
TOOL DEMONSTRATION

Cool: A Control-Flow Generator for System Analysis

Volker Braun 1, Jens Knoop 2, and Dirk Koschiitzki 2

1 Universit~t Dortmund, D-44221 Dortmund, Germany
e-malh braun@is5, cs. uni-dortmund, de

2 Universit~it Passau, D-94030 Passau, Germany
e-malh {knoop, kos chuetzki}@fmi .uni-passau. de

Abstract Cool is a unifying control-flow analysis (CFA) generator for
system analysis. It uniformly supports the automatic generation of tran-
sition systems and flow graphs from process algebra terms and programs
of programming languages. Basically, it relies on "unrolling" its argument
according to transition rules resembling structural operational semantic
rules. As a side-effect of the unifying view of process algebra and pro-
gramming language programs, Coot supports the automatic construction
of CFA-components of optimizing compilers, which are usually still hand-
coded. Thus, combining it with data-flow analysis and optimization gen-
erators like the DFA&OPT-METAFrame tool kit it renders possible the
generation of complete optimizers.

1 Mot ivat ion and Overview

Procedures for system analysis and verification are typically designed for au-
tomata-like representations of the system under consideration. Two prominent
examples are verification procedures for concurrent and distributed systems
given in terms of process algebra terms (programs) and analysis procedures for
programs of high-level programming languages for the generation of highly effi-
cient code by optimizing compilers. In both cases the application of the relevant
analysis and verification procedures relies on transforming the process algebra
or programming language program into appropriate graphical representations,
called transition systems and flow graphs in their respective contexts.

In the field of optimizing compilers this is accomplished by a control-flow
analysis (CFA), which typically transforms the abstract syntax trees constructed
by the parser into the corresponding flow graphs, which are the syntactic basis
of the large majority of performance improving optimizations. Though CFA-
components are thus a standard ingredient of optimizing compilers, they are
usually still hand-coded. The short-comings are obvious: high expenditure, low
portability, and costly extensibility. This situation is the more surprising as al-
most every other phase of compiler construction from lexical (cf. [8]) and syntac-
tic analysis (cf. [5]) over data-flow analysis (cf. [1]) and optimization (cf. [9]) to

307

code generation (cf. [6]) is nowadays supported by powerful generators allowing
their automatic construction from concise specifications.

In contrast, there have recently been proposed a number of successful ap-
proaches and tools based thereof for the automatic transfer of (CCS-like) process
algebra programs into transition systems (cf. [4, 2]). In essence, the transforma-
tions realized by the Process Algebra Compiler (PAC) and the Process Algebra
Rewriting System (PARIS) of [4] and [2] rely on the "unrolling" of the process
algebra program (term) according to the transition rules of the process algebra
under consideration as illustrated in Figure 1.

From the perspective of a compiler writer, this means interpreting the ef-
fect of communication as control flow. In fact, identifying programs of a process
algebra with programs of a programming language, and transition rules of the
process algebra with rewriting rules resembling the structural operational se-
mantic (SOS) rules of the programming language, the construction principle
becomes directly applicable to programming languages allowing the automatic
transformation of programs into flow graphs as illustrated in Figure 2.

X~fa. y transition rules) h ~ I

Y~fb. (c.d.Y + e.O) e ~ d

Figure 1. Transforming a process algebra term into a transition system.

n:=x; Qn:=x
Z:=I; CZ:=I
WHILE n>l DO rewriti~grules > n°t(n>l~ ~

z:=n*z;
n:=n-I

END

Figure 2. Transforming a program into a flow graph.

Exploiting this analogy systematically is the basis of our approach resulting
in the CFA-generator Cool. Most closely related to it is the "Process Algebra
Compiler" PAC presented in [4]. The application focus of both tools, however,
and, as a consequence, the output generated is different. Whereas PAC yields
a number of functions allowing the transformation of a process algebra term
into a corresponding transition system according to the interface requirements
of a variety of targeted verification tools, Cool provides by its unifying view
of process algebras and programming languages an important contribution to
the construction of optimizing compilers. Moreover, it supports the generation
of user-customized graphs according to specific application-dependent require-
ments, which is both out of the scope of PAC. Simultaneously, this confirmatively
answers a problem left for future research in [4] to which extent the SO-based
construction principle can successfully be transferred and adapted to application
scenarios different from that concentrated on in [4].

308

2 S c r e e n S h o t s f r o m a S a m p l e S e s s i o n

In this section we focus on the contribution of Cool for the construction of
optimizing compilers. Here, the major benefits of our approach are as follows:

1. Generality: The full range of imperative and object-oriented languages is
captured.

2. Simplicity: (i) Language extensions can modularly be captured by enlarging
the current generator specification incrementally. (ii) The specification re-
quired for a new programming language can comprehensively be constructed
in a "copy/paste"-style: adapting a specification at hand accordingly to the
"syntactic sugar" of the new language suffices.

3. Flexibility: The structure of the graphs generated can easily be tailored ac-
cording to application-specific requirements by adapting the transition rules
of the specification.

All these features are discussed in detail in [3]. They are achieved by means of
concise specifications consisting essentially of a set of SOcFA-rules containing for
every statement type (elementary and control statements) of the programming
language considered a corresponding rewriting rule, which usually can be derived
straightforwardly from the corresponding SOS-rule.

E~a~ion ~yeteml ~flY&£ ~x~*t~emo~ II H,I~ ~ T¥ .a

..... (.).)2 ~E~. nl. I! Saamh , 2

• = ex . no (e) . a_~ " I ~] (~ / ~L
:] 1 1 5 = skip X9 d =2; ~ , :

User ti~e (~elf) I 0 . 05 ~%~=L?.3 " X~/Z~I~

1-> l !
. ' . : ~ : ~ i ~ : ~ i

: ¢) => (o.~xL ~(~>. ~) . - . - - - . - - -

, ~1~ : () = > (uh(B.F). uhsle,

~1~ : ((P m .Q> 3 => ~sq r e . s) . A . ~ (a.S) L
: ¢ (e m .~> ~ => <sq (P .s) . A . ~).

Figure 3. Cool: Screen-shot from a sample session.

This is illustrated in Figure 3 showing a snapshot from a sample session provid-
ing a flavour of the system. The upper left window shows the command shell of

309

the tool, while the lower left one displays a fragment of the SOcFA-rule specifi-
cation for 0beron-2. The windows on the right complement this presentation by
showing the flow graphs generated by Cool for the program displayed in the cen-
tral window by feeding its output into the automatical graph-layout component
of the DFA&OPT-METAFrame system (cf. [10]).

3 Conclus ions

Cool supports currently the automatic transfer of process algebra and program-
ming language programs into transition systems and flow graphs, respectively,
but it is not limited to these application scenarios. It has successfully been tested
within the DFA&OPT-METAFrame project demonstrating that it captures the
full range of imperative and object-oriented programming languages (cf. [7]).
Currently, we are integrating Cool and DFA&OPT-METAFrame in order to arrive
at CFA&DFA&OPT-METAFrame, a system which will be unique in supporting
the construction of complete optimizers, i.e., of CFA- and DFA-components, and
the optimizing transformations based thereof. The tool will be made available
within the METiFrame system.

References

1. M. Alt and F. Martin. Generation of efficient interprocedural analyzers with
PAG. In Proc. 2nd Int. Static Analysis Syrup. (SAS'95), LNCS 983, pages 33
- 50. Springer-V, 1995.

2. V. Braun. A transition system generator for process algebras. Master's thesis,
RWTH Aachen, Germany, 1994. (In German).

3. V. Braun, J. Knoop, and D. Koschfitzki. Cool: A control-flow generator for system
analysis. Technical Report MIP-9801, Fak. f. Math. u. Inf., Univ. Passau, Germany,
1998.

4. R. Cleaveland, E. Madelaine~ and S. Sims. A front-end generator for verification
tools. In Proc. 1st Int. Workshop on Tools and Algorithms for Constr. and Analysis
of Syst. (TACAS'95), LNCS 1019, pages 153- 173. Springer-V, 1995.

5. Ch. Donnelly and R. M. Stallman. Bison, the YACC-compatible parser generator.
Free Software Foundation, 1991.

6. C. W. Fraser and A. L. Wendt. Automatic generation of fast optimizing code gen-
erators. In Proc. ACM SIGPLAN Con]. Prog. Lang. Design and Impl. (PLDI'88),
volume 23,7 of ACM SIGPLAN Not., pages 79 - 84, 1988.

7. M. Klein, J. Knoop, D. Koschiitzki, and B. Steffen. DFA&OPT-METAFrame: A
tool kit for program analysis and optimization. In Proc. 2nd Int. Workshop on
Tools and Algorithms for Constr. and Analysis of Syst. (TACAS'96), LNCS 1055,
pages 422 - 426. Springer-V, 1996.

8. G. T. Nicol. Flex, the lexical scanner generator. Free Software Foundation, 1993.
9. St. W. K. Tijan and J. L. Hennessy. Sharlit - - A tool for building optimizers.

In Proc. ACM SIGPLAN Conf. Prog. Lang. Design and Impl. (PLDI'92), volume
27,7 of ACM SIGPLAN Not., pages 82 - 93, 1992.

10. M. v. d. Beeck, V. Braun, A. Cla~,en, A. Dannecker, C. Friedrich, D. Koschfitzki,
T. Margaria, F. Schreiber, and B. Steffen. Graphs in MEwAFrame: The unifying
power of polymorphism. In Proc. 3rd Int. Workshop on Tools and Algorithms for
Constr. and Analysis o] Syst. (TACAS'97)~ LNCS 1217, pages 112 - 129. Springer-
V., 1997.

