
A Monotonic Measure for Optimal
Feature Selection

Huan Liu 1 and Hiroshi Motoda 2 and Manoranjan Dash 3

Dept of Info Sys &: Comp Sci, National University of Singapore, Singapore 119260.
2 Division of Intelligent Sys Sci, Osaka University, Ibaraki, Osaka 567, Japan.
3 BioInformatics Centre, National University of Singapore, Singapore 119074.

{liuh, manoranj}~iscs.nus.edu.sg motoda~sanken.osaka-u.ac.jp

Abs t r ac t . Feature selection is a problem of choosing a subset of relevant
features. In general, only exhaustive search can bring about the optimal
subset. With a monotonic measure, exhaustive search can be avoided
without sacrificing optimality. Unfortunately, most error- or distance-
based measures are not monotonic. A new measure is employed in this
work that is monotonic and fast to compute. The search for relevant
features according to this measure is guaranteed to be complete but n o t

exhaustive. Experiments are conducted for verification.

1 In troduc t ion

The basic problem of classification is to classify a given pat tern (example) to one
of m known classes. A pat tern of features presumably contains enough informa-
tion to distinguish among the classes. When a classification problem is defined
by features, the number of features (N) can be quite large. A classifier may en-
counter problems to learn something meaningful because the required amounts
of data (A/', or the number of patterns) increase exponentially in proportion with
N. The task of feature selection is to determine which features to select in order
to achieve max imum performance with the minimum measurement effort [2].
Reducing features directly alleviates the measurement effort. Performance of a
classifier can be its predictive accuracy, i.e., 1 - e r r o r r a t e .

As was mentioned in [2], if the goal is to minimize the error rate, and the
measurement cost for all the features is equal, then the most appealing function
to evaluate the potency of a feature to differentiate between the classes is the
Bayes Classifier. Due to the inductive nature of classification problems, no full
distribution of da ta can be obtained. Extensive research effort was devoted to
the investigation of other functions (mostly based on distance and information
measures, or simply on classifiers) for feature evaluation. I f there exist N fea-
tures, to find an opt imal subset of features without knowing how many features
are relevant, it requires to explore all the 2 g subsets. When N is large, this
exhaustive approach is out of the question. Therefore, various feature selection
methods have been designed to avoid exhaustive search while still aiming at the
opt imal subset. Examples are Branch & Bound [7], Focus [1], Relief [4], Wrapper
methods [3], and LVF [5].

102

The feature selection problem can be viewed as a search problem [9]. The
search process starts with either an empty set or a full set. For the former, it
expands the search space by adding one feature at a time (Sequential Forward
Selection) [1]; for the latter, it expands the search space by deleting one feature at
a time (Sequential Backward Selection) [7]. As we shall see, a good alternative to
exhaustive search is Branch & Bound like algorithms if there exists a monotonic
function of evaluating features. Assuming we have subsets {So, $1, ..., Sn}, we
have a measure U that evaluates each subset Si. The monotonicity condition
requires that:

So ~ s l ~ ... ~ sn ~ U(So) < u (s l) < ... < u (s n) .

In this case, the search can be complete but not exhaustive. In other words, the
opt ima/subset is guaranteed. Many distance and information based measures
have been shown to be non-monotonic [9]. Many researchers pointed out tha t
the only remaining alternative is to use the error rate of a classifier as the
measure. Among many classifiers, however, only the Bayes Classifier satisfies this
monotonicity condition 1 because other classifiers adopt some assumptions and
employ certain heuristics [9, 2, 3]. Another disadvantage of using the error rate
as a measure in the wrapper models of feature selection is it is slow to compute.
For example, to construct a decision tree, it would take at least O(Af log Af). We
present here a measure that is monotonic as well as fast to compute (O(Af)) in
search of optimal subsets.

2 A Non-exhaustive yet Complete Search Algorithm

For two subsets of features, Si and Sj, one is preferred to the other based on a
measure U of feature-set evaluation. Si and Sj are indifferent if U(S~) = U(Sj)
and ~#(Si) - #/=(Sj) where ~ is the cardinality; Si is preferred to Sj if U(Si) =
U(Sj) but ~(S~) < :g:(Sj), or if U(S~) < U(Sj) and ~(Si) <_ #]=(Sj). As we know,
the condition for Branch & Bound to work optimally is that U is monotonic.

In this work, U is an inconsistency rate over the data set given Si. The
inconsistency rate is calculated as follows: (1) two patterns are considered in-
consistent if they match all but their class labels, for example, patterns (0 1 1)
and (0 1 0) match with respective to the first two attributes, but are different
in the last attribute (class label); (2) the inconsistency count is the number of
all the matching patterns minus the largest number of patterns of different class
labels: for example, there are n matching patterns, among them, cl patterns
belong to label1, c2 to label~, and c3 to label3 where cl + c2 + c3 = n. If c3
is the largest among the three, the inconsistency count is (n - c3); and (3) the
inconsistency rate is the sum of all the inconsistency counts divided by the total
number of patterns (A/). By employing a hashing mechanism, we can compute
the inconsistency rate approximately with a time complexity of O(Af).

1 But it requires the full distribution of the data.

103

A proof outline is given to show that this inconsistency rate measure is mono-
tonic, i.e., if Si C Sj, then U(Si) >_ U(Sj). Since Si C Sj, the discriminating
power of Si can be no greater than that of Sj. It's known that the discrim-
inating power is reversely proportionM to the inconsistency rate. Hence, the
inconsistency rate of Si is greater than or equal to that of Sj, or U(Si) > U(Sj).
The monotonicity of the measure can also be proved as follows. Consider three
simplest cases of Sk(= Sj - Si) without loss of generality: (i) features in Sk
are irrelevant, (ii) features in Sk redundant, and (iii) features in Sk relevant.
If features in Sk are irrelevant, based on the definition of irrelevancy, these ex-
tra features do not change the inconsistency rate of Sj since Sj is Si U Sk, so
U(Sj) = U(Si). Likewise for case (ii) based on the definition of redundancy.
If features in Sk are relevant, that means Si does not have as many relevant
features as Sj. Obviously, U(Si) >_ U(Sj) in the case of Si C Sj. It is clear that
the above results remain true for cases that Sk contains irrelevant, redundant as
well as relevant features.

ABB is a Branch & Bound algorithm with its bound set to the inconsistency
rate 5 of the data set with the full set of features. It starts with the full set
of features S °, removes one feature from SJ -1 in turn to generate subsets 5}
where I is the current level and j specifies different subsets at the lth level. If
U(S}) > U(S}-I), S} stops growing (the branch is pruned), otherwise, it grows
to level l + 1, in other words, one more feature will be removed. In short, ABB
seeks the smallest Sj whose inconsistency rate is 5. S is the full feature set and
D the data set.

5 = inConCal(S, D);
ABB (S, D) {

/* subset generation */
For all feature f in S {

$1 = S - f ; /* remove one feature at a time */
enqueue(Q, Sl) ;} /* add at the end */

while notEmpty(Q) {
$2 = deQueue(Q) ; /* remove at the start */
if ($2 is legitimate A inConCal(S2, D) _< 5)

/* recursion */
ABB ($2, D); }}

Function inConCal 0 calculates the consistency rate of data given a feature
subset. Care has to be taken in implementing the algorithm such that (1) no
duplicate subset will be generated via proper enumeration; and (2) no child
node of a pruned node will be generated by ensuring that the Hamming distance
between a new subset at the current level and any pruned subset at the parent
level is greater than 12 (this is the legitimacy test in ABB).

It is not required anymore to specify the size of a desired subset, M, or a
bound for the measure as normally required by Branch & Bound. Thus, its name

A full set of N attributes entails an N-bit binary array in which ith value 1 means
ith attribute is chosen to include in the subset.

104

ABB. At the end of search, we just need to report the legitimate subsets with
the smallest cardinality as the optimal subsets.

A n e xa mpl e .
s~ 0JA I t) L~

Refer to the figure: there are four fea-
tures, assuming only the first two are
relevant. The root So = (1 1 1 1) of
the search tree is a binary array with
four ' l 's . Following ABB, we expand
the root to four child nodes by turning
one of the four ' l ' s into '0' (L2). All
four are legitimate: $1 = (1 1 1 0), S~

= (1 1 0 1), $3 = (1 0 1 1), and 6:4
= (0 1 1 1). Since one of the relevant
features is missing, U(Ss) and U(S4)
will be greater than U(So) where U
is the inconsistency rate on the given
data. Hence, the branches rooted by $3
and $4 are pruned and will not grow
further. Only when a new node passes
the legitimacy test will its inconsis-
tency rate be calculated. Doing so im-
proves the efficiency of ABB because A/"
(number of patterns) is normally much
larger than N (number of attributes).
The rest of the nodes are generated
and tested in the same spirit.

3 E m p i r i c a l S t u d y

The objectives of this empirical study are to verify: 1. ABB indeed finds optimal
subsets for various data sets, and 2. features selected are good for various learning
algorithms. We select two groups of data sets: one with known relevant features
and the other with unknown relevant features as shown in Table 1. All data sets
are from [6] except for Corral [3]. For the first group of 5 data sets we compare
the subsets selected by ABB with the known. For the second group we compare
the outputs of ABB with that of Focus, a popular method in literature that
guarantees optimal subsets. For the second objective we choose two different
learning algorithms: a decision tree method (C4.5 [8]) and a standard back-
propagation neural network (SNNS [10]). Two thirds of the data is used for
selecting features by ABB and Focus. The other one third is the testing data
for SNNS. We run 10-fold cross validation with C4.5 on the whole data. Results
showed that ABB indeed finds optimal subsets as validated by Focus and a priori
knowledge. Focus does breadth first search starting from the empty set and stops
after reaching the first consistent subset. In fact, the subset found by Focus can
be just one of the solutions of ABB.

While running ABB and Focus, we found an interesting fact that "ABB and
Focus complement each other with respect to time taken to reach optimal subset".
To verify this, we collected the number of subsets evaluated by ABB and Focus
in Table 1. ABB and Focus adopt different search directions. So, if the size of
the optimal subset is not small, choose ABB, otherwise, choose Focus. To take
advantage of both algorithms one may run both simultaneously till any one of
the two algorithms stops.

105

Data set
CorrAL
Monkl
IMonk2
Monk3
Par3+

WBC
LED-7
Letter
LYM
Vote
KrVsKp

DTr DTo C N M
32 64 2 6 4
124 432 2 6 3
169 432 2 6 6

122 432 12 6 3
I

341 512 12 9 3

463 699 2 9 4
!400 500 107 5
'5980 8968 26 169
100 [148 4 18[6
300 :435 2 i168
2131 3196 2 36 29

ALL # ABB # Focus #
64 14 42
64 12 24
64 7 63
64 19 35
512 265 46

2 ~ ~88 145
27 99
21~ 1971 42,634
218 82,156 23,167
1~ 301 39,967
2 ~ 4367 > 2 "~8

Table 1. DTr - training set, D T o - total set, C - no. of classes, N - no. of original
features; M - no. of selected features, All # - no. of all possible subsets, ABB # - no.
of subsets evaluated by ABB, Focus # - no. of by Focus.

Based on the subsets found for each da ta set, we obta in the results shown in
Table 2. In general, C4.5 (10-fold cross validation) gave bet ter or equally good
accuracy after feature selection. But the results for tree size are interesting, some
showing larger tree sizes after feature selection as pointed out by +-- in Table 2
Researchers noticed tha t smallest trees do not necessarily give the best predictive
accuracy. W h a t is observed here is tha t bet ter accuracy m a y not mean a smaller
tree size. We also noticed tha t "after" feature selection, in mos t cases, C4.5 used
all features selected by ABB, which indicates tha t features selected by ABB
are relevant in decision tree induction. However, C4.5 did choose features not
selected by ABB in the "before" setting, e.g., in the case of Cor rAL data .

To run the neural network classifier, we fixed the learning rate as 0.1, the
m o m e n t u m as 0.5, one hidden layer, the number of hidden units as half of the
original input units for all da ta sets. We found a proper number of C Y C L E S for
each da t a set by observing a sustained trend of no decrease of error (MSE) in
a trial run. Later, with these parameters , two runs of SNNS were made on da t a
sets with and without feature selection via ABB respectively. This exper iment is
very simplistic and designed to get some rough idea about the effect of selected
features to a neural network classifier. In most cases, their error rates drop.
Error rates for Letter are dubiously high. Due to the complicat ion of pa ramete r
setting, more sophist icated experiments are being planned.

4 C o n c l u s i o n

We demons t ra ted tha t the inconsistency rate is a monoton ic measure and it is
fast to compute . Wi th such a measure, Branch & Bound is a good determinist ic
a lgor i thm (the search is not exhaustive, yet complete), The new me thod ABB is
simple to implement and guarantees opt imal subsets of features. The empirical

106

Data set C4.5 NN
Tree Size IError Rate %1 CYCLES #HUIError Rate '%

Bef°relAfter IBef°rel After I IBef°rel After

CorrAL 14.6 13.0 6.0 D.0 1000 3 4.55 9.09
Monkl 43.0 41.0 0.7 0.0 1000 3 50.68 37.84
Monk2 16.3 16.3 21.1 21.1 1000 3 29.73 29.73
Monk3 19.0 19.0 1.1 1.1 1000 3 12.i6 0.0
Par3+3+3 13.0 15.0 17.2 i0.0 i+- 1000 5 59.09 9.09

WBC 38.0 36.0 6.6 6.0 1000 5 8.05 6.78
LED-7 19.0 19.0 0.0 0.0 1000 4 0.0 0.0

6660:0 6113.0 28.1 27.9 15000 8 75'.5 61.42
LYM 26.9 29.6 21.8 21.0 <--- 7000 9 25.0 29.17
Vote 16.0 19.0 2.8 2.3 <-- 4000 8 6.67 4.0
KrVsKp 54.8 64.8 0.52 0 .83 +--8000 18 2.07 1.50

Letter

Table 2. Results of C4.5 (10-fold cross validation) and Back-propagation neural net-
work. # H U - number of hidden units.

s tudy suggests tha t (1) ABB removes irrelevant, redundant , a n d / o r correlated
features even with the presence of noise (as in Monk3 with 5% noise); and (2)
the performance of a classifier with the features selected by ABB also improves.
Another finding f rom this s tudy is Focus and ABB complement each other due
to their opposi te search directions.

References

1. H. Almuallim and T.G. Dietterich. Learning with many irrelevant features. In
Proceedings o/AAAI, 1991.

2. M. Ben-Bassat. Pattern recognition and reduction of dimensionality. In P. R.
Krishnaiah and L. N. Kanal, editors, Handbook of statistics-II, pages 773-791.
North Holland, 1982.

3. G.H. John, R. Kohavi, and K. Pfleger. Irrelevant feature and the subset selection
problem. In Proceedings of ICML, pages 121-129. Morgan Kaufmann, 1994.

4. K. Kira and L.A. Rendell. The feature selection problem: Traditional methods and
a new algorithm. In Proceedings o] AAAI, pages 129-134. 1992.

5. H. Liu and R. Setiono. A probabilistic approach to feature selection - a filter
solution. In Proceedings o/ICML, pages 319-327. Morgan Kaufmann, 1996.

6. C.3. Merz and P.M. Murphy. UCI repository of machine learning databases.
ht tp: / /www, i c s . u c i , edu/~mlearn/MLRepository, html . Irvine, CA: University

of California, Department of Information and Computer Science, 1996.
7. P.M. Narendra and K. Fukunaga. A branch and bound algorithm for feature subset

selection. IEEE Trans. on Computer, C-26(9):917-922, September 1977.
8. J.R. Quinlan. C$.5: Programs/or Machine Learning. Morgan Kaufmann, 1993.
9. W. Siedlecki and J Sklansky. On automatic feature selection. International Journal

of Pattern Recognition and Artificial Intelligence, 2:197-220, 1988.
10. A. Zell and et al. Stuttgart neural network simulator (SNNS), user manual, version

4.1. ftp.informatik.uni-stuttgart.de/pub/SNNS, 1995.

