
Flow Logics for Constraint Based Analysis

Hanne Riis Nielson and Flemming Nielson

Department of Computer Science, Aarhus University, Denmark
e-m~l: hrn@daimi, aau. dk fn@daimi, aau. dk

A b s t r a c t . Flow logic offers a compact and versatile notation for ex-
pressing the acceptability of solutions to program analysis problems. In
contrast to previous logical formulations of program analysis it aims at
integrating existing approaches to data flow analysis and control flow
analysis. It is able to deal with a broad variety of language paradigms,
program properties, kinds of formal semantics, and methods used for
computing the best solution.

In this paper we illustrate how a compositional flow logic (in "succinct"
form) can be systematically transformed into an efficient exhaustive pro-
cedure for computing the best solution of a set of constraints generated.
This involves transformations to attribute grammars and to specifica-
tions of the ("verbose") form used in control flow analysis.

Keywords. Program analysis, data flow analysis, control flow analysis,
constraint based analysis, attribute grammars.

1 I n t r o d u c t i o n

Background. The development of program analyses [18] for complex languages
with procedures, assignments, pointers, block structure and communication is no
easy task. One facet of this is that the resulting analyses are often too unwieldy
for human consumption and for formal verification with respect to the semantics
of the language; this increases the likelihood that the analyses are not completely
safe and that the resulting systems have security loop-holes. Another facet is that
it is hard to implement the analyses so as to yield acceptable time and space
performance; this reduces the usefulness of the analyses and may lead to the use
of cheaper analyses that are overly approximate.

Research aimed at overcoming the "unwieldiness" problem often suggests the use
of compositional or syntax-directed specifications. One popular approach is that
of type systems perhaps extended with annotations concerning side effects [23] or
with properties of the states consumed and produced. Another popular approach
for functional and object-oriented languages is the generation of constraints for
expressing e.g. the connection between the states consumed and produced [8]. As
we shall see in this paper this is related to the use of circular attribute grammars
[1, 2] for specifying program analyses.

Research aimed at overcoming the "efficiency" problem often studies ways of
presenting the flow equations in a manner independent of the syntax of the

110

programming language. This may take the form of traditional data flow equa-
tions [7] that can then be interfaced with a solver that traverses the equations
in a specific order (e.g. reverse postorder) so as to yield good time and space
performance.

The two research directions need to cooperate although the different nature of
the problems studied makes it hard to succeed: while compositionality usually
is a good strategy for overcoming the "unwieldiness" (because it allows us to
grasp one thing at a time) it is seldom a good strategy for achieving the "effi-
ciency" (because attributes that influence one another are not necessarily close
in terms of the syntax and hence the propagation of the attributes becomes un-
necessarily costly). Indeed a lot of the research on overcoming the penalties of
using type systems can be understood as identifying techniques for abandoning
compositionality [22, 5].

Flow logics. The notion of flow logic in succinct form was devised in [17] for
facilitating the integration of interprocedural data flow analysis techniques with
those of control flow analysis, taking care of side-effects, multiple environments,
and multiple analysis contexts while still obtaining a syntax-directed specifica-
tion. As such the notation is directly aimed at overcoming the "unwieldiness"
problem in allowing to combine program analyses that traditionally are pre-
sented using different techniques. Hence flow logic distinguishes itself from other
logical based approaches to program analysis (e.g. [12, 3,10]) in that it aims
at combining existing approaches to program analyses rather than offering yet
another approach.

Flow logics (in succinct or verbose form) have been specified for a variety of
programming language paradigms; in addition to the functional and imperative
paradigms mentioned above it has been used for languages and calculi supporting
concurrency and objects.

Contribution. In this paper we first present an example flow logic in succinct
form. We then show that minor transformations (little more than a redefinition
of I-4TEX macros) allow us to obtain a specification in the form of an extended at-
tribute grammar [26]. Other transformations (mainly for making program points
explicit) suffice for obtaining a specification in the form of a circular attribute
grammar or a control flow analysis (a set based analysis). However, all of these
specifications are to be viewed as recipes for verifying whether or not a proposed
solution to the program analysis problem is indeed acceptable.

To compute the best (in our formulation this means the smallest) solution we
shall base ourselves on one of the more verbose formulations obtained above
but we shall abstain from directly using it as a method for computing the best
solution. Instead we show how to obtain a finite set of conditional constraints;
this is possible due to the compositional nature of the specification (unlike those
of e.g. [16]). The finite set of constraints can then be solved using graph based

1t l

techniques and possibly using specific iteration orders [4]. We shall see that this
leads to the best solution according to the specification.

The development is illustrated on a simplified fragment of the specification de-
veloped in [17]. The full specification deals with a functional language with
side-effects (in the style of Standard ML [15]) and studies different ways of es-
tablishing context (including call strings [20] and data dependencies [13, 19]).
The fragment considered here just deals with a simplified untyped functional
language and only studies contexts in the form of call strings.

2 Succinct Flow L o g i c s

To illustrate the development we shall make use of the syntax

e : : = x I*n, x = > eo I e 2) ' ! "'"

where x E Var, ~r E PntF and 1 E lab. The nature of the unspecified expressions
will be of little concern to us except that they allow to assign to variables and
to access their values; this means that the analysis needs to be able to deal
with side-effects. Since the language is untyped we can use function definition
and application to encode the fixed point combinator and hence express recur-
sive functions as well. The purpose of the domains Lab (of labels) and PntF (of
function definition points) will be explained below.

Example 1. As a running example we shall consider the program

((fn~ x => ((x x) 1 (fny y => y))2) (fnz z => z)) 3

Execution of this program proceeds as follows: At the application point 3, x is
bound to f n z z => z and we get (((f nzz => z) (fn , z => z)) 1 (fny y => y))2.
At the point 1, z is bound to fn~ z => z so the next step of reduction gives
((fn~ z => z) (fny y => y))2. Finally, at the point 2, z is bound to fny y => y
and we obtain the result fny y => y. []

Abstract domains. The analysis is a combined closure and reference cell analysis:
for each subexpression it is determined which closures and cells it may evaluate
to; one aspect of this involves tracking those abstract values that variables and
cells can evaluate to. To present the analysis we shall use the abstract domains
defined in Table 1. The domain Mere (of mementa or contexts) facilitates repre-
senting call strings of length at most k; here a call string [20] is a list of labels
11,... , l~ denoting that the last n calls were of the form (e l m e 2 n) l ~ , " '" , (ell e21)lx
with (era e21) l~ being the most recent call; we write e for the empty call string.

There are three ways of constructing the basic abstract values (in Vals). For the
development to be performed here it is not important how data like integers and
booleans are analysed and hence we have chosen a trivial domain Data for this.

112

m E M e m = L a b <-~

d E D a t a = { o }
(lr, m~) E Closure = PntF X Mere

(w, ma) E Cell = PntR x Mem

v E ValB = Data U Closure U Cell

W E Val = ~(Mem x Vals)
A

R E Env = Var --~ Val
A A

S E Store = Cell -+ (Val × {0~ I~ M})

Table 1. Abstract domains.

Functions (or closures) are represented by pairs consisting of the function point
7r where the function was constructed and the context md in which this took
place; as we shall see we will have other means for recording the abstract values
of the free variables in the function. In a similar way assignable values (or cells)
are represented by pairs consisting of the reference point w E PntR where the
cell was created (e.g. by a ML-like r e f ~ construct) and the context md in which
this took place.

Example 2. Let us consider the case k = 1, i.e. call strings have length at most
1. The three function definitions of the example program of Example 1 can be
represented by (x, c), (y, 3) and (z, e). This reflects that the functions x and z
are defined before the first application whereas the function y only is defined
after the application at point 3 has been performed. []

A subexpression may evaluate to several (abstract) values in different contexts.
A

To record this we use the domain Val that is isomorphic to Mern -+ ?(Vals) and

for each context md the value W E Val gives the set W(md) C_ ValB of basic
values that the subexpression may evaluate to. In a similar way the domain Env
of (abstract) environments associates a value to each variable.

Example 3. As shown in Example 1, the variable z is bound to different values
during the execution. In the analysis its intended abstract value can be written
{(1, (z,e)), (2, (y,3))} reflecting that at the application point 1, z is bound to
the function z (defined in the context e) and at the point 2 it is bound to the
function y (defined in the context 3). []

A

The main point of the domain Store of (abstract) stores is to associate a value
to each cell. Additionally it records how many references (0 for zero, I for zero
or one, and M for any number) there is to a given cell; this facilitates the full
anAalysis [17] to model destructive updating in the manner of [25]. The domains
Val, Env, and Stor~e are partially ordered in the obvious way (with O E I f- M)
and this turns them into complete lattices.

113

A A

WE E WCacheF = (°PntF U PntF*) --~ Val
A A

SF E SCacheF = (°PntF U PntF°) --~ Store
A

/ ~ , / ~ E RC~cheF = PntF --~ Env
A

J~tF E MCacheF = PntF -4 P(Mem)

T a b l e 2. Caches.

Caches. Since the analysis will be specified in a compositional (syntax-directed)
manner we need additional machinery ("global attributes") for transferring in-
formation from one part of the program to another. To do so we shall make use
of the caches defined in Table 2:

- The value cache WE has two components: ~F(OTl') records the actual param-
eters to the function labelled 7r (and is used to link the actual parameter to
t h e formal parameter); WE (~r,) records the results of evaluating the function
body (and is used to link the result back to the call site).

- The store cache SF is in many ways similar: SF (oTr) records the stores pos-
sible at the function call; SF(Tr*) records the stores possible after the evalu-
ation of the function body.

- The environment caches 7~ d and T/~ axe needed because we allow nested
functions and insist on static scope also for the free variables of functions:
7~d(r) records the environment in force when the function labelled r is
declared; 7 ~ (~r) records the same environment but modified to the context
in which the function body is evaluated.

- The memento cache M R is used to ensure that a function is in fact analysed
only once (for all contexts of relevance) rather than many times (one context
at a time):]t4F(~) records the set of contexts in which the function body
needs to be analysed.

Note that if we simplify the analysis to ignore context (~ la 0-CFA analyses)
then the memento cache would merely record whether or not the function body
is reachable (as in [6]).

Example 4. For the program of Example 1 we may take the following caches:

7£

WF(*~)
WF(~*)
Sr(*~)
SF(~.)

n~(~)
M F (-)

X

{(3, (z, ~))}
{(3, (y, 3))}

[]
[]
[]
[]

{a}

y
0
0

[]
[]

[x ~ {(3, (z, ~))}]
[]
0

Z

{(1, (z, ~)), (2, (~, 3))}
{(1, (z, ~)), (2, (y, 3))}

[]
[]
[]
[]

{t ,2}

(It turns out that this is indeed the best analysis of the example program.) []

114

R , M D x : S - ~ S & R (x)

R,M t> fn~ x = > e 0 : S - - ~ S & { (m , (~ r , m)) l m e M }
iff ~ (~) [x ~+ W v (. ~)] , ~ F (~) ~ ~0 : s F (. ~) -~ S t (r *) ~ WF(~ .) ^

R E 7¢~(~)

R, M i> (el e2) t : $1 ~ $4 & W
}ff R , M ~> el : SI -+ S2 & W1 A R , M > e2 : S~ --~ S3 & W~ A

v~ e {~ I (m,(~, -,d)) e w,} :
W2[X~c(M)] C_ Wv(*~r) A SsfX~¢(M)] _ SF(.~r) A
W F (Tr.) IX k (U)] C_ W A SF (zr.) [Xcth (M)] ___ $4 A
T~dF(lr) [Xdtc(U, W1, ~r)] U T~(Tr) A takek(l, M) C Mv(Tr)

for some S2,S3, W1, W2

Table S. Succinct flow logic for the functional fragment.

Specification of the analysis. In the current specification of the analysis we are
not concerned with computing the best solution (see later) but merely with
verifying whether or not a proposed solution is acceptable in the sense that no
errors will occur when performing transformations based on it. We express this
as follows:

(7~ d, T/~, MF, SF, WF) satisfies R, M ~> e : $1 ~ $2 & W

Here the proposed solution consists of the five caches of Table 2 and the entities
R , M , $1, $2 and W: R E Fnv is the environment in which e is to be analysed,
M E P(Mem) is the set of contexts in which e is to be a.nalysed, $1 c Store is

the store that is possible immediately before e, $2 E Store is the store that is
possible immediately after e, and W E Val is the value that e can evaluate to.
Since the five caches of Table 2 remain "constant" throughout the verification we
shall dispense with listing them when defining the "t>" relation in Table 3. Note
that the clauses are defined compositionally and hence clearly are well-defined.
We shall motivate the individual clauses below.

Example 5. Given the caches of Example 4 we may verify the following formula
for the program of Example 1

[], {e} D program: [] --+ [] & {(~, (y,3))}

reflecting that the initial environment is empty, that the initial context is the
empty call string, that the program does not manipulate the store (which hence is
empty) and that the final value is described by {(e, (y, 3))}. The verification will
amount to a proof using the clauses of Table 3 as rules and axioms; if successful,
the proof and the caches constitute the analysis of the program. []

The clause for variables merely demands that the store after x equals the store
possible before x and that the value associated with x in the environment equals
the value that x evaluates to.

t15

The clause for function definition starts out in a similar way except that the
value of the definition must equal

{(m,(Tr, m)) l m E M}

because when the function definition is analysed for m E M the value produced
will be (r, m). Next the environment relevant for the free variables is recorded
for later usage (by means of R _ Tcd(Tr)). Finally, the function body itself is
analysed and this involves the information in four of the five caches of Table 2.

Example 6. As part of verifying the formula of Example 5 we will need to verify

[], > => z : [] []

This follows from the clause for function definition because [] _ [] and

[z ~, {(1, (z, e)), (2, (y, 3))}], {1, 2} I> z : [] -~ [] & {(1, (z, e)), (2, (y, 3))}

follows from the clause for variables. Note that although the function z is called
twice it is only "analysed" once. []

The clause for function application first performs the recursive calls for verify-
ing the proposed solution with respect to the operator and operaad. For each
function ~r that could possibly be called, a number of conditions are verified.
First that the value (W2) of the argument is contained among the arguments
(V~?f(-~r)) that ~r is called with, and similarly, that the store ($3) that holds after
evaluation of the argument is contained in the store (SF (.~r)) holding before the
body of ~r. However, we do not simply write W2 C_)tYF(.~r) and $3 E_ SF(.~r)
because the context changes between the call site and the function body. To take
care of this we write

W[Y] -= {(m2,v) t (ml,v) e W~(ml,m2) e Y}

m) = m)) rv]

for recording that contexts are to be changed from the corresponding first com-
ponents of Y to the corresponding second components. In the case of transferring
I/Tv~ to FPF(e~r) the appropriate context change is expressed by

X{c(M) = {(m, takek(l^m)) I m e M}

that simply prepends the label l of the call to all contexts and then truncates
the length to at most k. The same change has to be performed for the store.

Continuing with the clause for function application it is verified that the value
resulting from the function body" (WF(Tc.)) is contained in the overall value of
the call (W) and that the store after the function body (SF(~r.)) is contained in
the store after the call ($4); for this the required change of context is expressed
by

Xc/h(M) = {(m, dropl(m))Idropl(m) E M, takel(m) = l}

U {(m, dropl(m)^l')ldropl(m)^l'e M, take l (m)= l}

116

where dropl(m) removes the first element of m, i.e. the label of the most recent
call site. Next we verify that the function called will indeed be analysed in all
relevant contexts (as given by takek(l, M) = {takek(l^m)] m E M}). Finally we
enforce static scope for the free variables in the function being called by ensuring
that the definition time environment (T~ (~r)) is contained in that of the function
body (/~(1r)); for this the required change of context is

X~c(M, W,~) = {(md, takek(l^m))lm e M, (m, (Tr, md)) e W}

Example 7. Verifying the formula of Example 5 also involves verifying

Ix {(3, (z, {3} (x a {(3, (z,

For this, the clause for application demands that we verify

{3} x : [] -+ [] {(3, (z,

which follows directly from the clause for variables. Only the function z can be
called so we have to verify a number of conditions for this function, including
that {(3, (z,e))}[Xlc({3})l C_ ~/~]F(.Z) and WF(ZO)[Xlh({3})] C_ {(3, (z,e))}.
Here X~c({3}) = {(3, 1)} and the effect of the transformation will be to remove
all pairs that do not have 3 as the first component and to replace the first
components of the remaining pairs with 1. Similarly, X~h({3}) = {(1, 3)} so in
this case the transformation will remove pairs that do not have 1 as the first
component (i.e. pairs that do not correspond to the current call point) and
replace the first components of the remaining pairs with 3. It is now easy to
verify that the above two conditions are fulfilled for the caches of Example 4. []

Flow dependencies. The interplay between the clauses for function application
and function definition is illustrated in Figure 1. Here each of the caches 7~dF,
T/~ and A4F are represented by rectangles and similarly the two "components"
of the caches WF and SF are represented by rectangles. A judgement of the form
R, M t> e : SI -+ $2 & W is represented by a node

o 0 o e o o

where the three circles before e represent R, M and S1 (in that order) and the
two circles after e represent $2 and W (in that order). An arrow indicates flow
of information.

Containments versus equalities. Since the specification in Table 3 is concerned
with verifying whether or not a proposed solution is acceptable it is sensible that
the clause for function application employs a containment like takek(l, M) C_
J~4F(zr) rather than an equality like takek(l, M) =]vir(~r). The reason is that
there might be other instances of the clause where the label of the application
is different but yet the same function is called. If l l , - . . , l~ are all the labels

t17

function application

Caches for ~x

function definition

C)

Fig. 1. The use of the caches.

of applications where a function labelled ~r is called then taking the smallest
(i.e. least) solution ensures that J~4F (r) = takek (/1, M) U. . .U takek (ln, M) which
is the desired result; as in [16, 6] one can prove that it is always possible to find
an acceptable solution that is also the smallest one. In fact it would be incorrect
to replace the containment by an equality: if M ¢ 0, k > 0 and I~1 ¢ I~2 then it
is impossible to obtain takek(l~, M) = A, tF(Tr) for all i.

Although the clauses in Table 3 contain no explicit equalities they do contain a
lot of implicit equalities because the same flow variable is used more than once
in the same clause. One can avoid this by introducing new variables and then
linking them explicitly by containments as illustrated below.

R , M D x : SI -+ S2 & W
iff $1 E $2 ^ R(x) c_ W

R~M [> f n ~ x = > e 0 : S 1 - - + S ~ & W
iff $1 __ $2 A {(ra, (~r,m)) I m e M} C W A

n~(~)[x ~+ WF(*~)],~F(~) ~" ~o: S~(*~) -~ SF(~*) & WF(~*) A
R E TC~(~r)

R , M ~> (el e2) I : SI ~ S2 & W
iff R E R 1 A M E M1A S1 E Sll A

R1,M1 > e1:$11 ~ $12 & W1 A
R E R2 A M E M2 A SI2 E S21 A
R2,M2 ~> e2 : S 2 1 ~ S22 & W2 A
w • {~ 1 (m, (~,md)) • W,}:

W2[X~c(M)] C D)F(*,¢c) A S2e[X~¢(M)] E SF(°Tr) A
14;v(~r.)rxelh(M)] C_ W A SF(Tr.)rX~h(M)] E $2 A

TC~(~r)[X~¢(M, W1, =)l g ~ (=) A takek(/, M) C_ ~dF(~r)
for some R1,M1,Sl l ,S12, W1,Re, M2,S~l,S22, W2

Clearly there will be proposed solutions that are acceptable according to the
modified specification but that are not acceptable according to Table 3. This
motivates being explicit about what we mean by the best solution. Usually this
is taken to mean the smallest solution but this turns out to be '%oo small"
because it allows us to take all solution sets to be the empty ones. To avoid this
we shall insist that the best solution is the smallest one among all acceptable
solutions for which the empty call string e is contained in the set M, used for
the top level expression e,. This is still a smallest solution to a specification that
has been augmented by the condition {e} C M,.

We can now use a result of Tarski [24] to prove that the best solution for one
specification equals the best solution for the other. Tarski's result considers a
monotone function f on a complete lattice and says that the least fixed point (a
fixed point being some v such that f (v) = v) equals the least prefixed point (a
prefixed point being some v such that f (v) U_U_ v). It follows from this result that
for monotone functions f l , " ' , f~ we have that the least v such that f l (v) E
v A . . . A f~(v) U v equals the least v such that f l (v) U . . . tA f~(v) = v. In
other words, we can change containments to equalities if we "collect" all terms
defining the same entity.

3 Attr ibute Grammar Formulations

The flow logic of Table 3 can be transformed into an attribute grammar. The
basic idea behind attribute grammars is as follows. Eadl symbol of the syntax
is given a fixed number of attributes with fixed domains. Different instances
of the symbols in a syntax tree may have different attribute values. The rules
of the syntax are extended with conditions expressing how the attributes of
the symbols depend on one another; these conditions have to be fulfilled by
the attributes of all instances of the rule in the syntax tree. There are different
approaches to the specification of attribute grammars spanning a spectrum from
extended attribute grammars [26] that are mainly used for verifying the values
of attributes, to the classical attribute grammars (e.g. [27]) that are mainly used
for computing the values of attributes.

We shall now proceed in two stages. First we show that a minor transformation
will turn the specification of Table 3 into an extended attribute grammar with
global attributes and side conditions. The second stage will then transform the
extended attribute grammar into an attribute grammar using global attributes
and defining the attributes by containments (rather than equalities).

Extended attribute grammars. To specify the extended attribute grammar [26]
we shall give the symbol e five attribute positions with the following domains:

119

(e: R, M, S, S, R(x)) ::= x

(e:R,U,S,S,{(m,(Tr, m)) [mEU}) ::=
~.~ x --> (eo : 7%(~)[~ ~ WF(*~)], ~ F (l r) , SF(*~), SF(~*), WF(~*))

with R [::: 7¢~(7r)

(e : R,M, S1,S4, W) ::= ((el : R,M, S1,S2, W1) (e2 : R,M, S2,Sz, W2)) t
with Vrr E {rr I (ra, (Tr, md)) E W1}:

W2[X~¢(M)] C_ WF(aTr) A S3[X~¢(M)] E ,Sr(°~r) A

~ (~ °) f X £ (M) I C W ^ S~(~*)fX&(M)I __ S~ ^
n~(-)I'X~o(M, W~, ~)1 E ~ (~) ^ t~kek(t, M) C_ . ~ (.)

Table 4. Extended attribute grammar formulation.

A A h

- Env, 7)(Mem), Store, Store and Val.

In the notation of extended at tr ibute grammars the symbol e and its at tr ibutes
are written as

(e : R ,M, S1,S2,W)

Here R, M, $1, $2 and W are terms defining the attributes of the corresponding
position; these terms are constructed from constant values, at tr ibute variables
and various operations on terms. Multiple occurrences of the same at t r ibute
variable in the same syntactic rule expresses an implicit condition since in each
instance of the rule the occurrences must have the same value.

In addition to the attributes associated with e we shall use five global attr ibutes
corresponding to the five caches of Table 2:

- 7~ d, T~CF, A/IF, SF and WE.

The global attr ibutes can be used as constants in the construction of terms for
the attr ibutes and their values can be further constrained by explicit conditions
associated with the syntactic rules.

It is now easy to see that Table 4 can be obtained from Table 3 and vice versa by
simply changing the notation. Hence it should be clear that the two specifications
admit the same acceptable solutions and therefore that the best solution for one
equals the best solution for the other.

Remark. We should point out tha t the specification of Table 4 goes a little be-
yond the extended at tr ibute grammars of [26] in that it uses global attr ibutes
and explicit conditions. This can be rectified using standard transformation tech-
niques: for each global at tr ibute we can give e an additional at tr ibute position
and we can also give e a single at tr ibute position holding the conjunction of the
explicit conditions. []

Attribute grammars. So far we have used extended at tr ibute grammars as a
verification mechanism: the (implicit and explicit) conditions associated with the

t20

syntactic rules specify a relationship between the values of the (local and global)
attributes that have to hold; they do not directly specify how the attributes
have to be computed from one another. Extended attribute grammars can also
be given a more computational interpretation and when doing so it is customary
to introduce a distinction between inherited and synthesised attributes: the idea
is that the inherited attributes will carry information from the root of the syntax
tree towards its leaves whereas the synthesised attributes will carry information
in the opposite direction.

In the case of attribute grammars [27] we formalise the ideas as follows. The
symbol e is equipped with the following named attributes:

A A

- inherited attributes R, M and $1 with domains Env, P(Mem), and Store
respectively, and

- synthesised attributes $2 and W with domains Store and Val respectively.

In this way information about the environment (R), the context (M) and the
store ($1) in which the expression is evaluated will be given by the inherited
attributes, whereas information about the store ($2) and value (W) obtained as
a result of evaluating the expression wilt be given by the synthesised attributes.
The values of the attributes are referenced using dot-notation (for example e.R)
and they are specified by explicit conditions associated with the syntactic rules.

The computational nature of the attribute grammar notation is further empha-
sised by the distinction between defining and applied attributes of a syntactic
rule: a defining attribute is either an inherited attribute of the left hand side or
it is a synthesised attribute of one of the symbols on the right hand side, whereas
an applied attribute either is a synthesised attribute of the left hand side or an
inherited attribute of one of the symbols on the right hand side. The conditions
associated with the syntactic rule usually specify how to compute the values of
the applied attributes from those of the defining attributes.

In Table 5 we give an algorithm for transforming an extended attribute grammar
into an attribute grammar. The idea is as follows. Step 1 takes care of the fact,
that positions corresponding to defining attributes typically are given by terms
and not just attribute variables; this expresses an implicit condition that now is
made explicit. Step 2 ensures that the implicit condition expressed by using the
same attribute variable in different defining positions is made explicit. After these
two steps all defining attribute positions contain distinct attribute variables and
in step 3 we rename them to use the dot notation. In step 4 we take care of the
applied attributes and replace them by their name and an explicit condition for
their computation. In step 5 we attempt to remove any attribute variables that
still occur, and finally, in step 6 we change the notation to be that of attribute
grammars [27]. This transformation procedure is more complex than the one
described in [26, 14] because we need to deal with containments and we take
care not to generate more containments than absolutely necessary.

121

Step 1: For all positions corresponding to defining attributes with a term U
that is not just an attribute variable do the following:
• replace the term with a fresh attribute variable u, and
• add the side condition u _ U if the position is on the right hand

side, and U _ u if it is on the left hand side.

Step 2: If the same attribute variable u occurs in more than one position cor-
responding to a defining attribute then do the following:
• replace each of the positions with a fresh attribute variable us, and
• add the condition u~ _E u if the position is on the right hand side,

and u __. us if it is on the left hand side.

Step 3: For all defining attributes do the following:
• if the attribute variable u is in the position for the attribute U of

the symbol e then replace all occurrences of u with e.U.

Step 4: For all applied attributes do the following:
• if the term U is in the position for the attribute U of the symbol e

then replace it with e.U and add the condition U _ e.U.

Step 5: Simplify the conditions (during which any remaining attribute variables
are regarded as being existentially quantified).

Step 6: Rewrite the rule using attribute grammar notation.

Table 5. From extended attribute grammars to attribute grammars.

Using this algorithm on the specification in Table 4 results in the specification in
Table 6. I t is interesting to note tha t Figure 1 may now be viewed as illustrating
the dependency graphs for function application and function definition.

In analogy with the discussion about "containments versus equalities" (in the
previous section) it will not be the case tha t the specifications in Tables 4 and 6
admit the same acceptable solutions. However, it will be the case tha t the best
solution for one equals the best solution for the other. This will suffice for our
purposes because program analysis is concerned with obtaining the best solution
to a given specification.

I t is easy to see tha t the specification in Table 6 is in fact circular. Consider
an expression fn~ x => e where e is an application (el e2) l. Then the clause for
function definition gives

e.W c_

and the clause for application gives

rX&(.M)I c_ e.W

showing tha t W~-(~r.) depends on e.W which in turn depends on WF(~r-).

Remark. The specification of Table 6 is not quite an at t r ibute g rammar in the
classical sense [27]: it uses quantifiers, it uses global at tr ibutes, and it uses con-
ta lnments rather than equalities. The quantified formula can be eliminated by

122

e : : ~ X

e.S1 E e.S2
e.R(x) C e.W

o : : : fn~ x => eo
e.Sl I::: e.S2
{(m, (=, m)) I m e e.M} C e.W
n~(~r)[x ~ w~(,~r)] E__ eo.R
A4F(Tr) C eo.M
SF(,Ir) E eo.Sl
eo.S2 ___ SF(~r,)
eo.W c_ Wy(~,)
e.R _ "/~ (~r)

::= (~1 ~2) 1

e.R E:: el.R
e.M C: el.M
e.St E- el.S1
e.R E: e2.R
e.M C e2.M
el.S2 E e2.$i
w e {~ I (m, (~, rod)) e e l . w } :

e=.WrX~¢(e.M)] C_ WF(.~)
e~.S=rXL(e.M)l E sF(.~:)
W£(1r,)[X~,(e.M)] C e.W
SF(=,)FX&(~.M)I E e.S~
~(~)rx~o(e.M, ~.W, ~)] E ~(~)
take~(l,e.M) C_ J~p(~r)

Table 6. Attribute grammar formulation.

collecting left hand sides and by expressing the constraints at the level of com-
plete caches rather than at the level of individual entries into caches. Global
attr ibutes can be eliminated by replacing them with pairs of inherited and
synthesised attributes that are threaded through the syntax tree. Finally, the
containments can be replaced by equalities provided that all the relevant con-
tainments are "collected" as explained in Section 2. []

4 Verbose Flow Logics

The (somewhat liberal) at tr ibute grammar formulation obtained in Table 6 goes
a long way towards an efficient implementation of the flow logic. However, com-
pared with the efficient constraint based methods it still suffers the disadvantage
that it depends too closely on the program syntax and hence makes it hard for
an implementation to avoid the penalty of being syntax-directed. To overcome
this problem we shall introduce additional caches for representing the attributes
instead of using the dot-notation.

Additional caches. To facilitate introducing the new caches we need to demand
that all subexpressions are labelled; previously only the applications were la-
belled. One way to achieve this is to differentiate between labelled expressions
and unlabelled terms:

e ::-~ t l

t : : = x I~n~ x => e0 I(e , e2) I .--

We may think of the labels as tree addresses or names of the nodes in the syntax
tree. As before it is the expressions that will be analysed.

The new caches are defined in Table 7 and they can be summarised as follows:

123

A A

/"~L E RCacheL = Lab --~ Env

A~IL E MCacheL = Lab -+ ~(Mem)

~VL E WCacheL = Lab -+ Val

SL E SCacheL = (eLab U Labo) -+ Store

Table 7. Additional caches.

- The environment cache ~L corresponds to the R attribute: we shall replace
tt.R by TeL(l).

- The memento cache fl4L corresponds to the M attribute: we shall replace
tt.M by ML(1).

- - The value cache WL corresponds to the W attribute: we shall replace tt.W
by WL(1).

-- The store cache SL corresponds to the 51 and 52 attributes: we shall replace
t 1.51 by Sz (*l) and iJ.S2 by SL (l*).

Control flow formulation. The description of the caches already suggests a
method for transforming the specification of Table 6. In doing so we shall exploit
the presence of labels on all subexpressions. We shall write the analysis of an
expression t I as

(7-~d , ~'~, J~F, SF, ~/~F, T~L, J~L,]/~)L, SL) s a t i s f i e s ~> t l

and (as in Table 3) we shall be explicit about the analysis of subexpressions.
Allowing minor changes in notation this results in the specification of Table 8.

The new formulation is typical of the abstract control flow specification of [16,
6, 9] except that it is syntax-directed and therefore closer to implementation. If
all terms are uniquely labelled then the specification in Table 8 can be converted
back into the one in Table 6. Hence the two specifications admit the same ac-
ceptable solutions and it follows that the best solution for one equals the best
solution for the other.

Constraint generation. The final phase in implementing the flow logic consists
in changing the specification from being a recipe for verifying the acceptability
of a proposed solution to being a method for computing the best solution. This
involves extracting the individual conjuncts of the specification and we shall
do so by defining a function C that maps an expression to the set of (possi-
bly conditional) constraints involved in verifying the acceptability of a proposed
solution. In the case of variables and function definition this is rather straight-
forward as illustrated in Table 9. In the case of function application there is
a small complication. Writing FUN(W) = {Tr I (m, (Tr, ma)) E W} we have to
generate constraints for each 7r E FUNOA3L(ll)) and the problem is that the
value of WL (ll) is not known at constraint generation time. Instead we generate
conditional constraints for each 7r occurring in the program (assuming that the
program is a closed system); in this way the decision whether or not to really
impose the constraint is delayed until a later point in time where information
about the value of WL (ll) is available.

124

~> x t

iff SL(.1) E SL(l°) A
n~(O(~) c_ w~q)

ifr sL(-O E s~(t.) ^
{(m, (~,m)) lm e ~L(0}

C_ W~ q) ^
n~(~)[~ ~ w~(.~)]

E 74L (to) ^

SF(°~r) E 8L(O/O) A
Dt~ ° A
8L(lO°) E 8FO TM) A
WL(lo) C W~(~.) A
nLq) U n~(~)

i~ n~(O _ n~(l~) ^
.~L(l) C_ ML(ID A
8L(,l) E 8L(,l~) A
~>ttl 1 A
~ (1) __ ~L(h) A
.~IL(O C_ .ML(l~) A
&(ho) _ SL(,I~) ^
~>t~ A
V~r e 0r I (m, 0r, me)) e ~VVL(/1)} :

W~(12)[XL(ML(0)] c_ WF(o~) ^
SL(~2)fXL(ML(0)] E S~(.~) ^
W~(~.)[Xth(M~(0)] C WLq) ^
S~(~o)[Xth(M~(l))l E S~q.) ^

takek(l, MAIL(l)) C MFOr)

Table 8. Control flow formulation: verbose flow logic.

It is immediate that the two specifications admit the same acceptable solutions
and hence that the best solution for one equals the best solution for the other.

Constraint solving. To compute the best solution to the constraints generated we
shall construct a graph and then propagate information until stabiIisation. Each
entry in each cache gives rise to a node; with each node is associated a data entry
for holding the corresponding value. Each constraint may give rise to one or more
edges; they are represented using a constraint list for each node that contains
the outgoing edges for that node. The algorithm operates using a worklist that
contains those nodes for which we still might need to propagate information
along their outgoing edges. Since we wish to compute the best (rather than
merely the smallest solution) the worklist is initially set to .h4L(t.) where t. is
the label of the top level expression e.; also the data entry for .hdL(l.) is initially
set to {¢} (as discussed in Section 2). The details of the algorithm are given in
Table 10 and are mostly quite standard (e.g. [6]).

One can prove that the algorithm always te~Tninates and that it produces the
best solution to the constraints upon which it operates; it is essential for this that
all constraints generated by Table 9 are of the form P _ p or ~r E P1 =~ P2 _ p
where p is a node (as opposed to a more general expression or a constant, set) and
where P, P1 and P2 all contain at least one node. The efficiency of the algorithm
can be improved in many ways [4] but in the special case of functional programs
without side effects the formulation given in Table 10 suffices for achieving the
best known (cubic) worst case time complexity.

The above procedure is an exhaustive algorithm [1] for solving the constraints.
By contrast the extended attribute grammar evaluation scheme described in [14]
for mainly non-circular extended attribute grammars is demand driven [2]. To
obtain a demand driven procedure for solving the circular constraints one would
probably need to exploit ideas from minimal function graphs [11].

125

C[X/] = "{SL(t/,) E *,--~L(~@),"]'~L([)(X) C ~2L(I)}

= {sL(.O __ sL(t .) , {(m, (~, m)) t m e ML(O} C_ W~(l),
T~('/r)[z ~ ~/~F(@?I')] ~__ T~L(IO),d~F(?f) C J~L(IO),SF(@W) ~ SL(@Io)}
u c[@] u
{SL(lo,) E Sv(Tr,),WL(lo) C_ VVF(Tr,),T~L(1) E 7~aF(Tr)}

C[(t~ ~ t~) ']
= {7"~L(/) E TgL(ll),ML(1) C ./~L(ll),SL(*I) E SL(*/1)}

u cIt~] u

{'~L (l) L~ '~L(/2), J~L (1) C ./~L (/2), SL(/I@) E SL (@/2)}
u c[@] u

{zr E FUN('WL(/1)) =~ I/VL(12)[X~¢(ML(1))] C_ WF(.Tr),
",,'r e F U N (W / . , (/ 1)) =~ c__ S~(o.),

• FUN('Wz,(/:0) =~ w=c,,-.)rx:,(.M,x:o)-i w,..ct),
7r • FUN(WL(I:0) =~ __ s~(z,)
7r • FUN(WL(ll)) =~ 7g~(Tr)[X~(ML(1),WL(ll),Ir)] E 7g~(Tr),
7r • FUN(WL(/I)) ==> takek(l,A/Is(1)) C_ MF(Tr),

I ?r occurs in the program}

5 C o n c l u s i o n

Table 9. Constraint generation.

The literature contains a number of seemingly different approaches to the spec-
ification of program analyses. The main raison d'etre for flow logic is that it
is sufficiently compact and sufficiently unbiased that it facilitates incorporat-
ing insights from many different approaches: the full specification [17] integrates
insights from control flow analysis of functional languages [21, 9] with insights
from interprocedural data flow analysis of object-oriented languages [19]. In fact,
flow logics are unbiased as regards the choice of language paradigms, program
properties, kinds of formal semantics, and methods used for computing the best
solution. The latter point is achieved by clearly separating verifying the accept-
ability of a proposed solution from computing the best solution and we believe
that flow logic does so in a way that is much closer to the field of program
analysis than previous attempts at formulating program analysis in logical form
(e.g. [12, 3, 10]).

This paper has demonstrated one possible route for implementing a composi-
tional flow logic in succinct form. We have argued that the flow logic is closely re-
lated to a specification using extended attribute grammars with global attributes
and side conditions. A key step concerned transforming the extended attribute
grammar into a circular attribute grammar using global attributes and where the
attributes are defined using containments (or inclusions) rather than equalities.
The attribute grammar specification is implicit about the nodes of the syntax
trees and by using labels to make them explicit we arrive at a specification in the
constraint based formulation often used for control flow analysis and set based

126

Step 1: Initialise the da ta structures:
• the initially empty worklist is initialised as follows:

- J~L(l ,) is included in the worklist
• the initially empty da ta entries are initialised as follows:

- {e} is included in the da ta entry for AZiL(l,)
• the initially empty constraint lists are initiatised as follows:

- a constraint of the form P _ p is included in the constraint list of
all nodes occurring in P

- a constraint of the form ~ E Pi =~ P2 _ p is included in the
constraint lists of all nodes occurring in Pi or P2

Step 2: Repeat the following until the worklist is empty:
• remove some node q from the worklist
• for each constraint of the form P E p in the constraint list for q do

the following:
- if the current value of P contains one or more elements that are

are not already present in the da ta entry for p then add them and
include p in the worklist

• for each constraint of the form ~r E Pi =~ P2 E_ p in the constraint
list for q do the following:
- if the current value of Pi contains ~ and if the current value of P2

contains one or more elements tha t are not already present in the
da ta entry for p then add them and include p in the worktist

T a b l e 10. Solving the constraints.

ana lys i s (and t h a t m a y be r e g a r d e d as a flow logic in verbose form). The con-
s t r a i n t ba sed speci f ica t ion is t hen easi ly modif ied so as to generate constraints
t h a t a re subsequen t ly solved using a g r a p h based a lgor i thm; on ly in the very

final s t age do we c o m m i t ourselves to pe r fo rming exhaus t ive ana lys i s as o p p o s e d
to d e m a n d ana lys i s which is equa l ly possible . Indeed , much of t he f lexibi l i ty of
flow logic s t ems f rom i ts ab i l i t y to be i m p l e m e n t e d in more t h a n one way so as
to sui t t he d e m a n d s of t he app l i ca t ion .

Acknowledgement. This work has been s u p p o r t e d in p a r t by t h e D A R T p ro j ec t
funded by the Dan i sh Science Research Counci l . Specia l t hanks are due to Rein-
h a r d Wi lhe lm: th is p a p e r would never have come into exis tence wi thou t his
p rovok ing remarks!

R e f e r e n c e s

1. W. A. Babich and M. Jazayeri. The method of a t t r ibutes for da ta flow analysis - -
Par t I. Exhaustive analysis. Acta In/ormatica, 10:245-264, 1978.

2. W. A. Babich and M. Jazayeri. The method of a t t r ibutes for da ta flow analysis - -
Par t II. Demand analysis. Acta Informatica, 10:265-272, 1978.

3. P. N. Benton. Strictness logic and polymorphic invariance. In Proc. Second In-
ternational Symposium on Logical Foundations of Computer Science, pages 33-44.
Springer Lecture Notes in Computer Science 620, 1992.

127

4. C. Fecht and H. Seidl. An even faster solver for general systems of equations. In
Proc. SAS'96, volume 1145 of Lecture Notes in Computer Science, pages 189-204.
Springer-Verlag, 1996.

5. Y.-C. Fuh and P. Mishra. Polymorphic subtype inference: Closing the theory-
practice gap. In Proc. TAPSOFT'89, volume 352 of Lecture Notes in Computer
Science, pages 167-183. Springer-Verlag, 1989.

6. K. L. S. Gasser, F. Nielson, and H. R. Nielson. Systematic realisation of control
flow analyses for CML. In Proceedings of ICFP'97, pages 38-51. ACM Press, 1997.

7. M. S. Hecht. Flow Analysis of Computer Programs. North-Holland, 1977.
8. S. Jagannathan and S. Weeks. Analyzing Stores and References in a Parallel

Symbolic Language. In Proe. LFP'94, pages 294-305, 1994.
9. S. Jagannathan and S. Weeks. A unified treatment of flow analysis in higher-order

languages. In Proc. POPL '95. ACM Press, 1995.
10. T. P. Jensen. Abstract Interpretation in Logical Form. PhD thesis, Imperial College,

1993.
11. N .D. Jones and A. Mycroft. Dataflow of Applicative Programs Using Minimal

Function Graphs. In Proc. 13~h POPL, pages 296-306. ACM Press, 1986.
12. T. M. Kuo and P. Mishra. Strictness analysis: A new perspective based on type

inference. In Proc. FPCA '89, pages 260-272. ACM Press, 1989.
13. W. Landi and B. G. Ryder. Pointer-Induced Aliasing: A Problem Classification.

In 18th POPL, Orlando, Florida, pages 93-103. ACM Press, 1991.
14. O. L. Madsen. On defining semantics by means of extended attribute grammars.

In N. D. Jones, editor, Proc. Semantics-Directed Compiler Generation, volume 94
of Lecture Notes in Computer Science, pages 259-299. Springer-Verlag, 1980.

15. R. Milner, M. Torte, and R. Harper. The definition of Standard ML. MIT Press,
1990.

16. F. Nielson and H. R. Nielson. Infinitary Control Flow Analysis: a Collecting Se-
mantics for Closure Analysis. In Proc. POPL '97, 1997.

17. F. Nielson and H. R. Nielson. Interprocedural Flow Logics. Manuscript, 1998.
18. F. Nielson, H. R. Nielson, and C. L. Hankin. Principles of Program Analysis: Flows

and Effects. To appear, 1999.
19. H. D. Pande and B. G. Ryder. Data-flow-based virtual function resolution. In

Proc. SAS'96, volume 1145 of Lecture Notes in Computer Science, pages 238-254.
Springer-Verlag, 1996.

20. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis. Prentice-Hall,
1981.

21. O. Shivers. The semantics of Scheme control-flow analysis. In Partial Evaluation
and Semantics-Based Program Manipulation. ACM SIGPLAN Notices 26 (9), 199t.

22. G. S. Smith. Polymorphic type schemes for functional programs with overloading
and subtyping. Science of Computer Programming, 23:197-226, 1994.

23. J.-P. Talpin and P. Jouvelot. Polymorphic Type, Region and Effect Inference.
Journal of Functional Programming, 2(3):245-271, 1992.

24. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math., 5:285-309, 1955.

25. J. Vitek, R. N. Horspool, and J. S. Uhl. Compile-Time Analysis of Object-Oriented
Programs. In Proc. CC '92, volume 641 of Lecture Notes in Computer Science,
pages 236-250. Springer-Verlag, 1992.

26. D. A. Watt and O. L. Madsem Extended attribute grammars. Computer Journal,
26(2):142-153, 1983.

27. R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley, 1995.

