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A b s t r a c t .  Flow logic offers a compact and versatile notation for ex- 
pressing the acceptability of solutions to program analysis problems. In 
contrast to previous logical formulations of program analysis it aims at 
integrating existing approaches to data flow analysis and control flow 
analysis. It is able to deal with a broad variety of language paradigms, 
program properties, kinds of formal semantics, and methods used for 
computing the best solution. 

In this paper we illustrate how a compositional flow logic (in "succinct" 
form) can be systematically transformed into an efficient exhaustive pro- 
cedure for computing the best solution of a set of constraints generated. 
This involves transformations to attribute grammars and to specifica- 
tions of the ("verbose") form used in control flow analysis. 

Keywords. Program analysis, data flow analysis, control flow analysis, 
constraint based analysis, attribute grammars. 

1 I n t r o d u c t i o n  

Background. The development of program analyses [18] for complex languages 
with procedures, assignments, pointers, block structure and communication is no 
easy task. One facet of this is that the resulting analyses are often too unwieldy 
for human consumption and for formal verification with respect to the semantics 
of the language; this increases the likelihood that the analyses are not completely 
safe and that the resulting systems have security loop-holes. Another facet is that 
it is hard to implement the analyses so as to yield acceptable time and space 
performance; this reduces the usefulness of the analyses and may lead to the use 
of cheaper analyses that are overly approximate. 

Research aimed at overcoming the "unwieldiness" problem often suggests the use 
of compositional or syntax-directed specifications. One popular approach is that 
of type systems perhaps extended with annotations concerning side effects [23] or 
with properties of the states consumed and produced. Another popular approach 
for functional and object-oriented languages is the generation of constraints for 
expressing e.g. the connection between the states consumed and produced [8]. As 
we shall see in this paper this is related to the use of circular attribute grammars 
[1, 2] for specifying program analyses. 

Research aimed at overcoming the "efficiency" problem often studies ways of 
presenting the flow equations in a manner independent of the syntax of the 
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programming language. This may take the form of traditional data flow equa- 
tions [7] that can then be interfaced with a solver that traverses the equations 
in a specific order (e.g. reverse postorder) so as to yield good time and space 
performance. 

The two research directions need to cooperate although the different nature of 
the problems studied makes it hard to succeed: while compositionality usually 
is a good strategy for overcoming the "unwieldiness" (because it allows us to 
grasp one thing at a time) it is seldom a good strategy for achieving the "effi- 
ciency" (because attributes that influence one another are not necessarily close 
in terms of the syntax and hence the propagation of the attributes becomes un- 
necessarily costly). Indeed a lot of the research on overcoming the penalties of 
using type systems can be understood as identifying techniques for abandoning 
compositionality [22, 5]. 

Flow logics. The notion of flow logic in succinct form was devised in [17] for 
facilitating the integration of interprocedural data flow analysis techniques with 
those of control flow analysis, taking care of side-effects, multiple environments, 
and multiple analysis contexts while still obtaining a syntax-directed specifica- 
tion. As such the notation is directly aimed at overcoming the "unwieldiness" 
problem in allowing to combine program analyses that traditionally are pre- 
sented using different techniques. Hence flow logic distinguishes itself from other 
logical based approaches to program analysis (e.g. [12, 3,10]) in that it aims 
at combining existing approaches to program analyses rather than offering yet 
another approach. 

Flow logics (in succinct or verbose form) have been specified for a variety of 
programming language paradigms; in addition to the functional and imperative 
paradigms mentioned above it has been used for languages and calculi supporting 
concurrency and objects. 

Contribution. In this paper we first present an example flow logic in succinct 
form. We then show that minor transformations (little more than a redefinition 
of I-4TEX macros) allow us to obtain a specification in the form of an extended at- 
tribute grammar [26]. Other transformations (mainly for making program points 
explicit) suffice for obtaining a specification in the form of a circular attribute 
grammar or a control flow analysis (a set based analysis). However, all of these 
specifications are to be viewed as recipes for verifying whether or not a proposed 
solution to the program analysis problem is indeed acceptable. 

To compute the best (in our formulation this means the smallest) solution we 
shall base ourselves on one of the more verbose formulations obtained above 
but we shall abstain from directly using it as a method for computing the best 
solution. Instead we show how to obtain a finite set of conditional constraints; 
this is possible due to the compositional nature of the specification (unlike those 
of e.g. [16]). The finite set of constraints can then be solved using graph based 
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techniques and possibly using specific iteration orders [4]. We shall see that  this 
leads to the best solution according to the specification. 

The development is illustrated on a simplified fragment of the specification de- 
veloped in [17]. The full specification deals with a functional language with 
side-effects (in the style of Standard ML [15]) and studies different ways of es- 
tablishing context (including call strings [20] and data dependencies [13, 19]). 
The fragment considered here just deals with a simplified untyped functional 
language and only studies contexts in the form of call strings. 

2 Succinct Flow L o g i c s  

To illustrate the development we shall make use of the syntax 

e : : =  x I*n,  x = >  eo  I e 2 ) '  ! "'" 

where x E Var, ~r E PntF and 1 E lab. The nature of the unspecified expressions 
will be of little concern to us except that  they allow to assign to variables and 
to access their values; this means that  the analysis needs to be able to deal 
with side-effects. Since the language is untyped we can use function definition 
and application to encode the fixed point combinator and hence express recur- 
sive functions as well. The purpose of the domains Lab (of labels) and PntF (of 
function definition points) will be explained below. 

Example 1. As a running example we shall consider the program 

((fn~ x => ((x x) 1 (fny y => y))2) (fnz z => z)) 3 

Execution of this program proceeds as follows: At the application point 3, x is 
bound to f n z z  => z and we get ( ( ( f nzz  => z) ( fn ,  z => z)) 1 (fny y => y))2. 
At the point 1, z is bound to fn~ z => z so the next step of reduction gives 
((fn~ z => z) (fny y => y))2. Finally, at the point 2, z is bound to fny y => y 
and we obtain the result fny y => y. [] 

Abstract domains. The analysis is a combined closure and reference cell analysis: 
for each subexpression it is determined which closures and cells it may evaluate 
to; one aspect of this involves tracking those abstract values that  variables and 
cells can evaluate to. To present the analysis we shall use the abstract domains 
defined in Table 1. The domain Mere (of mementa or contexts) facilitates repre- 
senting call strings of length at most k; here a call string [20] is a list of labels 
11,... ,  l~ denoting that  the last n calls were of the form ( e l m  e 2 n ) l ~ ,  " '"  , (ell e21)lx 
with (era e21) l~ being the most recent call; we write e for the empty call string. 

There are three ways of constructing the basic abstract values (in Vals). For the 
development to be performed here it is not important how data  like integers and 
booleans are analysed and hence we have chosen a trivial domain Data for this. 
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m E M e m  = L a b  <-~ 

d E D a t a  = { o }  
(lr, m~) E Closure = PntF X Mere 

(w, ma) E Cell = PntR x Mem 

v E ValB = Data U Closure U Cell 

W E Val = ~(Mem x Vals) 
A 

R E Env = Var --~ Val 
A A 

S E Store = Cell -+ (Val × {0~ I~ M} )  

Table 1. Abstract domains. 

Functions (or closures) are represented by pairs consisting of the function point 
7r where the function was constructed and the context md in which this took 
place; as we shall see we will have other means for recording the abstract values 
of the free variables in the function. In a similar way assignable values (or cells) 
are represented by pairs consisting of the reference point w E PntR where the 
cell was created (e.g. by a ML-like r e f ~  construct) and the context md in which 
this took place. 

Example 2. Let us consider the case k = 1, i.e. call strings have length at most 
1. The three function definitions of the example program of Example 1 can be 
represented by (x, c), (y, 3) and (z, e). This reflects that  the functions x and z 
are defined before the first application whereas the function y only is defined 
after the application at point 3 has been performed. [] 

A subexpression may evaluate to several (abstract) values in different contexts. 
A 

To record this we use the domain Val that  is isomorphic to Mern -+ ?(Vals)  and 

for each context md the value W E Val gives the set W(md) C_ ValB of basic 
values that  the subexpression may evaluate to. In a similar way the domain Env 
of (abstract) environments associates a value to each variable. 

Example 3. As shown in Example 1, the variable z is bound to different values 
during the execution. In the analysis its intended abstract value can be written 
{(1, (z,e)), (2, (y,3))} reflecting that  at the application point 1, z is bound to 
the function z (defined in the context e) and at the point 2 it is bound to the 
function y (defined in the context 3). [] 

A 

The main point of the domain Store of (abstract) stores is to associate a value 
to each cell. Additionally it records how many references (0 for zero, I for zero 
or one, and M for any number) there is to a given cell; this facilitates the full 
anAalysis [17] to model destructive updating in the manner of [25]. The domains 
Val, Env, and Stor~e are partially ordered in the obvious way (with O E I f- M) 
and this turns them into complete lattices. 
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A A 

WE E WCacheF = (°PntF U PntF*) --~ Val 
A A 

SF E SCacheF = (°PntF U PntF°) --~ Store 
A 

/ ~ , / ~  E RC~cheF = PntF --~ Env 
A 

J~tF E MCacheF = PntF -4 P(Mem) 

T a b l e  2. Caches. 

Caches. Since the analysis will be specified in a compositional (syntax-directed) 
manner we need additional machinery ("global attributes") for transferring in- 
formation from one part of the program to another. To do so we shall make use 
of the caches defined in Table 2: 

- The value cache WE has two components: ~F(OTl') records the actual param- 
eters to the function labelled 7r (and is used to link the actual parameter to 
t h e  formal parameter); WE (~r,) records the results of evaluating the function 
body (and is used to link the result back to the call site). 

- The store cache SF is in many ways similar: SF (oTr) records the stores pos- 
sible at the function call; SF(Tr*) records the stores possible after the evalu- 
ation of the function body. 

- The environment caches 7~ d and T/~ axe needed because we allow nested 
functions and insist on static scope also for the free variables of functions: 
7~d(r) records the environment in force when the function labelled r is 
declared; 7 ~  (~r) records the same environment but modified to the context 
in which the function body is evaluated. 

- The memento cache M R  is used to ensure that a function is in fact analysed 
only once (for all contexts of relevance) rather than many times (one context 
at a time): ]t4F(~) records the set of contexts in which the function body 
needs to be analysed. 

Note that if we simplify the analysis to ignore context (~ la 0-CFA analyses) 
then the memento cache would merely record whether or not the function body 
is reachable (as in [6]). 

Example 4. For the program of Example 1 we may take the following caches: 

7£ 

WF(*~) 
WF(~*) 
Sr(*~) 
SF(~.) 

n~(~) 
M F ( - )  

X 

{(3, (z, ~))} 
{(3, (y, 3))} 

[] 
[] 
[] 
[] 

{a} 

y 
0 
0 

[] 
[] 

[x ~ {(3, (z, ~))}] 
[] 
0 

Z 

{(1, (z, ~)), (2, (~, 3))} 
{(1, (z, ~)), (2, (y, 3))} 

[] 
[] 
[] 
[] 

{t ,2}  

(It turns out that this is indeed the best analysis of the example program.) [] 
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R , M  D x : S - ~ S & R ( x )  

R,M t> fn~ x = > e 0 : S - - ~ S & { ( m , ( ~ r , m ) ) l m e M }  
iff ~ ( ~ ) [ x  ~+ W v ( . ~ ) ] , ~ F ( ~ )  ~ ~0 : s F ( . ~ )  -~ S t ( r * )  ~ WF(~ . )  ^ 

R E 7¢~(~) 

R, M i> (el e2) t : $1 ~ $4 & W 
}ff R , M  ~> el : SI -+ S2 & W1 A R , M  > e2 : S~ --~ S3 & W~ A 

v~ e {~ I (m,(~, -,d)) e w,} :  
W2[X~c(M)] C_ Wv(*~r) A SsfX~¢(M)] _ SF(.~r) A 
W F (Tr.) IX k (U)] C_ W A SF (zr.) [Xcth (M)] ___ $4 A 
T~dF(lr) [Xdtc(U, W1, ~r)] U T~(Tr) A takek(l, M) C Mv(Tr) 

for some S2,S3, W1, W2 

Table S. Succinct flow logic for the functional fragment. 

Specification of the analysis. In the current specification of the analysis we are 
not concerned with computing the best solution (see later) but merely with 
verifying whether or not a proposed solution is acceptable in the sense that  no 
errors will occur when performing transformations based on it. We express this 
as follows: 

(7~ d, T/~, MF,  SF, WF) satisfies R, M ~> e : $1 ~ $2 & W 

Here the proposed solution consists of the five caches of Table 2 and the entities 
R , M ,  $1, $2 and W: R E Fnv is the environment in which e is to be analysed, 
M E P(Mem) is the set of contexts in which e is to be a.nalysed, $1 c Store is 

the store that  is possible immediately before e, $2 E Store is the store that  is 
possible immediately after e, and W E Val is the value that  e can evaluate to. 
Since the five caches of Table 2 remain "constant" throughout the verification we 
shall dispense with listing them when defining the "t>" relation in Table 3. Note 
that  the clauses are defined compositionally and hence clearly are well-defined. 
We shall motivate the individual clauses below. 

Example 5. Given the caches of Example 4 we may verify the following formula 
for the program of Example 1 

[], {e} D program: [ ] --+ [ ] & {(~, (y,3))} 

reflecting that  the initial environment is empty, that  the initial context is the 
empty call string, that  the program does not manipulate the store (which hence is 
empty) and that  the final value is described by {(e, (y, 3))}. The verification will 
amount to a proof using the clauses of Table 3 as rules and axioms; if successful, 
the proof and the caches constitute the analysis of the program. [] 

The clause for variables merely demands that  the store after x equals the store 
possible before x and that  the value associated with x in the environment equals 
the value that  x evaluates to. 
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The clause for function definition starts out in a similar way except that the 
value of the definition must equal 

{(m,(Tr, m)) l m E M} 

because when the function definition is analysed for m E M the value produced 
will be (r, m). Next the environment relevant for the free variables is recorded 
for later usage (by means of R _ Tcd(Tr)). Finally, the function body itself is 
analysed and this involves the information in four of the five caches of Table 2. 

Example 6. As part of verifying the formula of Example 5 we will need to verify 

[], > => z :  [] [] 

This follows from the clause for function definition because [] _ [] and 

[z ~, {(1, (z, e)), (2, (y, 3))}], {1, 2} I> z :  [ ] -~ [] & {(1, (z, e)), (2, (y, 3))} 

follows from the clause for variables. Note that although the function z is called 
twice it is only "analysed" once. [] 

The clause for function application first performs the recursive calls for verify- 
ing the proposed solution with respect to the operator and operaad. For each 
function ~r that could possibly be called, a number of conditions are verified. 
First that the value (W2) of the argument is contained among the arguments 
(V~?f(-~r)) that ~r is called with, and similarly, that the store ($3) that holds after 
evaluation of the argument is contained in the store (SF (.~r)) holding before the 
body of ~r. However, we do not simply write W2 C_ )tYF(.~r ) and $3 E_ SF(.~r) 
because the context changes between the call site and the function body. To take 
care of this we write 

W[Y] -= {(m2,v) t (ml,v) e W~(ml,m2) e Y} 

m) = m)) rv]  

for recording that contexts are to be changed from the corresponding first com- 
ponents of Y to the corresponding second components. In the case of transferring 
I/Tv~ to FPF(e~r) the appropriate context change is expressed by 

X{c(M ) = {(m, takek(l^m)) I m e M} 

that simply prepends the label l of the call to all contexts and then truncates 
the length to at most k. The same change has to be performed for the store. 

Continuing with the clause for function application it is verified that the value 
resulting from the function body" (WF(Tc.)) is contained in the overall value of 
the call (W) and that the store after the function body (SF(~r.)) is contained in 
the store after the call ($4); for this the required change of context is expressed 
by 

Xc/h(M) = {(m, dropl(m))Idropl(m) E M, takel(m) = l} 

U {(m, dropl(m)^l')ldropl(m)^l'e M, take l (m)= l} 
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where dropl(m) removes the first element of m, i.e. the label of the most recent 
call site. Next we verify that the function called will indeed be analysed in all 
relevant contexts (as given by takek(l, M) = {takek(l^m) ] m E M}). Finally we 
enforce static scope for the free variables in the function being called by ensuring 
that the definition time environment (T~ (~r)) is contained in that of the function 
body (/~(1r)); for this the required change of context is 

X~c(M, W,~) = {(md, takek(l^m))lm e M, (m, (Tr, md)) e W} 

Example 7. Verifying the formula of Example 5 also involves verifying 

Ix {(3, (z, {3} (x a {(3, (z, 

For this, the clause for application demands that we verify 

{3} x : [ ] -+  [] {(3, (z, 

which follows directly from the clause for variables. Only the function z can be 
called so we have to verify a number of conditions for this function, including 
that {(3, (z,e))}[Xlc({3})l C_ ~/~]F(.Z) and WF(ZO)[Xlh({3})] C_ {(3, (z,e))}. 
Here X~c({3}) = {(3, 1)} and the effect of the transformation will be to remove 
all pairs that do not have 3 as the first component and to replace the first 
components of the remaining pairs with 1. Similarly, X~h({3}) = {(1, 3)} so in 
this case the transformation will remove pairs that do not have 1 as the first 
component (i.e. pairs that do not correspond to the current call point) and 
replace the first components of the remaining pairs with 3. It is now easy to 
verify that the above two conditions are fulfilled for the caches of Example 4. [] 

Flow dependencies. The interplay between the clauses for function application 
and function definition is illustrated in Figure 1. Here each of the caches 7~dF, 
T/~ and A4F are represented by rectangles and similarly the two "components" 
of the caches WF and SF are represented by rectangles. A judgement of the form 
R, M t> e : SI -+ $2 & W is represented by a node 

o 0 o e o o 

where the three circles before e represent R, M and S1 (in that order) and the 
two circles after e represent $2 and W (in that order). An arrow indicates flow 
of information. 

Containments versus equalities. Since the specification in Table 3 is concerned 
with verifying whether or not a proposed solution is acceptable it is sensible that 
the clause for function application employs a containment like takek(l, M) C_ 
J~4F(zr) rather than an equality like takek(l, M) = ]vir(~r). The reason is that 
there might be other instances of the clause where the label of the application 
is different but yet the same function is called. If l l , - . . ,  l~ are all the labels 
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function application 

Caches for ~x 

function definition 

C ) 

Fig. 1. The use of the caches. 

of applications where a function labelled ~r is called then taking the smallest 
(i.e. least) solution ensures that  J~4F (r)  = takek (/1, M)  U. . .U  takek (ln, M) which 
is the desired result; as in [16, 6] one can prove that  it is always possible to find 
an acceptable solution that  is also the smallest one. In fact  it would be incorrect 
to replace the containment by an equality: if M ¢ 0, k > 0 and I~1 ¢ I~2 then it 
is impossible to obtain takek(l~, M) = A, tF(Tr) for all i. 

Although the clauses in Table 3 contain no explicit equalities they do contain a 
lot of implicit equalities because the same flow variable is used more than once 
in the same clause. One can avoid this by introducing new variables and then 
linking them explicitly by containments as illustrated below. 

R , M  D x : SI -+ S2 & W 
iff $1 E $2 ^ R(x)  c_ W 

R~M [> f n ~ x = > e 0 : S 1 - - + S ~ & W  
iff $1 __ $2 A {(ra, (~r,m)) I m e M} C W A 

n~(~)[x ~+ WF(*~)],~F(~) ~" ~o: S~(*~) -~ SF(~*) & WF(~*) A 
R E TC~(~r) 

R , M  ~> (el e2) I : SI ~ S2 & W 
iff R E R 1 A  M E M1A S1 E Sll  A 

R1,M1 > e1:$11 ~ $12 & W1 A 
R E R2 A M E M2 A SI2 E S21 A 
R2,M2 ~> e2 : S 2 1 ~  S22 & W2 A 
w • {~ 1 (m, (~,md)) • W,}: 

W2[X~c(M)] C D)F(*,¢c) A S2e[X~¢(M)] E SF(°Tr) A 
14;v(~r.)rxelh(M)] C_ W A SF(Tr.)rX~h(M)] E $2 A 



TC~(~r)[X~¢(M, W1, =)l g ~ ( = )  A takek(/, M) C_ ~dF(~r) 
for some R1,M1,Sl l ,S12,  W1,Re, M2,S~l,S22, W2 

Clearly there will be proposed solutions that are acceptable according to the 
modified specification but that are not acceptable according to Table 3. This 
motivates being explicit about what we mean by the best solution. Usually this 
is taken to mean the smallest solution but this turns out to be '%oo small" 
because it allows us to take all solution sets to be the empty ones. To avoid this 
we shall insist that the best solution is the smallest one among all acceptable 
solutions for which the empty call string e is contained in the set M, used for 
the top level expression e,. This is still a smallest solution to a specification that 
has been augmented by the condition {e} C M,. 

We can now use a result of Tarski [24] to prove that the best solution for one 
specification equals the best solution for the other. Tarski's result considers a 
monotone function f on a complete lattice and says that the least fixed point (a 
fixed point being some v such that f ( v )  = v) equals the least prefixed point (a 
prefixed point being some v such that f ( v )  U_U_ v). It follows from this result that 
for monotone functions f l , " ' ,  f~ we have that the least v such that f l  (v) E 
v A . . .  A f~(v )  U v equals the least v such that f l ( v )  U . . .  tA f~(v)  = v. In 
other words, we can change containments to equalities if we "collect" all terms 
defining the same entity. 

3 Attr ibute  Grammar Formulations 

The flow logic of Table 3 can be transformed into an attribute grammar. The 
basic idea behind attribute grammars is as follows. Eadl symbol of the syntax 
is given a fixed number of attributes with fixed domains. Different instances 
of the symbols in a syntax tree may have different attribute values. The rules 
of the syntax are extended with conditions expressing how the attributes of 
the symbols depend on one another; these conditions have to be fulfilled by 
the attributes of all instances of the rule in the syntax tree. There are different 
approaches to the specification of attribute grammars spanning a spectrum from 
extended attribute grammars [26] that are mainly used for verifying the values 
of attributes, to the classical attribute grammars (e.g. [27]) that are mainly used 
for computing the values of attributes. 

We shall now proceed in two stages. First we show that a minor transformation 
will turn the specification of Table 3 into an extended attribute grammar with 
global attributes and side conditions. The second stage will then transform the 
extended attribute grammar into an attribute grammar using global attributes 
and defining the attributes by containments (rather than equalities). 

Extended attribute grammars. To specify the extended attribute grammar [26] 
we shall give the symbol e five attribute positions with the following domains: 
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(e:  R, M, S, S, R(x)) ::= x 

(e:R,U,S,S,{(m,(Tr, m)) [mEU})  ::= 
~.~ x --> (eo : 7%(~)[~ ~ WF(*~)], ~ F ( l r ) ,  SF(*~), SF(~*), WF(~*)) 

with R [::: 7¢~(7r) 

(e :  R,M, S1,S4, W) ::= ((el : R,M, S1,S2, W1) (e2 : R,M, S2,Sz, W2)) t 
with Vrr E {rr I (ra, (Tr, md)) E W1}: 

W2[X~¢(M)] C_ WF(aTr) A S3[X~¢(M)] E ,Sr(°~r) A 

~ ( ~ ° ) f X £ ( M ) I  C W ^ S~(~*)fX&(M)I __ S~ ^ 
n~(-)I'X~o(M, W~, ~)1 E ~ ( ~ )  ^ t~kek(t, M) C_ . ~ ( . )  

Table 4. Extended attribute grammar formulation. 

A A h 

- Env, 7)(Mem), Store, Store and Val. 

In the notation of extended at tr ibute grammars the symbol e and its at tr ibutes 
are written as 

(e : R ,M,  S1,S2,W) 

Here R, M,  $1, $2 and W are terms defining the attributes of the corresponding 
position; these terms are constructed from constant values, at tr ibute variables 
and various operations on terms. Multiple occurrences of the same at t r ibute 
variable in the same syntactic rule expresses an implicit condition since in each 
instance of the rule the occurrences must have the same value. 

In addition to the attributes associated with e we shall use five global attr ibutes 
corresponding to the five caches of Table 2: 

- 7~ d,  T~CF, A/IF, SF and WE. 

The global attr ibutes can be used as constants in the construction of terms for 
the attr ibutes and their values can be further constrained by explicit conditions 
associated with the syntactic rules. 

It is now easy to see that  Table 4 can be obtained from Table 3 and vice versa by 
simply changing the notation. Hence it should be clear that  the two specifications 
admit the same acceptable solutions and therefore that  the best solution for one 
equals the best solution for the other. 

Remark. We should point out tha t  the specification of Table 4 goes a little be- 
yond the extended at tr ibute grammars of [26] in that  it uses global attr ibutes 
and explicit conditions. This can be rectified using standard transformation tech- 
niques: for each global at tr ibute we can give e an additional at tr ibute position 
and we can also give e a single at tr ibute position holding the conjunction of the 
explicit conditions. [] 

Attribute grammars. So far we have used extended at tr ibute grammars as a 
verification mechanism: the (implicit and explicit) conditions associated with the 
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syntactic rules specify a relationship between the values of the (local and global) 
attributes that have to hold; they do not directly specify how the attributes 
have to be computed from one another. Extended attribute grammars can also 
be given a more computational interpretation and when doing so it is customary 
to introduce a distinction between inherited and synthesised attributes: the idea 
is that the inherited attributes will carry information from the root of the syntax 
tree towards its leaves whereas the synthesised attributes will carry information 
in the opposite direction. 

In the case of attribute grammars [27] we formalise the ideas as follows. The 
symbol e is equipped with the following named attributes: 

A A 

- inherited attributes R, M and $1 with domains Env, P(Mem), and Store 
respectively, and 

- synthesised attributes $2 and W with domains Store and Val respectively. 

In this way information about the environment (R), the context (M) and the 
store ($1) in which the expression is evaluated will be given by the inherited 
attributes, whereas information about the store ($2) and value (W) obtained as 
a result of evaluating the expression wilt be given by the synthesised attributes. 
The values of the attributes are referenced using dot-notation (for example e.R) 
and they are specified by explicit conditions associated with the syntactic rules. 

The computational nature of the attribute grammar notation is further empha- 
sised by the distinction between defining and applied attributes of a syntactic 
rule: a defining attribute is either an inherited attribute of the left hand side or 
it is a synthesised attribute of one of the symbols on the right hand side, whereas 
an applied attribute either is a synthesised attribute of the left hand side or an 
inherited attribute of one of the symbols on the right hand side. The conditions 
associated with the syntactic rule usually specify how to compute the values of 
the applied attributes from those of the defining attributes. 

In Table 5 we give an algorithm for transforming an extended attribute grammar 
into an attribute grammar. The idea is as follows. Step 1 takes care of the fact, 
that positions corresponding to defining attributes typically are given by terms 
and not just attribute variables; this expresses an implicit condition that now is 
made explicit. Step 2 ensures that the implicit condition expressed by using the 
same attribute variable in different defining positions is made explicit. After these 
two steps all defining attribute positions contain distinct attribute variables and 
in step 3 we rename them to use the dot notation. In step 4 we take care of the 
applied attributes and replace them by their name and an explicit condition for 
their computation. In step 5 we attempt to remove any attribute variables that 
still occur, and finally, in step 6 we change the notation to be that of attribute 
grammars [27]. This transformation procedure is more complex than the one 
described in [26, 14] because we need to deal with containments and we take 
care not to generate more containments than absolutely necessary. 
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Step 1: For all positions corresponding to defining attributes with a term U 
that is not just an attribute variable do the following: 
• replace the term with a fresh attribute variable u, and 
• add the side condition u _ U if the position is on the right hand 

side, and U _ u if it is on the left hand side. 

Step 2: If the same attribute variable u occurs in more than one position cor- 
responding to a defining attribute then do the following: 
• replace each of the positions with a fresh attribute variable us, and 
• add the condition u~ _E u if the position is on the right hand side, 

and u __. us if it is on the left hand side. 

Step 3: For all defining attributes do the following: 
• if the attribute variable u is in the position for the attribute U of 

the symbol e then replace all occurrences of u with e.U. 

Step 4: For all applied attributes do the following: 
• if the term U is in the position for the attribute U of the symbol e 

then replace it with e.U and add the condition U _ e.U. 

Step 5: Simplify the conditions (during which any remaining attribute variables 
are regarded as being existentially quantified). 

Step 6: Rewrite the rule using attribute grammar notation. 

Table  5. From extended attribute grammars to attribute grammars. 

Using this algorithm on the specification in Table 4 results in the specification in 
Table 6. I t  is interesting to note tha t  Figure 1 may now be viewed as illustrating 
the dependency graphs for function application and function definition. 

In analogy with the discussion about  "containments versus equalities" (in the 
previous section) it will not be the case tha t  the specifications in Tables 4 and 6 
admit  the same acceptable solutions. However, it will be the case tha t  the best 
solution for one equals the best solution for the other. This will suffice for our 
purposes because program analysis is concerned with obtaining the best  solution 
to a given specification. 

I t  is easy to see tha t  the specification in Table 6 is in fact circular. Consider 
an expression fn~ x => e where e is an application (el e2) l. Then the clause for 
function definition gives 

e.W c_ 

and the clause for application gives 

rX&( .M)I c_ e.W 

showing tha t  W~-(~r.) depends on e.W which in turn depends on WF(~r-). 

Remark. The specification of Table 6 is not quite an at t r ibute  g rammar  in the 
classical sense [27]: it uses quantifiers, it uses global at tr ibutes,  and it uses con- 
ta lnments  rather  than  equalities. The  quantified formula can be eliminated by 
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e : : ~  X 

e.S1 E e.S2 
e.R(x) C e.W 

o : : :  fn~ x => eo 
e.Sl I::: e.S2 
{(m, (=, m)) I m e e.M} C e.W 
n~(~r)[x ~ w~(,~r)] E__ eo.R 
A4F(Tr) C eo.M 
SF(,Ir) E eo.Sl 
eo.S2 ___ SF(~r,) 
eo.W c_ Wy(~,) 
e.R _ "/~ (~r) 

::= (~1 ~2) 1 

e.R E:: el.R 
e.M C: el.M 
e.St E- el.S1 
e.R E: e2.R 
e.M C e2.M 
el.S2 E e2.$i 
w e {~ I (m, (~, rod)) e e l . w } :  

e=.WrX~¢(e.M)] C_ WF(.~) 
e~.S=rXL(e.M)l E sF(.~:) 
W£(1r,)[X~,(e.M)] C e.W 
SF(=,)FX&(~.M)I E e.S~ 
~(~)rx~o(e.M, ~.W, ~)] E ~(~ )  
take~(l,e.M) C_ J~p(~r) 

Table 6. Attribute grammar formulation. 

collecting left hand sides and by expressing the constraints at the level of com- 
plete caches rather  than at the level of individual entries into caches. Global 
attr ibutes can be eliminated by replacing them with pairs of inherited and 
synthesised attributes that  are threaded through the syntax tree. Finally, the 
containments can be replaced by equalities provided that  all the relevant con- 
tainments are "collected" as explained in Section 2. [] 

4 Verbose Flow Logics 

The (somewhat liberal) at tr ibute grammar formulation obtained in Table 6 goes 
a long way towards an efficient implementation of the flow logic. However, com- 
pared with the efficient constraint based methods it still suffers the disadvantage 
that  it depends too closely on the program syntax and hence makes it hard for 
an implementation to avoid the penalty of being syntax-directed. To overcome 
this problem we shall introduce additional caches for representing the attributes 
instead of using the dot-notation. 

Additional caches. To facilitate introducing the new caches we need to demand 
that  all subexpressions are labelled; previously only the applications were la- 
belled. One way to achieve this is to differentiate between labelled expressions 
and unlabelled terms: 

e ::-~ t l 

t : : = x  I~n~ x => e0 I(e ,  e2) I .-- 

We may think of the labels as tree addresses or names of the nodes in the syntax 
tree. As before it is the expressions that  will be analysed. 

The new caches are defined in Table 7 and they can be summarised as follows: 
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A A 

/"~L E RCacheL = Lab --~ Env 

A~IL E MCacheL = Lab -+ ~(Mem) 

~VL E WCacheL = Lab -+ Val 

SL E SCacheL = (eLab U Labo) -+ Store 

Table 7. Additional caches. 

- The environment cache ~L corresponds to the R attribute: we shall replace 
tt.R by TeL(l). 

- The memento cache fl4L corresponds to the M attribute: we shall replace 
tt.M by ML(1). 

- -  The value cache WL corresponds to the W attribute: we shall replace tt.W 
by WL(1). 

-- The store cache SL corresponds to the 51 and 52 attributes: we shall replace 
t 1.51 by Sz (*l) and iJ.S2 by SL (l*). 

Control flow formulation. The description of the caches already suggests a 
method for transforming the specification of Table 6. In doing so we shall exploit 
the presence of labels on all subexpressions. We shall write the analysis of an 
expression t I as 

( 7-~d , ~'~, J~F, SF, ~/~F, T~L, J~L, ]/~)L, SL) s a t i s f i e s  ~> t l 

and (as in Table 3) we shall be explicit about the analysis of subexpressions. 
Allowing minor changes in notation this results in the specification of Table 8. 

The new formulation is typical of the abstract control flow specification of [16, 
6, 9] except that it is syntax-directed and therefore closer to implementation. If 
all terms are uniquely labelled then the specification in Table 8 can be converted 
back into the one in Table 6. Hence the two specifications admit the same ac- 
ceptable solutions and it follows that the best solution for one equals the best 
solution for the other. 

Constraint generation. The final phase in implementing the flow logic consists 
in changing the specification from being a recipe for verifying the acceptability 
of a proposed solution to being a method for computing the best solution. This 
involves extracting the individual conjuncts of the specification and we shall 
do so by defining a function C that maps an expression to the set of (possi- 
bly conditional) constraints involved in verifying the acceptability of a proposed 
solution. In the case of variables and function definition this is rather straight- 
forward as illustrated in Table 9. In the case of function application there is 
a small complication. Writing FUN(W) = {Tr I (m, (Tr, ma)) E W} we have to 
generate constraints for each 7r E FUNOA3L(ll)) and the problem is that the 
value of WL (ll) is not known at constraint generation time. Instead we generate 
conditional constraints for each 7r occurring in the program (assuming that the 
program is a closed system); in this way the decision whether or not to really 
impose the constraint is delayed until a later point in time where information 
about the value of WL (ll) is available. 
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~> x t 

iff SL(.1) E SL(l°) A 
n~(O(~) c_ w~q) 

ifr sL(-O E s~(t.)  ^ 
{(m, (~,m)) lm e ~L(0}  

C_ W~ q) ^ 
n~(~)[~ ~ w~(.~)] 

E 74L (to) ^ 

SF(°~r) E 8L(O/O) A 
Dt~ ° A 
8L(lO°) E 8FO TM) A 
WL(lo) C W~(~.) A 
nLq) U n~(~) 

i~ n~(O _ n~(l~) ^ 
.~L(l) C_ ML(ID A 
8L(,l) E 8L(,l~) A 
~>ttl 1 A 
~ ( 1 )  __ ~L(h) A 
.~IL(O C_ .ML(l~) A 
&(ho)  _ SL(,I~) ^ 
~>t~ A 
V~r e 0r I (m, 0r, me)) e ~VVL(/1)} : 

W~(12)[XL(ML(0)] c_ WF(o~) ^ 
SL(~2)fXL(ML(0)] E S~(.~) ^ 
W~(~.)[Xth(M~(0)] C WLq) ^ 
S~(~o)[Xth(M~(l))l E S~q.) ^ 

takek(l, MAIL(l)) C MFOr) 

Table 8. Control flow formulation: verbose flow logic. 

It is immediate that the two specifications admit the same acceptable solutions 
and hence that the best solution for one equals the best solution for the other. 

Constraint solving. To compute the best solution to the constraints generated we 
shall construct a graph and then propagate information until stabiIisation. Each 
entry in each cache gives rise to a node; with each node is associated a data entry 
for holding the corresponding value. Each constraint may give rise to one or more 
edges; they are represented using a constraint list for each node that contains 
the outgoing edges for that node. The algorithm operates using a worklist that 
contains those nodes for which we still might need to propagate information 
along their outgoing edges. Since we wish to compute the best (rather than 
merely the smallest solution) the worklist is initially set to .h4L(t.) where t.  is 
the label of the top level expression e.; also the data entry for .hdL(l.) is initially 
set to {¢} (as discussed in Section 2). The details of the algorithm are given in 
Table 10 and are mostly quite standard (e.g. [6]). 

One can prove that the algorithm always te~Tninates and that it produces the 
best solution to the constraints upon which it operates; it is essential for this that 
all constraints generated by Table 9 are of the form P _ p or ~r E P1 =~ P2 _ p 
where p is a node (as opposed to a more general expression or a constant, set) and 
where P, P1 and P2 all contain at least one node. The efficiency of the algorithm 
can be improved in many ways [4] but in the special case of functional programs 
without side effects the formulation given in Table 10 suffices for achieving the 
best known (cubic) worst case time complexity. 

The above procedure is an exhaustive algorithm [1] for solving the constraints. 
By contrast the extended attribute grammar evaluation scheme described in [14] 
for mainly non-circular extended attribute grammars is demand driven [2]. To 
obtain a demand driven procedure for solving the circular constraints one would 
probably need to exploit ideas from minimal function graphs [11]. 
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C[X/] = "{SL(t/,) E *,--~L(~@),"]'~L([)(X) C ~2L(I)} 

= {sL(.O __ sL( t . ) ,  {(m, (~, m)) t m e ML(O} C_ W~(l), 
T~('/r)[z ~ ~/~F(@?I')] ~__ T~L(IO),d~F(?f) C J~L(IO),SF(@W) ~ SL(@Io)} 
u c[@] u 
{SL(lo,) E Sv(Tr,),WL(lo) C_ VVF(Tr,),T~L(1) E 7~aF(Tr)} 

C[(t~ ~ t~) '] 
= {7"~L(/) E TgL(ll),ML(1) C ./~L(ll),SL(*I) E SL(*/1)} 

u cIt~] u 

{'~L (l) L~ '~L(/2), J~L (1) C ./~L (/2), SL(/I@) E SL (@/2)} 
u c[@] u 

{zr E FUN('WL(/1)) =~ I/VL(12)[X~¢(ML(1))] C_ WF(.Tr), 
",,'r e F U N ( W / . , ( / 1 ) )  =~ c__ S~(o.),  

• FUN('Wz,(/:0) =~ w=c,,-.)rx:,(.M,x:o)-i w,..ct), 
7r • FUN(WL(I:0) =~ __ s~(z,) 
7r • FUN(WL(ll)) =~ 7g~(Tr)[X~(ML(1),WL(ll),Ir)] E 7g~(Tr), 
7r • FUN(WL(/I)) ==> takek(l,A/Is(1)) C_ MF(Tr), 

I ?r occurs in the program} 

5 C o n c l u s i o n  

Table 9. Constraint generation. 

The literature contains a number of seemingly different approaches to the spec- 
ification of program analyses. The main raison d'etre for flow logic is that it 
is sufficiently compact and sufficiently unbiased that it facilitates incorporat- 
ing insights from many different approaches: the full specification [17] integrates 
insights from control flow analysis of functional languages [21, 9] with insights 
from interprocedural data flow analysis of object-oriented languages [19]. In fact, 
flow logics are unbiased as regards the choice of language paradigms, program 
properties, kinds of formal semantics, and methods used for computing the best 
solution. The latter point is achieved by clearly separating verifying the accept- 
ability of a proposed solution from computing the best solution and we believe 
that flow logic does so in a way that is much closer to the field of program 
analysis than previous attempts at formulating program analysis in logical form 
(e.g. [12, 3, 10]). 

This paper has demonstrated one possible route for implementing a composi- 
tional flow logic in succinct form. We have argued that the flow logic is closely re- 
lated to a specification using extended attribute grammars with global attributes 
and side conditions. A key step concerned transforming the extended attribute 
grammar into a circular attribute grammar using global attributes and where the 
attributes are defined using containments (or inclusions) rather than equalities. 
The attribute grammar specification is implicit about the nodes of the syntax 
trees and by using labels to make them explicit we arrive at a specification in the 
constraint based formulation often used for control flow analysis and set based 
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Step 1: Initialise the da ta  structures: 
• the initially empty worklist is initialised as follows: 

- J~L( l , )  is included in the worklist 
• the initially empty da ta  entries are initialised as follows: 

- {e} is included in the da ta  entry for AZiL(l,) 
• the  initially empty  constraint lists are initiatised as follows: 

- a constraint  of the form P _ p is included in the  constraint list of 
all nodes occurring in P 

- a constraint of the form ~ E Pi =~ P2 _ p is included in the 
constraint lists of all nodes occurring in Pi or P2 

Step 2: Repeat  the following until the worklist is empty: 
• remove some node q from the worklist 
• for each constraint of the form P E p in the constraint list for q do 

the following: 
- if the current value of P contains one or more elements that  are 

are not already present in the da ta  entry for p then add them and 
include p in the worklist 

• for each constraint of the form ~r E Pi  =~ P2 E_ p in the constraint  
list for q do the following: 
- if the current value of Pi  contains ~ and if the current value of P2 

contains one or more elements tha t  are not already present in the  
da ta  entry for p then add them and include p in the worktist 

T a b l e  10. Solving the constraints. 

ana lys i s  (and  t h a t  m a y  be  r e g a r d e d  as a flow logic in verbose form).  The  con- 
s t r a i n t  ba sed  speci f ica t ion  is t hen  easi ly  modif ied  so as to  generate constraints 
t h a t  a re  subsequen t ly  solved using a g r a p h  based  a lgor i thm;  on ly  in the  very  

final s t age  do  we c o m m i t  ourselves  to  pe r fo rming  exhaus t ive  ana lys i s  as  o p p o s e d  
to  d e m a n d  ana lys i s  which is equa l ly  possible .  Indeed ,  much  of  t he  f lexibi l i ty  of  
flow logic s t ems  f rom i ts  ab i l i t y  to  be  i m p l e m e n t e d  in more  t h a n  one way  so as  
to  sui t  t he  d e m a n d s  of  t he  app l i ca t ion .  
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