 = pos.L + 1
val.L = val.B + val.L1
len.L = len.L1

p4

1

Fig. 1. An Attribute Grammar and Augmented Attribute Dependency Graphs DG~.

2.1 R e c u r s i v e A t t r i b u t e E v a l u a t o r s

The evaluator targeted in this paper is a recursive evaluator proposed in the
literature [6]. The evaluator is able to evaluate the class of absolutely non-circular
at tr ibute grammars.

The recursive evaluator is constructed as a set of recursive procedures of the
following form:

Rx(u l , . . . , um,T;v l , . . . , vn) ,

where X E VN, Ul,. . . , Um are input parameters corresponding to the inherited
attributes for X, T is the derivation tree labeled X at its root, and Vl, . . . ,v,~ are
output parameters corresponding to the synthesized attributes. These input and
output parameters are determined from IO[X]. This procedure Rx is intended
to evaluate the synthesized attributes Vl,. . . ,v~, when it is supplied with the
values of inherited attributes u l , . . •, um and derivation tree T as its inputs. The
procedure Rx takes the following form:

p r o c Rx(ul , ° . . ,um,T;Vl , . . . , vn)
case p r o d u c t i o n (T) o f

pl : Hpl

P2 :Hv2

e n d
e n d

53

proc RF(T; val.F, len.F)
vat pos.L, val.L, len.L
pos.L 4- 1
RL (pos.L, T1; val.L, fen.L)
vat.F 4- val.L
len.F 4- len.L

end

proc Rs (pos.B, T; val.B)
case product ion(T) of
p3 : val.B 4- 0

break
p4 : val.B 4- 2 -p°''B

break
end

end

proc R L (pos.L, T; val.L, len.L)
case p r o d u c t i o n (T) of
pl : vat pos.B, val.B

pos.B +- pos.L
Rs (pos.B, T1; val.B)
val.L 4- val.B
len.L 4- pos.L
break

p2 : vat pos.B, val.B,
pos.L1, val.L1 ~ len.L1

pos.B 4- pos.L
Rs (pos.B, T1 ; val.B)
pos.Li 4- pos.L + 1
RL (pos.L l , T2 ; val.L1, fen.L1)
val.L 4- val.B + val.L1
len.L 4- len.L1
break

end
end

Tk means k-th subtree of T.

Fig. 2. Recursive Eva]uator for G1

where pl, P2, • • • are productions whose left-hand side symbol is X and Hpl , Hp2, • • •
is a sequence of assignment or procedure call statements.

The procedure R x determines the production rule p applied at the root of
T by the function p r o d u c t i o n , and it executes a sequence Hp of statements.

The sequence Hp of statements ST[a]'s computes the values of attribute
occurrences in p in the topological order of DG;. If a is an inherited attribute
occurrence of Xi (i > 0) or a synthesized occurrence of X0, then ST[a] is an
assignment a 4-- fp ,a(z l , . . . , z~) . If a is a synthesized attribute of Xi (i > 0),
then ST[a] is a procedure call Rx~.

The recursive evaluator keeps each value of attribute instance in its activation
record as a local variable of the procedure.

Example 2 (Recursive Evaluator). Recursive procedures for G1 are illustrated in
Fig. 2. In this form all attributes need their own storage as local variable.

3 Storage Allocation Problem
Attribute evaluation is to calculate synthesized attribute values in the root node
of a derivation tree. In order to calculate them, it is necessary to determine
other attribute values in the tree and to store these values somewhere for later
references. Of course, we cannot blindly allocate storage to attributes because
some values might be overwritten before their reference. Storage allocation is
required to be at once evaluable and optimum. The difficulty arises here because
these two requirements contradict one another. First we formulate the storage
allocation problem in this section.

54

3.1 Restr ict ions on Al locat ion

Storage allocation for recursive evaluator studied in [7] and [10] takes expo-
nential time for finding an optimum allocation. This is because these methods
provide only evaluability test method and no allocation strategy is given, and it
is necessary to examine a~ the cases exhaustively to get the allocation which is
evaluable and optimum. This exponential time is an obstacle for practical use of
these methods.

In order to get almost optimal allocation within a practical amount of time,
we impose the following two restrictions on storage allocation:

1. It's allowed to share storage with directly dependent attributes.
This restriction is acceptable because attribute values are propagated one af-
ter another along the dependency. This restriction will not only save storage
spaces but also reduce attribute evaluation time since we may have chances
of updating portions of big structured data instead of constructing the whole
new values. Especia~y, if of a copy rule which just passes a value from one
attribute to another, this effect is drastic.

2. Even if some attributes directly depend on one attribute in multi-casting
style, at most one directly depended pair is allowed to share.
Generally, when storage for an attribute is shared with another, the value
of the attribute instance might be destroyed in the evaluation of other at-
tributes. Therefore this restriction is natural and acceptable.

These two restrictions axe convenient for recursive evaluator, because the
evaluator prepares storage in activation record when it is needed and storage
allocation is simply implemented by passing a pointer of the storage as an argu-
ment of procedures.

Formal definition of this restriction is given below. First storage allocation
is formalized in terms of a shared edge to represent the former restriction. A
shared edge means its both end nodes share the same storage.

Definit ion 1 (Shared Edge Set for Product ion Sp). Shared edge set Sp for
the dependency graph DGp = (DVp, DE~) of a production rule p is defined as

= { (a, b) I a, b e DYe, and b share a com. o storage }

If attribute occurrences a and b share the same storage in a rule p ((a, b) E
Sp), it is natural to share the both ends of the corresponding attribute instances
of (a', b') in any derivation tree T. Hence, a shared edge set S[T] for derivation
tree T is defined as follows.

Definit ion 2 (S h a r e d E d g e Set for Derivat ion Tree S[T]). Letp be a pro-
duction rule Xo -+ X1 "" Xn applied at the root of a derivation tree T, Tk be a
k-th subtree of T, and Sp be a shared edge set for p. Shared edge set S[T] for a
derivation tree T is recursively constructed from Sp, S[T1],"', S[Tn] as follows:

S[T] = S~ U 0 S[Tk]
k = l

55

where, (a.Xi.ni, b.Xj.nj) e Sip ¢==~ (a.Xi ,b .Xj) e Sp.

Now we are ready to define the restrictions. These restrictions are for pro-
duction rules and derivation trees, so that we write dependency graph as D G
and shared edge set as S for both.

Definit ion 3 (Restrict ions on Allocation). Let D G = (DV, DE) be an at-
tribute dependency graph and S be a shared edge set. The following restriction
is imposed on S:

1. S C DE,
2. at most only one y satisfies (x, y) 6 S for any x.

3.2 Evaluation Order and Pebbl ing

On the basis of these restrictions, we will consider evaluable attribute order and
optimal shared edge set.

To define evaluability we also apply the notion of "pebbling" to attribute
grammars as in [7] and [13]. Pebbling is a computation sequence which never
erroneously destroys any stored value. It has been introduced by Sethi [12] as a
computation model for the storage allocation problem of directed acyclic graph
(DAG).

As for attribute grammars, if there is a pebbling of attributes under a shared
edge set, it is an evaluable sequence. As the shared edge set is defined for pro-
duction rules and derivation trees, pebbling is also defined for both of them. In
the following definitions, we write a -< b to denote that a is placed before b in a
pebbling.

Definit ion 4 (Pebb l ing for Product ion Rules) . Let p be a production rule
Xo -+ X I ' . . Xn. An evaluation sequence Pv for (DG~, Sv) is a pebbling if the
following three conditions are satisfied:

Pv(DG;) = (vl, v2 , . . . , VM)

1. D V ; = {Vl, v2 , . . . , VM},
2. if (Vi, Vj) 6 DE; then vi -~ vj,
3. if (vl, vi) e DE; then there is no vk such as

. i ~ . ~ -< . j ^ (vi, vk) e Sp.

We call DG~ is evaluable under S v if there is a pebbling which satisfies the above
three conditions.

Definit ion 5 (Pebb l ing for Derivation Trees) . Let T be a derivation tree.
An evaluation sequence PT for (DG[7~, SIT]) is a pebbling if the following three
conditions are satisfied:

PT(DG[T]) = (vl, v~, . . . , VM)

56

1. DV[T] = {v l ,v2 , . . . ,VM},
2. if (vi, vj) 6 DE[T] then vi -'< vj,
3. if (v, ,vj) • DE[T] then there is no vk such as

vi -< vk -< vj A (vi, vk) • SIT] +

where S[T] + is transitive closure of S[T].

We call DG[T] is evaluable under S[T] if there is a pebbling which satisfies above
three conditions.

3.3 Weighting Function

As a measure of allocation, we introduce a weighting function which is a mapping
from edges to weight values. A weight of an edge represents a merit if both ends
of the edge shave a common storage.

Definition 6 (Weighting Function wiT]). Let p be a production rule Xo -+
X1 "" Xn applied at the root of derivation tree T, Tk be a k-th subtree of T,
wp : DEp --+ N be a weighting function for p. Weighting function w[T] for a
derivation tree T is recursively constructed from wp, w[T1],. • •, wiTh] as follows:

w[T] = %'
k = l

where, w'~((a.Xi.ni, b.X~.n~)) ~ wp((a.X,,b.X~)).

Total weight is defined as follows:

W[T] = ~ w[T](e).
~eS[T]

The heavier w[g] becomes, the more optimized s[r] becomes.

3.4 Formulation of Allocation Problem

Now we are ready to define storage allocation problem of attribute grammars.

Definition 7 (Storage Allocation Problem). Storage allocation problem for
(DG[T], wiT]) is to find a shared edge set SIT] which has a pebbling PT and
maximizes the total weight W[T].

4 R e d u c t i o n o f A l l o c a t i o n P r o b l e m

A procedure of recursive evaluator is statically generated for each production
rule, so that it is necessary to statically determine shared edge set at procedure
generation time. This means that any derivation tree must be evaluable by static
shared edge set for each production rule. This section gives reduction theorems
that reduce the problem of derivation tree to that of production rules.

57

4.1 Two Reduction Theorems

Theorem8 (Reduction Theorem of Evaluation). I.feach DG~ is evaluable
under Sp, any DG[T] is evaluable under S[T] which is recursiveIy constructed
from Sp by Definition ~.

P~oof. We prove this theorem by structural induction on the derivation tree T.
asic step: This is trivial when derivation tree T is constructed from only one

production rule p.
Induction step: Consider that derivation tree T is constructed from subtrees

Ti (1 < i < n) and a production rule p : Xo -+ X1X2.. .X~ applied at
the root. Assume each DG[Ti] is evaluable by S[Ti]. The evaluation order of
inherited and synthesized attributes of the root of DG[Ti] is consistent with
IO[Xi] because evaluation sequence PT(DG[Ti]) is consistent with depen-
dency graph DG[Ti]. In Definition 5, pebbling is related only to the attribute
dependency and shared edge set. When DG[T] is recursivety constructed
from DGp and DG[T1], DG[T2],..., DG[T~], neither dependency nor shared
edge is introduced and IO[Xi] is still consistent with PT{DG[Ti]).
Therefore, if DG~ is evaluable by Sv, DG[T] is evaluable by S[71. []

Theorem 8 means that allocation for eemh rule doesn't influence allocation
for any other at all and each shared edge set can be determined independently.

Let the production rule p : Xo -+ X1X2... X= be applied at the root of
derivation tree T and let Tk be the k-th subtree of T. Suppose Sp is an evaluable
shared edge set for (DGp, wp) and total weight under the Sp is Wp, and S[Tk]
is an evaluable shared edge set for (DG[Tk], w[Tk]) and total weight under the
S[Tk] is W[Tk]. From this, the following relations are obvious by Definition 2
and Theorem 8:

(a.X,b.X) 6 Sp < ~:::~. (a.X.n,b.X.n) 6 S[T],
(a.X.n, b.X.n) e S[Tk] ~ (a.X.n, b.X.n) 6 S[T].

And total weight W[T] under SIT] for (DG[T], w[T]) is given by the next ex-
pression:

n

WIT] = W, + ~ WITk].
k----1

Next theorem is an obvious consequence of this expression.

Theorem9 (Reduction Theorem of Optimization). For each production
V 6 P, let S, be an evaluable shared edge set which makes W, for (DG,, w,)
maximize. Let WIT] be constructed by Definition 6. SIT] constructed by Defini-
tion 2 is the most optimized shared edge set which maximizes total weight WIT]
for (DG[T], w[T]).

The above two theorems mean that storage allocation problem can be re-
duced from derivation tree level to production level under the restrictions in
Definition 3.

58

(a) Vi (b) W

Vk V 1 Vk VJ

Same pattern represents same storage.
(a) Evaluable by the sequence vi, vk, vj.
(b) Not evaluable because before the

evaluation of vj the value of vi is de-
stroyed by the evaluation of vk.

Fig. 3. An Example of Dependency and Shared
Edge

late exclusion y Z
rule

Fig, 4. Late Exclusion Rule

4.2 Decomposition to Bipartite Graphs

Usually, there are some superfluous edges which never become shared edges. Con-
sider attribute dependencies (vi, vj), (vi, vk), (v~, vj) E DE~ in Fig. 3. Though i~
is possible for vl and vj to share, it is impossible for vi and vk to share because
the value of vi is destroyed by the evaluation of vk before the evaluation of vj. If
these superfluous edges are removed from a dependency graph in advance, the
graph becomes slimed and allocation will be simpler.

The slimed graph RDGp is defined as follows. First we define RDG~.

Definition 10 (RDG~) .

RDG; = (RDV~, RDE~)

RDV~ = DV~

RDE~ = DE; - { (v~,vk) I(v,,vj),(v~,vk) e DEp, (vk,vj) e DE; + }

where DE~ + is transitive closure of DE~.

Next, we define RDGp by removing io edges from RDG~.

Definition 11 (RDGp).

RDGp = (RDVp, RDEp)

RDVp = R D V 7

RDEp = RDE~ - ((i .Xk ,s .Xk) [1 < k < n, i E INH[Xk], s E SYN[Xk] }

We write each connected element of RDGp as RDG (k) (k = 0, . . . ,Y) . RDG(p k)
is a bipartite graph because semantic function is assumed to be in Bochmann
normal form. Shared edge set S (k) for RDG (k) is defined:

S (k) = { (x,y)l(x,y) e RDE(k),x mad y share the same storage }.

The next reduction theorem says that storage allocation problem could be
reduced to bipartite graph level.

59

Theorem 12 (Reduction Theorem for DGp). If each S(p k) for (RDG(p k), wp)
is evatuable and optimum, Sp given below is also evatuable and optimum for
(DCp, wp):

N

s . = U (k)
k-----0

Proof. As for the optimization, it is obvious because each RDG~ k) is disjoint

mad S (k) is a subset of RDE(p k). As for the evaluability, we prove it by the

construction of evaluation sequence. Let p(k) be a pebbling for S (k). We can

construct evaluation sequence by Pp(DG;) = ~v=0 p(k) where a ~ B is a merge
of the sequences A mad B in the order of DE~. This merge is possible because

each p(k) is consistent with DE~ from the definition of pebbling. Therefore this
pebbling Pp(DG*p) satisfies three conditions of Definition 4, mad evaluability is
proved. E1

5 An Allocation Method

5.1 Evaluability and Graph Transformation
If we share two attributes of an edge of bipartite graph RDG(p k), new evaluation
order is yielded. We represent this as a graph transformation mad we call it late
exclusion rule following [12](Fig. 4).

Definition 13 (Late Exclusion Rule and Closure). Suppose we are inter-
ested in dependency graph R = (DV, DE) and its shared edge set S E DE. Let
x, y, z E DV be distinct attributes and (x, y)(x, z) ~ DE. If (x, y) e S, then we
say that DE transforms to DE U {(z, y)} under the late exclusion rule, written
DE =~ DEt3{(z,y)}. When R' = (DV, DE') and DE ~ DE', we write R ~ R'.

R is called late exclusion closed if Q ~ R is false for any R ~ Q. We write
=~ + for the transitive closure of ~ . If R ~ + R ~ and R ~ is late exclusion closed,
we call R ~ the late exclusion closure of R. R ~ is the DA G which represents the
evaluation sequence under the shared edge set S.

As for the late exclusion closure, Sethi[12] gives the following fact:

If R ~ is acyctic, a pebbling for (R, S) exists.

From this, we have only to examine whether closure RDG (k)~ is acyclic or not

instead of doing evaluability test of RDG(p k).

5.2 Single-Chain Method
In this section, we introduce an allocation method called a single-chain method.

This method finds shared edge set in the following way (see also Fig. 5):

1. For each production, decompose DGp into bipartite graphs RDG(p k).
2. For each RDG (k), compute shared edge sets for all the cases exhaustively,

and then choose evaluable and the most optimized S (k).

60

P~s L ~I I~

po~ "val poP,,::::'j'y.al....4bn
,~7 Decompese into

bipartite graphs
Find shared edge set

~ for each bipartite graph
/~ independently / :

g ,
0

pos pos val val /en

pos.B pos.L I len.L1 len.L

~ Make evaluation order
by topological sort

.... ~ 1 ~ : : : ' '~

late ~ Compose the results
on original DGp*

7 i
i
i

0
val val leo

late

D function edge - - - .~ copy edge P late edge

Attributes painted a same pattern share same storage.

Fig. 5. Single-Chain Method

3. Construct evaluation order graph DG; ~ by augmenting new late exclusion
rules to the original DG~.

Although this method also test all the cases exhaustively as in [7] and [t0],
it finds shared edge set within a practical amount of time because decomposed

bipartite graph R D G (k) is extremely small.

Example 3 (Allocation for G1). We applied single-chain method to G1 and con-
structed a recursive attribute evaluator. Comparing with Fig. 2, the number of
storage is decreased and evaluator became simpler.

In the single-chain method, shared edge set for each production is determined
independently. This might cause the case that shared pair of an inherited and
a synthesized attributes of a nonterminal, which axe input and output of a re-
cursive procedure generated, differs from one production to another. As a single
procedure is generated for the corresponding nonterminal, adjustment of these
pairs is necessary to generate procedures consistently. The adjustment is done
for Fig. 6.

6 Improvement of the Single-Chain Method

In allocating storage to attributes, we must not ignore copy rule which only
passes a value from an attribute to another. In the description of language pro-
cessors by attribute grammar, copy rules occupies high percentage of the de-
scription as reported in [3]. If we could share attributes of a copy rule, it will
enable efficient evaluation because the time for copying values is saved. In this
section, we propose some improved allocation methods which take copy rule into
account.

61

po pl p2 p3

. , iiii

I I ~ j 4 S" I .:i::" % , , , ,

2. 2
Im

~t

function edge - - - -~ copy edge i0 edge

proc Re(T, xl, x2) proc RL(T, xl, x2)
xl +- 1 case production(T) of
R~(Tl,xl, x2) pl : var ~3

end z3 +- z l
RB (TI, z3, x2)
break

p2 : va t $3, x4
proc RB (T, xl, z2) x3 ~- xl

case productlon(T) of RB (T1, x3, x4)
p 3 : x 2 + - 0 x l + - x l + l

break RL (T2, xl, x2)
p4 : x2 +- 2 -=I x2 +- ~4 + x2

break break
end end

end end

Fig. 6. Shared Edge Set and Recursive Evalu~tor

6.1 T w o N e c e s s a r y C o n d i t i o n s

Result of applying the single-chain method to production rule p2 of G1 is given in
Fig. 7. In this case, pos.L and pos.L1 are shared. Now we are interested in pos.B
to be shared with them. In order to share more than one attributes in multi-cast
style dependencies like this, the following two conditions must be satisfied:

Condition 1. The value in the storage allocated for pos.B is never changed in
any subtree which has B as its root node. We call this unchanged attribute
invariant attribute.
Because evaluation of pos.L1 needs the value of pos.L, it is necessary to
ensure that the value of pos.L is never destroyed when pos.L, pos.Lz and
pos.B share the same storage.

Condition ~. After 2-1ate edge is augmented as seen in Fig. 7, it is also evaluable.
In recursive attribute evaluators, storage allocated for inputs can not be
reused until the procedure returns: storage for an inherited attribute of a
non-terminal become available after all synthesized attributes of the non-
terminal are finished evaluating. This is represented by 2-1ate edge.

As for the evaluability, the following reduction theorem is also satisfied even
if storage is shared in multi-cast style.

62

O~_cB "0
p~ va/ pos vat /on

Try m share
with this attribute. @~ It is possible if two

conditions are satisfied.

pOS ~ pos val len

Condition 1: Assurance of the value

p3 @ B @ p4

po~ ill ~'
0 1

Condition 2: Evaluable with 2.late edge

oo~ "~ 2 - l a t e pos ~ ta,

Fig. 7. Two Conditions to Share on Multi-casting

Theorem 14. If each DG; ~ is evaluable under its shared edge set Sp, DG[T]
is evaluabIe under S[T] recursively constructed from Sp by Definition 2.

As space is limited, the proof cannot be presented here. See [9].

6.2 Multi-Chain Methods

As indicated in Condition 1, whether pos.B becomes invariant attribute or not
depends on storage allocation in the subtree. Invariant attribute is closely re-
lated to shared edge set of other production rules. Therefore, there are some
heuristic methods called multi-chain methods where storages are shared by some
attributes in multi-cast dependencies. We suggest here two multi-chain methods
and explain their outlines. For the details, see [9].

Multi-Chaln 2-Step Method
We begin with finding shared edge set by the single-chain method, and then
consider copy rules if possible. The following procedure is applied to all
production rules simultaneously.

1. First, compute temporary shared edge set S~ for each rule p by single-
chain method.

2. Compute invariant attributes which never change their values under the
temporary shaved edge S~.

3. Finally, for each production rule p, t ry all evaluable shared edge set Sps
which are made from S; in combination with invariant attributes, and
then choose the most optimized one.

Multi-Chain N-Step Method
In contrast, we apply the following procedure to each production rule one by
one. To determine the shared edge set which is the most optimized for any
derivation tree at evaiuator generation time, it is considered advantageous
to find shared edge set in the order from highly used production rules in
most trees to less used ones.

63

Table 1. PL/0 Compiler

Productions I 104
Nonterminals I 43
Edges 403
Copy Edges (Ratio) 195 (48%)

Table 2. Comparison

tl Time Shaxed Edges

Single-Chain]1 3,812] 236
Multi-Chain 2-Step [1 11,925[261
Multi-Chain N-Step [64,069 267
Exhaustive Search 1,313,214 268
Assume wp (e) = I for any p E P, e E DEp.

1. First apply the single-chain method and get temporary shared edge set.
2. Next update invariant attributes under the above shared edge set.
3. Try all combinations of shared edge set and choose the most optimized

and evaluable one.
4. Again update invariant attributes for the next allocation.

At the beginning of allocation, all inherited attributes are supposed invariant.
Because it is impossible in practice to calculate the frequency in use of the
rules, we suppose that recursive production rules such like p2 : L --+ B L1 in
G1 are frequently appeared in most trees and copy rules are frequently used
in multi-cast style dependency. In our implementation, the above procedure
is applied in the following order:

i. for all recursive production rules, apply the above procedure from root
side to leaf side,

ii. for the rest, apply the above procedure from root side to leaf side.

Example 4 (PL/O Compiler). We implemented these methods in Common Lisp
and did an experiment on PL/0 compiler(Table 1). We compared the time needed
to find shared edge set and degree of sharing of the set as showa in Table 2. As
for the time, single-chain method gives the best result and multi-chain methods
look to be practical. As for the degree, multi-chain N-step method is close to
exhaustive search which gives the best result.

7 Conclusion

The allocation without fixed attribute evaluation order gives a much better opti-
mization than the allocation with fixed order. This is especially true for the ab-
solutely non-circular attribute grammar because the evaluation order is compar-
atively free. However, it takes exponential time for finding optimum allocation.
We therefore proposed two restrictions which take advantage of the recursive at-
tribute evaluator to the storage allocation strategy. These restrictions decompose
the allocation problem for derivation trees into the problems for production rules
and into for bipartite graphs in the production rules, so that the problem can be
solved within a practical amount of time. Furthermore, we proposed two multi-
chain methods which relax the restrictions and allow to share the attributes
related to copy rule. We showed these methods make practical-time allocation
possible and the degree of allocation is close to exhaustive search.

64

References

1. Rodney Farrow and Daniel M. Yetlin. A comparison of storage optimizations in
automatically-generated attribute evaluators. Acta Informatica, 23(4):393-427,
1986. See also: Technical Report, Department of Computer Science, Columbia
University, New York, NY (January 1985).

2. Harald Ganzinger. On storage optimization for automatically generated com-
pilers. In K. Weihrauch, editor, 4th GI Conf. on --THECS--, volume 67 of
Lecture Notes in Computer Science, pages 132-141. Springer-Verlag, New York-
Heidelberg-Berlin, March 1979. Aachen.

3. Mehdi Jazayeri and Diane Pozefsky. Space-efficient storage management in an at-
tribute grammar evaluator. A CM Trans. Progr. Languages and Systems, 3 (4):388-
404, October 1981.

4. Catherine Juli~ and Didier Parigot. Space optimization in the FNC-2 attribute
grammar system. In Pierre Deransart and Martin Jourdan, editors, Attribute
Grammars and their Applications (WAGA), volume 461 of Lecture Notes in
Computer Science, pages 29-45. Springer-Verlag, New York-Heidelberg-Berlin,
September 1990. Paris.

5. Uwe Kastens. Implementation of visit-oriented attribute evaluators. In Henk A1-
blas and Bo~ivoj Melichar, editors, Attribute Grammars, Applications and Systems,
volume 545 of Lecture Notes in Computer Science, pages 114-139. Springer-Verlag,
New York-Heidelberg-Berlin, June 1991. Prague.

6. Takuya Katayama. Translation of attribute grammars into procedures. ACId
Transaction on Programming Languages and Systems, 6(3):345-369, July 1984.

7. Takuya Katayama and Hisashi Sasaki. Global storage allocation in attribute eval-
uation. In Proceedings of 13th ACId Symposium on Principles of Programming
Languages, pages 26-37, St Petersburg Beach, Fl, January 1986.

8. Kazunori Mizushima and Takuya Katayama. A strategy for storage allocation
in a recursive attribute evaluator. Computer Software, 12(6):50-66, 1995. (in
Japanese).

9. Ka~unori Mizushima and Takuya Katayama. Algorithms considering copy rule
for storage allocation in an attribute grammar. Computer Software, 13(5):37-51,
1996. (in Japanese).

10. Takao Moriyama and Takuya Katayama. Attribute globatization by storage pass-
ing method. In Proceedings of 3rd JSSST Conference, pages 249-252, 1986. (in
Japanese).

11. Pdeks op den Akker and Erik Sluiman. Storage allocation for attribute evaluators
using stack and queues. In Henk Atblas and Bo~ivoj Melichar, editors, Attribute
Grammars, Applications and Systems, volume 545 of Lecture Notes in Computer
Science, pages 140-150. Springer-Verlag, New York-Heidelberg-Berlin, June 1991.

12. Sethi,R. Pebble games for studying storage sharing. Theoretical Computer Science,
19(1):69-84, July 1982.

13. Michael Sonnenschein. Global storage cells for attributes in an attribute grammar.
Acta Informatica, 22:397-420, 1985.

