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This paper briefly introduces the Extended Static Checker for Modula-3 (called 
ESC), a programming tool that will catch errors at compile time that ordinarily are not 
caught until runtime, and sometimes not even then. Examples are array index bounds er- 
rors, NIL-dereferences, and deadlocks and race conditions in multi-threaded programs. 
The tool is useful because the cost of an error is greatly reduced if it is detected early in 
the development process. 

The checker is implemented using the technology of program verification. The 
program is annotated with specifications; the annotated program is presented to a ver- 
ification condition generator, which produces logical formulas that are provable if and 
only if the program is free of the particular class of errors under consideration, and these 
formulas are presented to an automatic theorem-prover. 

This sounds like program verification, but it is not: firstly because we don't try 
to prove that a program does what it is supposed to do, only that it is free of certain 
specific types of errors; secondly because we are interested in failed proofs only, not in 
successful ones. Failed proofs are more useful than successful ones, since they warn 
the programmer of possible errors. Also, failed proofs are found more quickly than 
successful ones. 

This idea of extended static checking is not new. The first Ph.D. thesis that we know 
of that addressed the idea was by Dick Sites thirty years ago, and the problem has held 
its own as a Ph.D. thesis topic ever since. But the research prototype checkers that 
have been implemented over the years have made too many simplifying assumptions. 
They may handle only sequential control structures; they may handle no data structures 
except integers and integer arrays; they may require that the entire program consist of 
a single module; they may require the user to guide the theorem-prover or to provide 
complicated loop invariants. These assumptions facilitate the implementation of pro- 
totype checkers, but they also destroy the engineering utility of the checker. We argue 
that these simplifying assumptions can be dropped; that the time has come for extended 
static checking to be deployed instead of studied. 

Our checker handles multi-threaded multi-module object-oriented programs. The 
theorem-proving is completely automatic. Our checker reports errors by line number 
and error type. Our checker works on Modula-3 programs, but the techniques would 
work for any language in which address arithmetic is restricted, including Oberon, Ada, 
Java, and FORTRAN. 

To deal with multi-threaded programs, we introduce a technique that we call locking- 
level verification. Basically this means that the programmer declares which locks 
(semaphores) protect which shared variables, and which locks can or must be held 
at entry to various procedures. The programmer also declares a partial order in which 
locks are allowed to be acquired. The system checks that shared variables are never 
accessed without holding the appropriate locks, and that locks are never acquired out of 
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order. This technique doesn't prove correctness--more expensive methods like monitor 
invariants would be required for that--but it does catch many common errors. 

Our checker is modular: you can use it to check selected modules of a program with- 
out checking the entire program. Since modern programming is inconceivable without 
libraries, we consider modular checking to be essential. The strategy also allows you to 
check for selected classes of errors; for example, it is often useful to check for deadlocks 
and race conditions without checking for array index range errors. 

Using the checker in its most picky mode, where it checks for all runtime errors and 
also for race conditions and deadlocks, we have checked essentially all of  the standard 
Modula-3 input/output library (which is based on readers and writers, which are object- 
oriented buffered streams), and also the standard generic sequence implementation, and 
also several modules from the checker itself. Using the checker in a more forgiving 
mode, in which it checks only for deadlocks and race conditions, we have checked the 
Trestle Tutorial, a suite of about a dozen programs that exercise the Trestle window 
system. The checker discovered a locking error in the tutorial. 

When the checker produces spurious warnings, there are a variety of ways to sup- 
press them, that is, to get the checker to ignore the spurious warnings and continue to 
report real errors. 

Although our checker is a research prototype, with plenty of rough edges, we feel 
that it demonstrates effective solutions to the biggest outstanding problems that have 
confined extended static checking to the realm of the Ph.D. thesis. 

ESC catches errors that no type checker could possibly catch, yet it feels to the 
programmer more like a type checker than a program verifier. The specifications re- 
quired are statements of straightforward facts like inequalities, the error messages are 
specific and understandable, and the theorem-proving is carried out behind the scenes 
automatically. 

Example We have applied ESC to reasonably large libraries, but here we have space 
only for a very simple example: we describe how ESC might find errors in a small 
procedure on the scale of an exercise in an introductory programming course. 

The exercise is to program a procedure that accepts an array of integers as an ar- 
gument and returns a TEXT (Modula-3's predeclared string type) that contains the con- 
catenation of the decimal representations of the elements of the array. To avoid the 
quadratic cost of repeated text concatenations, the procedure allocates a text writer, 
which is a form of buffered output stream whose output can be retrieved as a TEXT, 
writes the elements of the array to the text writer in order, and finally retrieves and re- 
turns a text containing everything that was written. Before presenting the procedure, 
we present the annotated text writer interface: 

INTERFACE TextWr; 

TYPE T <: ROOT; 

<* SPEC VAR valid : MAP T TO BOOLEAN ,> 

<* SPEC VAR state : MAP T TO ANY *> 

PROCEDURE I n i t ( t  : T); (* Initialize the text writer t .  *) 
< ,  SPEC I n i t ( t )  MODIFIES va l id [ t ] ,  s t a t e [ t ]  ENSURES va l id ' [ t ]  *> 

PROCEDURE P u t I n t ( t  : T; i : INTEGER); (* Write the ASCII version of i to t .  *) 
< ,  SPEC Putlnt(t, i) HODIFIES state[t] REQUIRES valid[t] *> 
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PROCEDURE GetTex t ( t  : T) : TEXT; (* Return the text that has been written to t .  *) 
<* SPEC GetText(t) MODIFIES s t a t e [ t ]  REQUIRES va l i d [ t ]  *> 

PROCEDURE Close(t : T); (* Destroy t ,  reclaiming its internal buffers. *) 
< ,  SPEc Close(t) MODIFI .S valid[t], state[t] , >  

ENDTextWr. 

This interface declares an opaque type TextWr.T. The client of the interface knows 
the name of the type and the fact that it is a subtype of ROOT (that is, that it is an object 
type) and knows the signatures of the procedures I n i t ,  P u t I n t ,  GetText ,  and Close,  
but the client knows nothing else about the type. The representation of the type is 
declared in another, more private module, which will not be shown here. 

The annotation language of ESC is basically very conventional: each procedure 
is annotated with a pre- and post-condition (introduced by the keywords REQUIRES 
and ENSUItES, respectively) and a modifies list, which is the list of variables that the 
procedure is allowed to modify. For a variable x in the modifies list, the postcondition 
uses the notation x' to denote the post-value of x and the unadorned identifier x to 
denote its pre-value. 

The annotation language also allows the declaration of abstract variables, also 
called specification variables. Two abstract variables are used in the annotations of 
the text writer interface, as in many others: v a l i d  and s t a t e ,  The concrete represen- 
tations of these variables are revealed in the implementation of text writers and are not 
visible in the interface, which is intended for clients of the abstraction. At an abstract 
level, v a l i d [ t ]  holds iff the text writer t has been properly initialized and s t a t e [ t ]  
represents all the rest of the client-visible state of the text writer (that is, its contents). If 
we were doing full-scale program verification, the interface would specify a great deal 
about the state, but for our purposes the interface specifies only that the state exists and 
specifies which of the procedures change it. 

Here is our hypothesized erroneous program written for converting an array of in- 
tegers into a TEXT: 

PROCEDURE ArrayToTexZ(a : AEKAY OF INTEGER) : TEXT = 

VAR twr :---- NEW(TextWr.T); BEGIN 

FOR i := 1 TO NUMBER(a) DO TextWr.Put In t ( twr ,  a[i]) END; 
KETURN TextWr.GetText (twr) 

END ArrayToText; 

On this example, ESC reports two errors: the first error is an array bounds viola- 
tion in ArrayToText .  Here is the essence of the error message that ESC produces: 
"warning: possible array bounds error: TextWr.Put In t ( twr ,  a[£])" 

The error message also includes a so-called error context which is a long list of 
atomic formulas that characterize the situation in which the error can occur. Because 
it is long, we won't show the error context here, but we remark that a careful study of 
the context will reveal that it implies the formula i = gUMBF&(a), which is in fact the 
condition in which the bounds error can occur: in Modula-3, open arrays are addressed 
from 0, but the FOR loop was written as though they were addressed from 1. Correcting 
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the error in one natural way produces the following improved FOR loop: FOR i := 
0 TO LAST(a) DO . . .  

But ESC complains about this program too, as follows: "warning: precondition 
failed: TextWr.Put In t ( twr ,  a[±]) ". A study of the error context reveals that it con- 
tains the formula NOT va l id[ twr] .  That is, ESC has detected and warned about the 
failure to initialize twr. Correcting this error changes the beginning of the procedure 
implementation to V~l~ twr := NEW(TextWr.T); BEGIN TextWr. In i t ( twr) ; .  And 
with this program ESC is unable to find fault. 

We would like to make several comments about this example. 
First, although careful specifications were required for the text writer interface, 

the beginning programmer was able to make use of ESC without writing any speci- 
fications for his program at all. No preconditions or loop invariants were required in 
ArrayToText .  We think that this is as it should be: anybody qualified to design inter- 
faces understands preconditions and postconditions and abstractions at some level, and 
will find an explicit notation for their design decisions to be a tool rather than a burden; 
on the other hand, many simple errors in programs that use an interface can and should 
be identified by reading the unannotated erroneous program. 

Second, in the actual Modula-3 I/O system, the type TextWr is declared as a subtype 
of a more general writer (Wr.T). Operations like Pul;Inl; and Close apply to any writer. 
GegText applies to text writers only. We have ignored this aspect of the example to 
save words, but the actual ESC checker handles objects and subtyping gracefully. 

Third, the reader should be aware that this is only half an example. The other half 
is the checking of the implementation of writers and text writers. In these implementa- 
tions, representation declarations are made to give the meaning of valid[tr~r]  in terms 
of the concrete fields of 1;wr (including both generic and subtype-specific conjuncts). 
These representations are used by ESC when checking the body of procedures like 
Pu t In t (wr )  and GetTex'c('c~r) that depend on the concrete meaning of validity. 

Fourth, it is in fact true that initializing a text writer leaves its contents empty. If we 
wanted to, we could reflect this in the postcondition of I n i t  as follows: 

< ,  SPEC Init(t) 
MODIFIES va l id [ t ] ,  s'c&t;e[t] E, NSLrKES va l id t [ t ]  AND sl;al;e'['c] = ""  , >  

It would be easy to concoct an artificial example in which this stronger specification 
would be essential, if, say, the absence of array bounds errors in some client depended 
on the fact that a newly initialized text writer was empty. But this is a slippery slope. 
If I n i t ' s  effect on the state is specified fully, why not PutInl ; 's  as well? Without 
discipline, you can quickly slide into the black hole of full correctness verification. 
Luckily, our experience has been that many ESC verifications can be successfully com- 
pleted with almost no specifications at all about the contents and meanings of abstract 
types, other than the specification of validity. You can go a long way just relying on the 
valid/state paradigm--that is, the specifications for each procedure record accurately 
how the procedure affects and requires validity, but all other side effects are swept un- 
der the great rug of MODIFIES sl;al;e[1;]. We believe this is a key reason why ESC 
verifications are more cost effective than full correctness verifications. 

More information and references can be found on the Web at vrw~r, r e s e a r c h  
. digital, corn/SRC / esc / Esc. html. 


