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1 I n t r o d u c t i o n  

One of the features of attribute grammars is their evaluators can be gener- 
ated automatically by mechanical transformations, and many research efforts 
have been focused on generating efficient evaluators. Generally, it is considered 
that the efficiency depends mainly on storage allocation for attributes. However 
there is a correlation between the storage allocation and evaluation order of 
attributes[I, 2]. This makes the allocation difficult. 

Most researches on the storage allocation are divided into two categories: 
one gives priority to evaluation order and the other to storage allocation. The 
former method such as [1, 3, 4, 5, 11] first firms up the evaluation order, and 
then allocates attributes to storage. Conversely, the latter method such as [2, 7, 
10, 13] first makes some allocation for attributes, and then examines whether 
an evaluable order exists under that allocation or not and chooses evaluable and 
the most optimized one. The latter allows us to get more optimized allocation 
than the former. However, the allocation problem of the latter is known to be 
NP-complete [2, 13]. 

In this paper we propose an allocation strategy in order to solve the problem 
within a practical amount of time. We suppose the class of attribute grammars 
is absolutely non-circular and their evaluator is a recursive attribute evaluator 
proposed in [6]. The structure of this paper is as follows. In Section 2, we explain 
notations used in this paper and the recursive evaluator. In Section 3, restrictions 
on the allocation are introduced and a formal definition of allocation problem 
is given. Reduction theorems to solve the a~ocation problem within a practical 
amount of time are proved in Section 4. Basic method called single-chain is 
suggested in Section 5 and two improved methods are suggested in Section 6. 
Section 7 is the conclusion. 

2 N o t a t i o n s  and  R e c u r s i v e  Eva lua tors  

Attribute grammars are extension of context-free grammars (abbreviated CFGs) 
and are defined by (G, A, F).  G = (VN, VT, P, S) is a CFG, where VN, VT, P, and 
S respectively stand for nonterminals, terminals, production rules, and a start 
symbol. Each production rule p E P is represented as p : X0 -+ X1 X2 . . .  X~ 
neglecting terminal symbols. 

A is a set of attributes. Each nonterminal X E VN has a subset A[X] of A. 
A[X] is a disjoint union of the set INH[X] of inherited attributes, which pass 
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its value from the root of a derivation tree to the leaves, and the set SYN[X] of 
synthesized attributes, which pass its value from the leaves to the root. When a 
nonterminal Xk(0 < k < n) in a production ru l ep  : Xo --+ X1X2. . .Xn has an 
attribute a E A[Xk], we say that p has an attribute occurrence a.Xk. 

F is a set of semantic functions. We assume that semantic functions are 
in Bochmann normal form, and a semantic function fp,a.xk is associated with 
attribute occurrence a.Xk such that a e SYN[Xo] or a E INH[Xk] (1 < k < n). 
fp.a.xk specifies how to compute the value of a.Xk from values of other attribute 
occurrences in the rule p. We call the special semantic function v = w a copy 
rule where w is an attribute occurrence. 

Semantic functions in the rule p yield dependency graph among attribute 
occurrences: This is called the attribute dependency graph DGp = (DVp, DEp) 
for the production rule p: 

DV, = {a .Xk t 0 < k < n, a e A[Xk]}  

D E  v = { (v l ,  v2) I v2 needs vl for its evaluat ion}  

We call the edge of copy rule a copy edge and call other edges function edges. 
Let the production rule p : Xo -'+ XtX2 . . .  Xn be applied at the root of 

deriwation tree T and let Tk be the k-th subtree of T. A dependency graph 
DG[T] for the T is recursively constructed in the following way: 

DG[T] = (DV[T], DE[T]), 
n 

DV[T] = DV~ U U DV[Tk], 
k = l  

DE[T] = DE~ U LJ DE[Tk], 
k = l  

and DGtv = (DV~, DE~) is the graph obtained from DG v by replacing every at- 
tribute occurrence a.Xk in the p by the corresponding attribute instance a.Xk.nk 
in the tree T, where nk is the root node of Tk. 

For any tree T with the root labeled by Xo E VN, if a path from i.Xo.no (i E 
INH[Xo]) to 8.Xo.no (s E SYN[Xo]) exists, we write (i,s) E IO[Xo] and call 
it an io edge. The augmented dependency graph DG; for the production rule p 
is defined as follows: 

DG; = (DV~, DE~), 

DV2 = DVp, 
DE~ = DEp U {(a.Xk, b.Xk) I 1 < k < n, (a, b) e IO[Xk]}. 

Example I (Attribute Grammar G1). Attribute grammar G1 and its augmented 
dependency graphs is illustrated in Fig. 1. This grammar computes the value 
and the length of fractional binary notation[6]. 



52 

G = (VN, V'/', P, S) 
S = F  
V2v = { F , L , B  } 
v ~ = { 0 , 1 }  

Production Rules 
p02 F --+ L 

p l : L - + B  

p2 : L - ~  BL1 

Attributes 
INtt[F] = (~ 
SYN[F] = {va~, len} 
INH[L] = {pos} 
SYN[L] = {val, len} 
INn[B] = {pos} 
SYN[B] = {val} p3:  B ~ 0 val.B = 0 

p4 : B --+ 1 val.B = 2 -p°s 'B 

pO pl p2 p3 

. pos i]il 

' ' , ~!i ~ ~ 0 
::::::i m = f !~!i , " , ~ 

D function edge - - - -¢~ copy edge .............. *- io edge 

Semantic Functions 
pos.L = 1 
val.F = val.L 
len.F = len.L 
pos.B = pos.L 
val.L = val.B 
len.L = pos.L 
pos.B = pos.L 
pos.L1 = pos.L + 1 
val.L = val.B + val.L1 
len.L = len.L1 

p4 

1 

Fig. 1. An Attribute Grammar and Augmented Attribute Dependency Graphs DG~. 

2.1 R e c u r s i v e  A t t r i b u t e  E v a l u a t o r s  

The evaluator targeted in this paper is a recursive evaluator proposed in the 
literature [6]. The evaluator is able to evaluate the class of absolutely non-circular 
at tr ibute grammars. 

The recursive evaluator is constructed as a set of recursive procedures of the 
following form: 

Rx(u l , . . . , um,T;v l , . . . , vn ) ,  

where X E VN, Ul,. . . ,  Um are input parameters corresponding to the inherited 
attributes for X,  T is the derivation tree labeled X at its root, and Vl, . . .  ,v,~ are 
output  parameters corresponding to the synthesized attributes. These input and 
output  parameters are determined from IO[X]. This procedure Rx is intended 
to evaluate the synthesized attributes Vl,. . . ,v~, when it is supplied with the 
values of inherited attributes u l , . .  •, um and derivation tree T as its inputs. The 
procedure Rx takes the following form: 

p r o c  Rx(ul , ° . . ,um,T;Vl , . . . , vn)  
case  p r o d u c t i o n ( T )  o f  

pl  : Hpl 

P2 :Hv2 

e n d  
e n d  
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proc  RF(T; val.F, len.F) 
vat  pos.L, val.L, len.L 
pos.L 4- 1 
RL (pos.L, T1; val.L, fen.L) 
vat.F 4- val.L 
len.F 4- len.L 

end  

proc  Rs (pos.B, T; val.B) 
case product ion(T) of  
p3 : val.B 4- 0 

break 
p4 : val.B 4- 2 -p°''B 

break 
end 

end 

proc R L (pos.L, T; val.L, len.L ) 
case  p r o d u c t i o n ( T )  of  
pl : vat pos.B, val.B 

pos.B +- pos.L 
Rs  (pos.B, T1; val.B) 
val.L 4- val.B 
len.L 4- pos.L 
break 

p2 : vat pos.B, val.B, 
pos.L1, val.L1 ~ len.L1 

pos.B 4- pos.L 
Rs  (pos.B, T1 ; val.B) 
pos.Li 4- pos.L + 1 
RL (pos.L l , T2 ; val.L1, fen.L1) 
val.L 4- val.B + val.L1 
len.L 4- len.L1 
break 

end 
end  

Tk means k-th subtree of T. 

Fig. 2. Recursive Eva]uator for G1 

where pl, P2, • • • are productions whose left-hand side symbol is X and Hpl , Hp2, • • • 
is a sequence of assignment or procedure call statements. 

The procedure R x  determines the production rule p applied at the root of 
T by the function p r o d u c t i o n ,  and it executes a sequence Hp of statements. 

The sequence Hp of statements ST[a]'s computes the values of attribute 
occurrences in p in the topological order of DG;. If a is an inherited attribute 
occurrence of Xi  (i > 0) or a synthesized occurrence of X0, then ST[a] is an 
assignment a 4-- fp ,a(z l , . . . , z~) .  If a is a synthesized attribute of Xi (i > 0), 
then ST[a] is a procedure call Rx~. 

The recursive evaluator keeps each value of attribute instance in its activation 
record as a local variable of the procedure. 

Example 2 (Recursive Evaluator). Recursive procedures for G1 are illustrated in 
Fig. 2. In this form all attributes need their own storage as local variable. 

3 Storage Allocation Problem 
Attribute evaluation is to calculate synthesized attribute values in the root node 
of a derivation tree. In order to calculate them, it is necessary to determine 
other attribute values in the tree and to store these values somewhere for later 
references. Of course, we cannot blindly allocate storage to attributes because 
some values might be overwritten before their reference. Storage allocation is 
required to be at once evaluable and optimum. The difficulty arises here because 
these two requirements contradict one another. First we formulate the storage 
allocation problem in this section. 
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3.1 Restr ict ions  on Al locat ion 

Storage allocation for recursive evaluator studied in [7] and [10] takes expo- 
nential time for finding an optimum allocation. This is because these methods 
provide only evaluability test method and no allocation strategy is given, and it 
is necessary to examine a~ the cases exhaustively to get the allocation which is 
evaluable and optimum. This exponential time is an obstacle for practical use of 
these methods. 

In order to get almost optimal allocation within a practical amount of time, 
we impose the following two restrictions on storage allocation: 

1. It's allowed to share storage with directly dependent attributes. 
This restriction is acceptable because attribute values are propagated one af- 
ter another along the dependency. This restriction will not only save storage 
spaces but also reduce attribute evaluation time since we may have chances 
of updating portions of big structured data instead of constructing the whole 
new values. Especia~y, if of a copy rule which just passes a value from one 
attribute to another, this effect is drastic. 

2. Even if some attributes directly depend on one attribute in multi-casting 
style, at most one directly depended pair is allowed to share. 
Generally, when storage for an attribute is shared with another, the value 
of the attribute instance might be destroyed in the evaluation of other at- 
tributes. Therefore this restriction is natural and acceptable. 

These two restrictions axe convenient for recursive evaluator, because the 
evaluator prepares storage in activation record when it is needed and storage 
allocation is simply implemented by passing a pointer of the storage as an argu- 
ment of procedures. 

Formal definition of this restriction is given below. First storage allocation 
is formalized in terms of a shared edge to represent the former restriction. A 
shared edge means its both end nodes share the same storage. 

Definit ion 1 (Shared Edge Set for Product ion  Sp). Shared edge set Sp for 
the dependency graph DGp = (DVp, DE~) of a production rule p is defined as 

= { (a, b) I a, b e DYe, and b share a com. o  storage } 

If attribute occurrences a and b share the same storage in a rule p ((a, b) E 
Sp), it is natural to share the both ends of the corresponding attribute instances 
of (a', b') in any derivation tree T. Hence, a shared edge set S[T] for derivation 
tree T is defined as follows. 

Definit ion 2 ( S h a r e d  E d g e  Set for Derivat ion Tree  S[T]). Letp be a pro- 
duction rule Xo -+ X1 "" Xn applied at the root of a derivation tree T, Tk be a 
k-th subtree of T, and Sp be a shared edge set for p. Shared edge set S[T] for a 
derivation tree T is recursively constructed from Sp, S[T1],"',  S[Tn] as follows: 

S[T] = S~ U 0 S[Tk] 
k = l  
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where, (a.Xi.ni, b.Xj.nj)  e Sip ¢==~ (a.Xi ,b .Xj)  e Sp. 

Now we are ready to define the restrictions. These restrictions are for pro- 
duction rules and derivation trees, so that we write dependency graph as D G  
and shared edge set as S for both. 

Definit ion 3 (Restrict ions on Allocation).  Let D G  = (DV, DE)  be an at- 
tribute dependency graph and S be a shared edge set. The following restriction 
is imposed on S: 

1. S C DE,  
2. at most only one y satisfies (x, y) 6 S for any x. 

3.2 Evaluation Order and Pebbl ing 

On the basis of these restrictions, we will consider evaluable attribute order and 
optimal shared edge set. 

To define evaluability we also apply the notion of "pebbling" to attribute 
grammars as in [7] and [13]. Pebbling is a computation sequence which never 
erroneously destroys any stored value. It has been introduced by Sethi [12] as a 
computation model for the storage allocation problem of directed acyclic graph 
(DAG). 

As for attribute grammars, if there is a pebbling of attributes under a shared 
edge set, it is an evaluable sequence. As the shared edge set is defined for pro- 
duction rules and derivation trees, pebbling is also defined for both of them. In 
the following definitions, we write a -< b to denote that a is placed before b in a 
pebbling. 

Definit ion 4 (Pebb l ing  for Product ion  Rules) .  Let p be a production rule 
Xo -+ X I ' . .  Xn.  An evaluation sequence Pv for (DG~, Sv) is a pebbling if the 
following three conditions are satisfied: 

Pv(DG;) = (vl, v2 , . . . ,  VM) 

1. D V ;  = {Vl, v2 , . . . ,  VM}, 
2. if (Vi, Vj) 6 DE;  then vi -~ vj, 
3. if (vl, vi) e DE;  then there is no vk such as 

. i  ~ . ~  -< . j  ^ (vi, vk) e Sp. 

We call DG~ is evaluable under S v if there is a pebbling which satisfies the above 
three conditions. 

Definit ion 5 (Pebb l ing  for Derivation Trees) .  Let T be a derivation tree. 
An evaluation sequence PT for (DG[7~, SIT]) is a pebbling if the following three 
conditions are satisfied: 

PT(DG[T]) = (vl, v~, . . . ,  VM) 
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1. DV[T] = {v l ,v2 , . . .  ,VM}, 
2. if (vi, vj) 6 DE[T] then vi -'< vj, 
3. if (v, ,vj) • DE[T] then there is no vk such as 

vi -< vk -< vj A (vi, vk) • SIT] + 

where S[T] + is transitive closure of S[T]. 

We call DG[T] is evaluable under S[T] if there is a pebbling which satisfies above 
three conditions. 

3.3 Weighting Function 

As a measure of allocation, we introduce a weighting function which is a mapping 
from edges to weight values. A weight of an edge represents a merit if both ends 
of the edge shave a common storage. 

Definition 6 (Weighting Function wiT]). Let p be a production rule Xo -+ 
X1 ""  Xn  applied at the root of derivation tree T, Tk be a k-th subtree of T, 
wp : DEp --+ N be a weighting function for p. Weighting function w[T] for a 
derivation tree T is recursively constructed from wp, w[T1],. • •, wiTh] as follows: 

w[T] = %' 
k = l  

where, w'~( (a.Xi.ni, b.X~.n~) ) ~ wp( (a.X,,b.X~) ). 

Total weight is defined as follows: 

W[T] = ~ w[T](e). 
~eS[T] 

The heavier w[g] becomes, the more optimized s[r] becomes. 

3.4 Formulation of  Allocation Problem 

Now we are ready to define storage allocation problem of attribute grammars. 

Definition 7 (Storage Allocation Problem). Storage allocation problem for 
(DG[T], wiT]) is to find a shared edge set SIT] which has a pebbling PT and 
maximizes the total weight W[T]. 

4 R e d u c t i o n  o f  A l l o c a t i o n  P r o b l e m  

A procedure of recursive evaluator is statically generated for each production 
rule, so that it is necessary to statically determine shared edge set at procedure 
generation time. This means that any derivation tree must be evaluable by static 
shared edge set for each production rule. This section gives reduction theorems 
that reduce the problem of derivation tree to that of production rules. 
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4.1 Two Reduction Theorems 

Theorem8 (Reduction Theorem of Evaluation). I.feach DG~ is evaluable 
under Sp, any DG[T] is evaluable under S[T] which is recursiveIy constructed 
from Sp by Definition ~. 

P~oof. We prove this theorem by structural induction on the derivation tree T. 
asic step: This is trivial when derivation tree T is constructed from only one 

production rule p. 
Induction step: Consider that derivation tree T is constructed from subtrees 

Ti (1 < i < n) and a production rule p : Xo -+ X1X2.. .X~ applied at 
the root. Assume each DG[Ti] is evaluable by S[Ti]. The evaluation order of 
inherited and synthesized attributes of the root of DG[Ti] is consistent with 
IO[Xi] because evaluation sequence PT(DG[Ti]) is consistent with depen- 
dency graph DG[Ti]. In Definition 5, pebbling is related only to the attribute 
dependency and shared edge set. When DG[T] is recursivety constructed 
from DGp and DG[T1], DG[T2],..., DG[T~], neither dependency nor shared 
edge is introduced and IO[Xi] is still consistent with PT{DG[Ti]). 
Therefore, if DG~ is evaluable by Sv, DG[T] is evaluable by S[71. [] 

Theorem 8 means that allocation for eemh rule doesn't influence allocation 
for any other at all and each shared edge set can be determined independently. 

Let the production rule p : Xo -+ X1X2... X= be applied at the root of 
derivation tree T and let Tk be the k-th subtree of T. Suppose Sp is an evaluable 
shared edge set for (DGp, wp) and total weight under the Sp is Wp, and S[Tk] 
is an evaluable shared edge set for (DG[Tk], w[Tk]) and total weight under the 
S[Tk] is W[Tk]. From this, the following relations are obvious by Definition 2 
and Theorem 8: 

(a.X,b.X) 6 Sp < ~:::~. (a.X.n,b.X.n) 6 S[T], 
(a.X.n, b.X.n) e S[Tk] ~ (a.X.n, b.X.n) 6 S[T]. 

And total weight W[T] under SIT] for (DG[T], w[T]) is given by the next ex- 
pression: 

n 

WIT] = W, + ~ WITk]. 
k----1 

Next theorem is an obvious consequence of this expression. 

Theorem9 (Reduction Theorem of Optimization). For each production 
V 6 P, let S, be an evaluable shared edge set which makes W, for (DG,, w,) 
maximize. Let WIT] be constructed by Definition 6. SIT] constructed by Defini- 
tion 2 is the most optimized shared edge set which maximizes total weight WIT] 
for (DG[T], w[T]). 

The above two theorems mean that storage allocation problem can be re- 
duced from derivation tree level to production level under the restrictions in 
Definition 3. 
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(a) Vi (b) W 

Vk V 1 Vk VJ 

Same pattern represents same storage. 
(a) Evaluable by the sequence vi, vk, vj. 
(b) Not evaluable because before the 

evaluation of vj the value of vi is de- 
stroyed by the evaluation of vk. 

Fig. 3. An Example of Dependency and Shared 
Edge 

late exclusion y Z 
rule 

Fig, 4. Late Exclusion Rule 

4.2 Decomposition to Bipartite Graphs 

Usually, there are some superfluous edges which never become shared edges. Con- 
sider attribute dependencies (vi, vj), (vi, vk), (v~, vj) E DE~ in Fig. 3. Though i~ 
is possible for vl and vj to share, it is impossible for vi and vk to share because 
the value of vi is destroyed by the evaluation of vk before the evaluation of vj. If 
these superfluous edges are removed from a dependency graph in advance, the 
graph becomes slimed and allocation will be simpler. 

The slimed graph RDGp is defined as follows. First we define RDG~. 

Definition 10 (RDG~) .  

RDG; = (RDV~, RDE~) 

RDV~ = DV~ 

RDE~ = DE; - { (v~,vk) I(v,,vj),(v~,vk) e DEp, (vk,vj) e DE; + } 

where DE~ + is transitive closure of DE~. 

Next, we define RDGp by removing io edges from RDG~. 

Definition 11 (RDGp). 

RDGp = (RDVp, RDEp) 

RDVp = R D V  7 

RDEp = RDE~ - ( ( i .Xk ,s .Xk)  [1 < k < n, i E INH[Xk], s E SYN[Xk] } 

We write each connected element of RDGp as RDG (k) (k = 0, . . .  ,Y) .  RDG(p k) 
is a bipartite graph because semantic function is assumed to be in Bochmann 
normal form. Shared edge set S (k) for RDG (k) is defined: 

S (k) = { (x,y)l(x,y) e RDE(k),x mad y share the same storage }. 

The next reduction theorem says that storage allocation problem could be 
reduced to bipartite graph level. 
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Theorem 12 (Reduction Theorem for DGp). If each S(p k) for ( RDG(p k), wp) 
is evatuable and optimum, Sp given below is also evatuable and optimum for 
(DCp, wp): 

N 

s .  = U (k) 
k-----0 

Proof. As for the optimization, it is obvious because each RDG~ k) is disjoint 

mad S (k) is a subset of RDE(p k). As for the evaluability, we prove it by the 

construction of evaluation sequence. Let p(k) be a pebbling for S (k). We can 

construct evaluation sequence by Pp(DG;) = ~v=0 p(k) where a ~ B is a merge 
of the sequences A mad B in the order of DE~. This merge is possible because 

each p(k) is consistent with DE~ from the definition of pebbling. Therefore this 
pebbling Pp(DG*p) satisfies three conditions of Definition 4, mad evaluability is 
proved. E1 

5 An Allocation Method 

5.1 Evaluability and Graph Transformation 
If we share two attributes of an edge of bipartite graph RDG(p k), new evaluation 
order is yielded. We represent this as a graph transformation mad we call it late 
exclusion rule following [12](Fig. 4). 

Definition 13 (Late Exclusion Rule and Closure). Suppose we are inter- 
ested in dependency graph R = (DV, DE) and its shared edge set S E DE. Let 
x, y, z E DV be distinct attributes and (x, y)(x, z) ~ DE. If (x, y) e S, then we 
say that DE transforms to DE U {(z, y)} under the late exclusion rule, written 
DE =~ DEt3{(z,y)}. When R' = (DV, DE') and DE ~ DE', we write R ~ R'. 

R is called late exclusion closed if Q ~ R is false for any R ~ Q. We write 
=~ + for the transitive closure of ~ .  If R ~ + R ~ and R ~ is late exclusion closed, 
we call R ~ the late exclusion closure of R. R ~ is the DA G which represents the 
evaluation sequence under the shared edge set S. 

As for the late exclusion closure, Sethi[12] gives the following fact: 

If R ~ is acyctic, a pebbling for (R, S) exists. 

From this, we have only to examine whether closure RDG (k)~ is acyclic or not 

instead of doing evaluability test of RDG(p k). 

5.2 Single-Chain Method 
In this section, we introduce an allocation method called a single-chain method. 

This method finds shared edge set in the following way (see also Fig. 5): 

1. For each production, decompose DGp into bipartite graphs RDG(p k). 
2. For each RDG (k), compute shared edge sets for all the cases exhaustively, 

and then choose evaluable and the most optimized S (k). 
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P~s L ~I I~ 

po~ ......... "val poP,,::::'j'y.al....4bn 
,~7 Decompese into 

bipartite graphs  
Find shared edge  set  

~ for each bipartite graph 
/~ independently / : 

g , 
0 

pos pos val val /en 

pos.B pos.L I len.L1 len.L 

~ Make evaluation order 
by topological sort 

.... ~ 1 ~ : : : '  '~ 

late ~ Compose the  results 
on original DGp* 

7 i 
i 
i 

0 
val val leo 

late 

D function edge  - - - .~ copy edge  P late  edge  

Attributes painted a same pattern share same storage. 

Fig. 5. Single-Chain Method 

3. Construct evaluation order graph DG; ~ by augmenting new late exclusion 
rules to the original DG~. 

Although this method also test all the cases exhaustively as in [7] and [t0], 
it finds shared edge set within a practical amount of time because decomposed 

bipartite graph R D G  (k) is extremely small. 

Example 3 (Allocation for G1). We applied single-chain method to G1 and con- 
structed a recursive attribute evaluator. Comparing with Fig. 2, the number of 
storage is decreased and evaluator became simpler. 

In the single-chain method, shared edge set for each production is determined 
independently. This might cause the case that shared pair of an inherited and 
a synthesized attributes of a nonterminal, which axe input and output of a re- 
cursive procedure generated, differs from one production to another. As a single 
procedure is generated for the corresponding nonterminal, adjustment of these 
pairs is necessary to generate procedures consistently. The adjustment is done 
for Fig. 6. 

6 Improvement  of  the  Single-Chain Method  

In allocating storage to attributes, we must not ignore copy rule which only 
passes a value from an attribute to another. In the description of language pro- 
cessors by attribute grammar, copy rules occupies high percentage of the de- 
scription as reported in [3]. If we could share attributes of a copy rule, it will 
enable efficient evaluation because the time for copying values is saved. In this 
section, we propose some improved allocation methods which take copy rule into 
account. 
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po pl p2 p3 

. . . . . . .  , iiii 

I I ~ j 4  S" I .:i::" % , ,  , ..... , 

2. 2 
Im 

~t 

function edge - - - -~ copy edge ............... i0 edge 

proc Re(T, xl, x2) proc RL(T, xl, x2) 
xl +- 1 case production(T) of  
R~(Tl,xl,  x2) pl : var ~3 

end z3 +- z l  
RB (TI, z3, x2) 
break 

p2 : va t  $3, x4 
proc RB (T, xl, z2) x3 ~- xl  

case productlon(T) of  RB (T1, x3, x4) 
p 3 : x 2 + - 0  x l + - x l + l  

break RL (T2, xl, x2) 
p4 : x2 +- 2 -=I x2 +- ~4 + x2 

break break 
end end 

end end 

Fig. 6. Shared Edge Set and Recursive Evalu~tor 

6.1 T w o  N e c e s s a r y  C o n d i t i o n s  

Result of applying the single-chain method to production rule p2 of G1 is given in 
Fig. 7. In this case, pos.L and pos.L1 are shared. Now we are interested in pos.B 
to be shared with them. In order to share more than one attributes in multi-cast 
style dependencies like this, the following two conditions must be satisfied: 

Condition 1. The value in the storage allocated for pos.B is never changed in 
any subtree which has B as its root node. We call this unchanged attribute 
invariant attribute. 
Because evaluation of pos.L1 needs the value of pos.L, it is necessary to 
ensure that the value of pos.L is never destroyed when pos.L, pos.Lz and 
pos.B share the same storage. 

Condition ~. After 2-1ate edge is augmented as seen in Fig. 7, it is also evaluable. 
In recursive attribute evaluators, storage allocated for inputs can not be 
reused until the procedure returns: storage for an inherited attribute of a 
non-terminal become available after all synthesized attributes of the non- 
terminal are finished evaluating. This is represented by 2-1ate edge. 

As for the evaluability, the following reduction theorem is also satisfied even 
if storage is shared in multi-cast style. 
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p3 @ B @ p4 
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0 1 

Condition 2: Evaluable with 2.late edge 

oo~ "~ 2 - l a t e  pos ~ ta, 

Fig. 7. Two Conditions to Share on Multi-casting 

Theorem 14. If each DG; ~ is evaluable under its shared edge set Sp, DG[T] 
is evaluabIe under S[T] recursively constructed from Sp by Definition 2. 

As space is limited, the proof cannot be presented here. See [9]. 

6.2 Multi-Chain Methods 

As indicated in Condition 1, whether pos.B becomes invariant attribute or not 
depends on storage allocation in the subtree. Invariant attribute is closely re- 
lated to shared edge set of other production rules. Therefore, there are some 
heuristic methods called multi-chain methods where storages are shared by some 
attributes in multi-cast dependencies. We suggest here two multi-chain methods 
and explain their outlines. For the details, see [9]. 

Multi-Chaln 2-Step Method 
We begin with finding shared edge set by the single-chain method, and then 
consider copy rules if possible. The following procedure is applied to all 
production rules simultaneously. 

1. First, compute temporary shared edge set S~ for each rule p by single- 
chain method. 

2. Compute invariant attributes which never change their values under the 
temporary shaved edge S~. 

3. Finally, for each production rule p, t ry all evaluable shared edge set Sps 
which are made from S; in combination with invariant attributes, and 
then choose the most optimized one. 

Multi-Chain N-Step Method 
In contrast, we apply the following procedure to each production rule one by 
one. To determine the shared edge set which is the most optimized for any 
derivation tree at evaiuator generation time, it is considered advantageous 
to find shared edge set in the order from highly used production rules in 
most trees to less used ones. 
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Table 1. PL/0 Compiler 

Productions I 104 
Nonterminals I 43 
Edges 403 
Copy Edges (Ratio) 195 (48%) 

Table 2. Comparison 

tl Time Shaxed Edges 

Single-Chain ]1 3,812] 236 
Multi-Chain 2-Step [1 11,925[ 261 
Multi-Chain N-Step [ 64,069 267 
Exhaustive Search 1,313,214 268 
Assume wp (e) = I for any p E P, e E DEp. 

1. First apply the single-chain method and get temporary shared edge set. 
2. Next update invariant attributes under the above shared edge set. 
3. Try all combinations of shared edge set and choose the most optimized 

and evaluable one. 
4. Again update invariant attributes for the next allocation. 

At the beginning of allocation, all inherited attributes are supposed invariant. 
Because it is impossible in practice to calculate the frequency in use of the 
rules, we suppose that recursive production rules such like p2 : L --+ B L1 in 
G1 are frequently appeared in most trees and copy rules are frequently used 
in multi-cast style dependency. In our implementation, the above procedure 
is applied in the following order: 

i. for all recursive production rules, apply the above procedure from root 
side to leaf side, 

ii. for the rest,  apply the above procedure from root side to leaf side. 

Example 4 (PL/O Compiler). We implemented these methods in Common Lisp 
and did an experiment on PL/0 compiler(Table 1). We compared the time needed 
to find shared edge set and degree of sharing of the set as showa in Table 2. As 
for the time, single-chain method gives the best result and multi-chain methods 
look to be practical. As for the degree, multi-chain N-step method is close to 
exhaustive search which gives the best result. 

7 Conclusion 

The allocation without fixed attribute evaluation order gives a much better opti- 
mization than the allocation with fixed order. This is especially true for the ab- 
solutely non-circular attribute grammar because the evaluation order is compar- 
atively free. However, it takes exponential time for finding optimum allocation. 
We therefore proposed two restrictions which take advantage of the recursive at- 
tribute evaluator to the storage allocation strategy. These restrictions decompose 
the allocation problem for derivation trees into the problems for production rules 
and into for bipartite graphs in the production rules, so that the problem can be 
solved within a practical amount of time. Furthermore, we proposed two multi- 
chain methods which relax the restrictions and allow to share the attributes 
related to copy rule. We showed these methods make practical-time allocation 
possible and the degree of allocation is close to exhaustive search. 
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