
Tool Demonstrat ion  

The Eli System 
Uwe  Kastens ,  P e t e r  Pfahler ,  Ma t th i a s  J u n g  
Univers i t / i t -GH P a d e r b o r n ,  Fachbere ich  17 

D-33095 P a d e r b o r n ,  G e r m a n y  
Email: {uwe, pe te r ,  m jung}@uni -pade rbo rn .de  

Methods and techniques of compiler construction are applicable to a range of 
problems that is much broader than the development of compilers for program- 
ming languages: Processors for input languages, design languages, specification 
languages, and intermediate languages in application programs all demand so- 
lutions to translation problems. 

We have combined a variety of standard tools that implement powerful compiler 
construction strategies into a domain-specific programming environment called 
Eli. Using this environment, one can automatically generate complete language 
implementations from application-oriented specifications. The implementations 
may involve translation into an arbitrary target language, or may be interpretive. 

Eli provides modern compiler construction facilities to users with a wide range of 
sophistication. It offers complete solutions for commonly-encountered language 
implementation subtasks and contains libraries of reusable specifications, making 
possible the production of high-quality implementations from simple problem 
descriptions. 

Eli generates programs whose performance is comparable to that of a good hand- 
coded implementation. Development time for a processor using Eli is generally 
about one third of that for comparable hand code, and maintenance is sig- 
nificantly easier because specifications rather than implementations are being 
maintained. 

Eli has been in the field since 1989 and has been used in many projects worldwide. 
The Eli development team consists of the groups of William M. Waite (University 
of Colorado at Boulder, USA), Antony M. Sloane (James Cook University of 
North Queensland, Townsville, Australia), and Uwe Kastens (Universit~t-GH 
Paderborn, Germany). 

Application Areas 

Eli has been and is being used successfully in a number of areas to produce 
translators, program generators, analyzers and interpreters. Here is a small 
selection of applications: 

• Programming language compilers for ANSI C to SPARC machine code, for 
Pascal to Pcode, for Pascal to C, and for many user-defined languages. 



295 

Special processors that translate musical notation to PostScript, producing 
scores, or statistical data to TeX tables or histograms. 

Program generators that produce C simulation programs from descriptions 
of mechanical systems, or query language calls from a database description, 
or finite-element models from descriptions of solids. 

Interpreters that do animation from descriptions of graphics, or interac- 
tiveIy evaluate decision tables. 

Analyzers to enforce programming style, or interactively validate com- 
mands for satellite control, or compute and present statistics. 

Advantages of Eli 

Eli is a freely-available system that has many advantages over conventional tool 
sets for compiler construction: 

• Problem-oriented instead of tool-oriented: 

The user describes the problems that must be solved. Eli automatically 
employs the tools and components needed for that particular problem. 
Because of this, it is possible to improve tools and components without 
invalidating specifications. 

• Broad spectrum of tasks and solutions: 

Eli offers solutions for most of the tasks that must be carried out to im- 
plement a language. They range from structural analysis (solved by tools 
analogous to LEX and YACC) through analysis of names, types and val- 
ues, to storage of translation data structures and production of the target 
text. There is even a declarative specification tbr the command-line para- 
meterization of the generated programs. 

• Little prior knowledge required: 

A basic understanding of languages and language structures suffices to 
begin using Eli. Tutorials with sample problems and solutions, together 
with extensive on-line documentation and an interactive help system lead 
the user further if they so desire. 

• Integrated system, with flexible overriding: 

All components of Eli are coordinated with one another in such a way 
that the interfaces of the generated modules fit together. As a result, Eli 
generates a complete set of C modules, including a Makefile, to solve the 
specified problem. Mechanisms are provided to allow users to override 
standard modules and interfaces if necessary to solve specific problems. 



296 

Figure 1: Eli's Online Documentation 

State-of-the art components: 

Eli's tools and modules are implemented according to current understand- 
ing of the best approaches to solving translation problems. The generated 
programs are reliable and efficient. Eli is widely used and tested. 

Tool demonstrat ion 

Our tool presentation demonstrates how Eli can be used to generate language 
implementations from specifications. The goal is to give an impression of how 
some of the specification formats for Eli look and how solutions for commonly 
encountered problems can be reused from Eli's module library. 

While the process of compiler construction from specifications itself does not 
produce interesting graphics, Eli provides a hypertext-based online-help system 
(see Fig. 1) and several graphical debugging tools for language specifications 
which can be nicely demonstrated. Furthermore, we present the LaCon ("lan- 
guage construction") system approach which we built on top of Eli. A LaCon 
system is used by experts from application domains to design and implement 
domain-specific languages by selecting combinable language specification com- 
ponents and feeding them into the language implementation system Eli. LaCon 
provides a user interface for language design (see Fig, 2) which completely hides 
the underlying compiler technology for language implementation. 



297 

Figure 2: Design and implementation of domain specific languages using LaCon 

Further Information 

• The Eli Development team: 

-- www. ca. colorado, edu/'eliuser/ 

- www. cs. j cu. edu. au/'tony/ 

- www.uni-paderborn.de/fachbereich/AG/agkastens/eli_home.html 

• Papers on Eli 

- Gray, R. W., Heuring, V. P., Levi, S. P., Sloane, A. M., Waite, W. 
M. Eli: A Complete, Flexible Compiler Construction System, Com- 
munications of the ACM 35 (February, 1992), 121-131. 

- Waite, W. M. An Executable Language Definition, SIGPLAN Notices 
28 (February, 1993), 28-40. 

- Kastens, U. Attribute Grammars in a Compiler Construction Envi- 
ronment, Lecture Notes in Computer Science 545, Springer Verlag, 
1991, 380-400. 

- Kastens, U., Waite, W. M. "Modularity and Reusability in Attribute 
Grammars, Acta Inforrnatica 31 (1994), 601-627. 

- Sloane, A. M. An Evaluation of an. Automatically Generated Corn- 
piler, ACM Transactions on Programming Languages and Systems 
17 (September, 1995), 691-703. 

• Paper on LaCon 

- Kastens, U., Pfahler, P. Compositional Design and Implementation 
of Domain-Specific Languages, Proc. Systems Implementation 2000, 
Berlin, Germany, Feb. 1998. 


