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Abstract .  We consider Bayesian and information-theoretic approaches 
for determining non-informative prior distributions in a parametric model 
family. The information-theoretic approaches are based on the recently 
modified definition of stochastic complexity by Rissanen, and on the Min- 
imum Message Length (MML) approach by Wallace. The Bayesian alter- 
natives include the uniform prior, and the equivalent sample size priors. 
In order to be able to empirically compare the different approaches in 
practice, the methods are instantiated for a model family of practical 
importance, the family of Bayesian networks. 

1 I n t r o d u c t i o n  

Given some sample data, our goal is to learn about the regularities in the problem 
domain so that  we can arrive at a "good" predictive distribution 7 ) that  can be 
used to predict well. In the following we restrict the search for such a P to a 
class M of probabilistic models, which all share the same parametric form. All 
the approaches considered here depend on a prior distribution P(6~) over all 
the models (parameter instantiations) ~ in the class A/[. In this paper we study 
different alternatives for choosing P(O) in an non-in]ormative setting, where no 
"data independent" prior knowledge about the problem domain is available. 

The statistical literature contains many proposals for "optimal" non-infor- 
mative prior distributions. While all of these satisfy some optimality criterion, in 
practice they give rise to different predictions. The main purpose of this paper is 
to compute several different "optimal" prior distributions P for a model class of 
practical importance, the class of Bayesian networks (see, e.g., [5]). In particular, 
we will compare priors which are in accordance with the Bayesian interpretation 
of probability, to priors motivated by information-theoretic considerations: a 
prior based on Rissanen's Minimum Description Length (MDL) principle [10], 
and a prior based on Wallace & Boulton's Minimum Message Length (MML) 
principle [15]. Though MDL and MML are similar in spirit, we will see that  they 
do not lead to the same prior distribution. 
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In Section 2 we introduce the general setting of the problem by discussing 
and motivating the priors we will use. In Section 3 the priors and predictive dis- 
tributions are instantiated for the special case where the models are defined by a 
Bayesian network structure with a particular arbitrary, but fixed, topology. For 
some of the priors, this instantiation has been presented in [4, 6]. The contribu- 
tion of this section is to derive explicit formulas for the MDL and MML priors for 
the case of Bayesian networks, which involves computing the (expected) Fisher 
information matrix for Bayesian networks. For comparing the predictive distri- 
butions presented in this paper, we have run an extensive series of tests on real 
world data, but due to space constrains the results of the tests are presented 
elsewhere [8]. 

2 P r e d i c t i v e  D i s t r i b u t i o n s  a n d  T h e i r  P r i o r s  

We model the problem domain by a set X of m discrete random variables, 
X = {X1,.. .  ,Xm}, where a random variable Xi can take on any of the values 
in the set Xi = (xi l , . . .  , xin~ }. A data instantiation d = (Xl,. • • , xm) is a vector 
in which all the variables Xi have been assigned a value: by X = d we mean that 
X1 = x l , . . .  ,Xm = xm, where xi E Xi. A random sample D = (all,... ,tiN) 
is a set of N i.i.d. (independent and identically distributed) data instantiations, 
where each dj is assumed to be sampled from the joint distribution of the vari- 
ables in X. 

Given a random sample D, we are interested in the question of how to define 
the predictive distribution P(dlD ) for a given vector d. We investigate several 
candidates for 7~(d{D), relative to a parametric family A4 of probabilistic models: 
each model O E M defines a probability P(d{O) for each data instantiation d, 
and, under the i.i.d, assumption, a probability P(D{O) (the likelihood) for each 
dataset D. Given the likelihood, and a prior distribution P(O) for all O E 34, 
we can arrive at a posterior distribution for the models: 

P(O{D) ~ P(D{O)P(O). (1) 

The MAP (maximum a posteriori probability) predictive distribution is given 
by 

/~AP(d I D,#)  = P(dID,6o(D))i.i.~. e(d{~)~(D)), (2) 

where ~ denotes the (hyper)parameters used for defining the prior distribution 
P(O), and ~)(D) is the MAP model maximizing the posterior (1). 

A more sophisticated approach is to average (integrate) over all the models 
O E M,  which produces the evidence or marginal likelihood predictive distribu- 
tion 

7~v(dlD,~) = / P(dID, O,g')P(OID,~)dO i.i.d. / P(d[O)P( O{D, ~)dO. (3) 

Both the MAP predictive distribution and the evidence predictive distribu- 
tion are defined by using the posterior P(O[D), which depends on the prior P(O). 
We now consider different alternatives for determining the prior distribution. 
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T h e  U n i f o r m  P r i o r  The conceptually simplest non-informative prior is the 
uniform prior, in which case the prior distribution P(O) is a constant. One 
can see from (1) tha t  in this case the MAP predictive distribution becomes 
the Maximum Likelihood (ML) model of classical statistics, i.e., the model (9 
maximizing the data  likelihood P(DIO ). 

E q u i v a l e n t  S a m p l e  Size  P r i o r s  In the Bayesian philosophy the prior prob- 
ability of a model O can be regarded as a prior (initial) degree of belief in the 
model O. Given a sufficiently regular model class .M, we can construct Equiva- 
lent Sample Size (ESS) priors • for A4 so that  the following property holds for 
all d and all D of any size: 

P(d I D, ~) = P(d I ~)(D U D')), (4) 

where O is the maximum likelihood model (see above) for the training da ta  D 
plus some additional "virtual data" Dq This virtual da ta  D ~ depends only on the 
prior ~, i.e., for each dataset D ~ of any size there is exactly one prior CD, that  
corresponds to it. Hence using P in combination with • is always equivalent to 
predicting using the model that  renders the training data D plus the extra data  
D ~ in the most likely manner. We can now interpret D ~ as a priori data tha t  
governs how strongly we let our predictions be influenced by the actual sample 
D (see [5]). 

A n  M D L  P r i o r  Intuitively speaking, the Minimum Description Length (MDL) 
Principle [10-12] states that  the more we are able to compress a set of data, the 
more we have learned about it, and the better  we will be able to predict future 
data. Stochastic complexity of a data  set D relative to a class of models A~ 
is defined as the code length of D when it is encoded using the shortest code 
obtainable with the help of the class ~4. Here by the "shortest code" one means 
the code tha t  gives as short as possible a code length to all possible data  sets 
D. It follows from the Kraft Inequality (see for example [1t]) tha t  the stochastic 
complexity S can be written as S = - l o g i c  where Psc is some probability 
distribution. 

There are several reasons why S = - logT~v(D) = f P(DtO)Tr(~))dO is a 
good candidate for defining the stochastic complexity explicitly [11]. Recently, 
however, Rissanen [12] has shown that  there exists a code that  is itself not 
dependent on any prior distribution of parameters,  and which yields even shorter 
codelengths than the code with lengths - l o g  7~v(D), except for the special case 
where a particular prior 7r(O) oc 11(0)11/2, the so-called Jeffrey's prior [2,3], is 
used for ~v (D) .  Here II(O)1 denotes the determinant of the Fisher information 
matrix I(0) as defined in [2]. In this case it can be shown [12] that  under suitable 
technical conditions, 7~v and ~sc asymptotically coincide: 

- logPsc(D) = - logT~v(D) + o(1), (5) 

which means that  from the MDL point of view, the optimal predictive distribu- 
tion is obtained by using 7~v with Jeffrey's prior. 
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A n  M M L  Pr io r  Minimum Message Length (MML) Inference [14, 15] is based 
on a similar philosophy to the MDL principle, but there are also some subtle 
differences which cause the actual formulas used in MDL and MML estimation 
to differ considerably (see [1] for a detailed discussion on this subject). For our 
purposes, it is sufficient to note the following two differences: first, in MML 
modeling the predictive distribution P(dtOMML(D)) is defined by using a single 
"MML-optimal" model, whereas 7~c as defined above uses an integral over all 
the models in the given class. Second, although both employ priors, the priors 
used in MDL serve only as a technical tool for computing an approximation to 
Y~c (which itself does not depend on any prior), while MML adopts a Bayesian 
philosophy regarding priors, and assumes the user to provide a subjective prior 
P(O) to reflect his/her prior beliefs. Omitting all mathematical details (which 
can be found in [15]), the MML-optimal model OMML(D) is defined by 

P(DI~9)P(O) (6) 
O M M L ( D )  = a r g  m a x  

~ IS (O)p /2  ' 

where 1I(/9)[ is the determinant of the Fisher information matrix. We now 
see that OMML(D) for prior P(O) is equal io the MAP-model O(D) for prior 
P'(O) c~ P(O)/~r(~9). Interestingly, while the formula for the MDL predictive 
distribution involves multiplying P(DIO ) by Jeffrey's prior, the formula for the 
MML predictive distribution involves dividing P(DIO ) by Jeffrey's prior. 

3 Priors for Bayesian Networks 

A Bayesian (belief) network [9, 13] is a representation of a probability distribu- 
tion over a set of discrete variables, consisting of an acyclic directed graph, where 
the nodes correspond to domain variables X 1 , . . . ,  Xrn. Each network topology 
defines a set of independence assumptions which allow the joint probability dis- 
tribution for a data vector d to be written as a product of simple conditional 
probabilities, 

m 

P(d) = P(X1 = x t , . . .  ,Xm = Xm) = H P(Xi  = xdpa~ = ql), 
i = l  

(7) 

where qi denotes a configuration of (the values of) the parents of variable Xi. 
Consequently, in the Bayesian network model family, a distribution P(d [ 69) is 
uniquely determined by fixing the values of the parameters O = (01,... ,Om), 
where 0 i = (0~1 , 0 i i i • . . ,  1,~,,... ,0c~1,... ,Oc~n,), ni is the number of values of Xi, 
ei is the number of configurations of pai, and Oig~x, := P(Xi  = xi [pai = qi). 

In the following all the conditional distributions of the variables, given their 
parents, axe assumed to be multinomial, i.e., Xilq~ ~ Multi(1;O~l,-- i . , O q , ~ , ) .  

Since the family of Dirichlet distributions is conjugate (see e.g. [2]) to the family 
of multinomials, it would be convenient if we could assume that the prior distri- 
butions of the parameters are from this family. More precisely, this would mean 
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tha t  (Oiq,1,. ~ i i i . . . . .  ,#q~,) ,  where ,#q~n,) are , Oq, n, ) Di(,u~, 1, hy- (#q l l , " "  the 
perparameters of the corresponding distributions. From the definition of Dirich- 
let distributions [2], it is relatively easy to see that  both the uniform prior and 
the ESS priors are Dirichlet distributions (see, e.g., [6]). For the subclass of 
Bayesian Networks used in our experiments reported in [8], Jeffrey's prior is of 
the Dirichlet form too. Moreover, we have seen in the previous section that  the 
priors we need for the MML predictive distributions are arrived at by dividing 
the user's subjective prior by Jeffrey's prior. If the subjective prior is Dirichlet, it 
is easy to see that  the resulting prior is of the Dirichlet form too. Consequently, 
all the priors used here are Dirichlet, which allows us to derive explicit expres- 
sions for ~ , P  and 7~v, as shown in [4, 6]. The computation of the ESS priors for 
Bayesian Networks can be found in [5]. In the following we show how to compute 
the Jeffrey's prior r (O)  for Bayesian networks, which is required for determining 
the MDL and MML priors discussed above. 

Let I(.) denote the indicator function, i.e., I(a, b) = 1 if a = b and 0 oth- 
erwise. We write dji for the i4h  entry of data  instantiation dj; qji stands for 
the configuration of the parent variables of Xi in dj .  For computing the Fisher 
information matrix I(0),  let us consider the element [I(O)]r,8 where (r, s) is the 

il entry corresponding to Oq~lh and O~q~:t2 By deriving an explicit expression for 

logP(XlO ) one can show that  if either the variable indices Q,i2 or the parent 
configurations qil,qi2 are different, then [I(O)]r,s = 0. If qil = qi: and il = i2, 
one obtains after some calculations: 

- 0  logP(d~lO)] P(pai - qdO) 
Oqinl 

"~- I( l l , /2)  P(pai = qilO) 
0 i qill 

We now have an expression for each element of I(O), which gives us 

" '  

~ ( 0 )  cx X/II(O)] = (N.  P q , ) ~  H(Oqd) 2 
i----1 qi=l l=1 

f i ~  i . , - 1  nl i _1  (x (Pq,)=:~-= II(oqd) ". 
i=1 q i = l  l = l  

Details of the derivation of this result can be found in [7]. 

4 C o n c l u s i o n  

In this paper we have discussed various Bayesian and information-theoretic ap- 
proaches for determining non-informative prior distributions in a parametric 
model family: Minimum Description Length (MDL) prior, Minimum Message 
Length (MML) prior, uniform prior, and equivalent sample size priors. To be 
able to study the relevance of the various approaches in practice, we instan- 
t iated the methods for the family of Bayesian networks. Our empirical results 



94 

reported in [8] show that  while in the case of large training samples all methods 
give very good results, some of them perform close to optimal already when only 
a very small amount  of training data  is available. The results suggest tha t  if 
the size of the training data  is small, it would be a good idea to use either the 
evidence-based approach (with any prior), or the MAP approach with the ESS 
priors. 
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