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Abs t r ac t .  Feature selection is a problem of choosing a subset of relevant 
features. In general, only exhaustive search can bring about the optimal 
subset. With a monotonic measure, exhaustive search can be avoided 
without sacrificing optimality. Unfortunately, most error- or distance- 
based measures are not monotonic. A new measure is employed in this 
work that is monotonic and fast to compute. The search for relevant 
features according to this measure is guaranteed to be complete but n o t  

exhaustive. Experiments are conducted for verification. 

1 In troduc t ion  

The basic problem of classification is to classify a given pat tern (example) to one 
of m known classes. A pat tern of features presumably contains enough informa- 
tion to distinguish among the classes. When a classification problem is defined 
by features, the number  of features (N) can be quite large. A classifier may  en- 
counter problems to learn something meaningful because the required amounts  
of data  (A/', or the number  of patterns) increase exponentially in proportion with 
N. The task of feature selection is to determine which features to select in order 
to achieve max imum performance with the minimum measurement  effort [2]. 
Reducing features directly alleviates the measurement effort. Performance of a 
classifier can be its predictive accuracy, i.e., 1 - e r r o r  r a t e .  

As was mentioned in [2], if the goal is to minimize the error rate, and the 
measurement cost for all the features is equal, then the most  appealing function 
to evaluate the potency of a feature to differentiate between the classes is the 
Bayes Classifier. Due to the inductive nature of classification problems, no full 
distribution of da ta  can be obtained. Extensive research effort was devoted to 
the investigation of other functions (mostly based on distance and information 
measures, or simply on classifiers) for feature evaluation. I f  there exist N fea- 
tures, to find an opt imal  subset of features without knowing how many  features 
are relevant, it requires to explore all the 2 g subsets. When N is large, this 
exhaustive approach is out of the question. Therefore, various feature selection 
methods have been designed to avoid exhaustive search while still aiming at the 
opt imal  subset. Examples are Branch & Bound [7], Focus [1], Relief [4], Wrapper  
methods [3], and LVF [5]. 
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The feature selection problem can be viewed as a search problem [9]. The 
search process starts with either an empty set or a full set. For the former, it 
expands the search space by adding one feature at a time (Sequential Forward 
Selection) [1]; for the latter, it expands the search space by deleting one feature at 
a time (Sequential Backward Selection) [7]. As we shall see, a good alternative to 
exhaustive search is Branch & Bound like algorithms if there exists a monotonic 
function of evaluating features. Assuming we have subsets {So, $1, ..., Sn}, we 
have a measure U that  evaluates each subset Si. The monotonicity condition 
requires that:  

So ~ s l  ~ ... ~ sn ~ U(So) < u ( s l )  < ... < u ( s n ) .  

In this case, the search can be complete but  not exhaustive. In other words, the 
opt ima/subset  is guaranteed. Many distance and information based measures 
have been shown to be non-monotonic [9]. Many researchers pointed out tha t  
the only remaining alternative is to use the error rate of a classifier as the 
measure. Among many classifiers, however, only the Bayes Classifier satisfies this 
monotonicity condition 1 because other classifiers adopt some assumptions and 
employ certain heuristics [9, 2, 3]. Another disadvantage of using the error rate 
as a measure in the wrapper models of feature selection is it is slow to compute. 
For example, to construct a decision tree, it would take at least O(Af log Af). We 
present here a measure that  is monotonic as well as fast to compute (O(Af)) in 
search of optimal subsets. 

2 A Non-exhaustive yet Complete Search Algorithm 

For two subsets of features, Si and Sj, one is preferred to the other based on a 
measure U of feature-set evaluation. Si and Sj are indifferent if U(S~) = U(Sj) 
and ~#(Si) - #/=(Sj) where ~ is the cardinality; Si is preferred to Sj if U(Si) = 
U(Sj) but ~(S~) < :g:(Sj), or if U(S~) < U(Sj) and ~(Si) <_ #]=(Sj). As we know, 
the condition for Branch & Bound to work optimally is that U is monotonic. 

In this work, U is an inconsistency rate over the data  set given Si. The 
inconsistency rate is calculated as follows: (1) two patterns are considered in- 
consistent if they match all but their class labels, for example, patterns (0 1 1) 
and (0 1 0) match with respective to the first two attributes, but are different 
in the last attribute (class label); (2) the inconsistency count is the number of 
all the matching patterns minus the largest number of patterns of different class 
labels: for example, there are n matching patterns, among them, cl patterns 
belong to label1, c2 to label~, and c3 to label3 where cl + c2 + c3 = n. If c3 
is the largest among the three, the inconsistency count is (n - c3); and (3) the 
inconsistency rate is the sum of all the inconsistency counts divided by the total 
number of patterns (A/). By employing a hashing mechanism, we can compute 
the inconsistency rate approximately with a time complexity of O(Af). 

1 But it requires the full distribution of the data. 
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A proof outline is given to show that this inconsistency rate measure is mono- 
tonic, i.e., if Si C Sj, then U(Si) >_ U(Sj). Since Si C Sj, the discriminating 
power of Si can be no greater than that of Sj. It's known that the discrim- 
inating power is reversely proportionM to the inconsistency rate. Hence, the 
inconsistency rate of Si is greater than or equal to that of Sj, or U(Si) > U(Sj). 
The monotonicity of the measure can also be proved as follows. Consider three 
simplest cases of Sk(= Sj - Si) without loss of generality: (i) features in Sk 
are irrelevant, (ii) features in Sk redundant, and (iii) features in Sk relevant. 
If features in Sk are irrelevant, based on the definition of irrelevancy, these ex- 
tra features do not change the inconsistency rate of Sj since Sj is Si U Sk, so 
U(Sj) = U(Si). Likewise for case (ii) based on the definition of redundancy. 
If features in Sk are relevant, that means Si does not have as many relevant 
features as Sj. Obviously, U(Si) >_ U(Sj) in the case of Si C Sj. It is clear that  
the above results remain true for cases that Sk contains irrelevant, redundant as 
well as relevant features. 

ABB is a Branch & Bound algorithm with its bound set to the inconsistency 
rate 5 of the data set with the full set of features. It starts with the full set 
of features S °, removes one feature from SJ -1 in turn to generate subsets 5} 
where I is the current level and j specifies different subsets at the lth level. If 
U(S}) > U(S}-I),  S} stops growing (the branch is pruned), otherwise, it grows 
to level l + 1, in other words, one more feature will be removed. In short, ABB 
seeks the smallest Sj whose inconsistency rate is 5. S is the full feature set and 
D the data set. 

5 = inConCal(S, D); 
ABB (S, D) { 

/* subset generation */ 
For all feature f in S { 

$1 = S - f ;  /* remove one feature at a time */  
enqueue(Q, Sl ) ;} /*  add at the end */ 

while notEmpty(Q) { 
$2 = deQueue(Q) ; /*  remove at the start */ 
if ($2 is legitimate A inConCal(S2, D) _< 5) 

/* recursion */ 
ABB ($2, D); }} 

Function inConCal 0 calculates the consistency rate of data  given a feature 
subset. Care has to be taken in implementing the algorithm such that  (1) no 
duplicate subset will be generated via proper enumeration; and (2) no child 
node of a pruned node will be generated by ensuring that  the Hamming distance 
between a new subset at the current level and any pruned subset at the parent 
level is greater than 12 (this is the legitimacy test in ABB). 

It is not required anymore to specify the size of a desired subset, M, or a 
bound for the measure as normally required by Branch & Bound. Thus, its name 

A full set of N attributes entails an N-bit binary array in which ith value 1 means 
ith attribute is chosen to include in the subset. 
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ABB. At the end of search, we just need to report the legitimate subsets with 
the smallest cardinality as the optimal subsets. 

A n  e xa mpl e .  
s~ 0JA I t) L~ 

Refer to the figure: there are four fea- 
tures, assuming only the first two are 
relevant. The root So = (1 1 1 1) of 
the search tree is a binary array with 
four ' l 's .  Following ABB, we expand 
the root to four child nodes by turning 
one of the four ' l ' s  into '0' (L2). All 
four are legitimate: $1 = (1 1 1 0), S~ 

= (1 1 0 1), $3 = (1 0 1 1), and 6:4 
= (0 1 1 1). Since one of the relevant 
features is missing, U(Ss) and U(S4) 
will be greater than U(So) where U 
is the inconsistency rate on the given 
data. Hence, the branches rooted by $3 
and $4 are pruned and will not grow 
further. Only when a new node passes 
the legitimacy test will its inconsis- 
tency rate be calculated. Doing so im- 
proves the efficiency of ABB because A/" 
(number of patterns) is normally much 
larger than N (number of attributes). 
The rest of the nodes are generated 
and tested in the same spirit. 

3 E m p i r i c a l  S t u d y  

The objectives of this empirical study are to verify: 1. ABB indeed finds optimal 
subsets for various data  sets, and 2. features selected are good for various learning 
algorithms. We select two groups of data sets: one with known relevant features 
and the other with unknown relevant features as shown in Table 1. All data  sets 
are from [6] except for Corral [3]. For the first group of 5 data sets we compare 
the subsets selected by ABB with the known. For the second group we compare 
the outputs of ABB with that  of Focus, a popular method in literature that  
guarantees optimal subsets. For the second objective we choose two different 
learning algorithms: a decision tree method (C4.5 [8]) and a standard back- 
propagation neural network (SNNS [10]). Two thirds of the data  is used for 
selecting features by ABB and Focus. The other one third is the testing data  
for SNNS. We run 10-fold cross validation with C4.5 on the whole data. Results 
showed that ABB indeed finds optimal subsets as validated by Focus and a priori 
knowledge. Focus does breadth first search starting from the empty set and stops 
after reaching the first consistent subset. In fact, the subset found by Focus can 
be just one of the solutions of ABB. 

While running ABB and Focus, we found an interesting fact that  "ABB and 
Focus complement each other with respect to time taken to reach optimal subset". 
To verify this, we collected the number of subsets evaluated by ABB and Focus 
in Table 1. ABB and Focus adopt different search directions. So, if the size of 
the optimal subset is not small, choose ABB, otherwise, choose Focus. To take 
advantage of both algorithms one may run both simultaneously till any one of 
the two algorithms stops. 
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Data set 
CorrAL 
Monkl 
IMonk2 
Monk3 
Par3+ 

WBC 
LED-7 
Letter 
LYM 
Vote 
KrVsKp 

DTr DTo C N M 
32 64 2 6 4 
124 432 2 6 3 
169 432 2 6 6 

122 432 12 6 3 
I 

341 512 12 9 3 

463 699 2 9 4 
!400 500 107 5 
'5980 8968 26 169 
100 [148 4 18[6 
300 :435 2 i168 
2131 3196 2 36 29 

ALL # ABB # Focus # 
64 14 42 
64 12 24 
64 7 63 
64 19 35 
512 265 46 

2 ~ ~88 145 
27 99 
21~ 1971 42,634 
218 82,156 23,167 
1~ 301 39,967 
2 ~ 4367 > 2 "~8 

Table  1. DTr - training set, D T o  - total set, C - no. of classes, N - no. of original 
features; M - no. of selected features, All # - no. of all possible subsets, ABB # - no. 
of subsets evaluated by ABB, Focus # - no. of by Focus. 

Based on the subsets found for each da ta  set, we obta in  the results shown in 
Table 2. In general, C4.5 (10-fold cross validation) gave bet ter  or equally good 
accuracy after feature selection. But  the results for tree size are interesting, some 
showing larger tree sizes after feature selection as pointed out  by +-- in Table 2 
Researchers noticed tha t  smallest trees do not necessarily give the best predictive 
accuracy. W h a t  is observed here is tha t  bet ter  accuracy m a y  not mean  a smaller 
tree size. We also noticed tha t  "after" feature selection, in mos t  cases, C4.5 used 
all features selected by ABB, which indicates tha t  features selected by ABB 
are relevant in decision tree induction. However, C4.5 did choose features not  
selected by ABB in the "before" setting, e.g., in the case of  Cor rAL data .  

To run the neural network classifier, we fixed the learning rate as 0.1, the 
m o m e n t u m  as 0.5, one hidden layer, the number  of  hidden units as half  of  the 
original input  units for all da ta  sets. We found a proper number  of  C Y C L E S  for 
each da t a  set by observing a sustained trend of no decrease of  error (MSE) in 
a trial run. Later, with these parameters ,  two runs of  SNNS were made  on da t a  
sets with and without  feature selection via ABB respectively. This exper iment  is 
very simplistic and designed to get some rough idea about  the effect of  selected 
features to a neural network classifier. In most  cases, their error rates drop. 
Error  rates for Letter are dubiously high. Due to the complicat ion of  pa ramete r  
setting, more  sophist icated experiments are being planned. 

4 C o n c l u s i o n  

We demons t ra ted  tha t  the inconsistency rate is a monoton ic  measure and it is 
fast to  compute .  Wi th  such a measure, Branch & Bound is a good  determinist ic  
a lgor i thm (the search is not  exhaustive, yet complete),  The  new me thod  ABB is 
simple to implement  and guarantees opt imal  subsets of  features. The  empirical  
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Data set C4.5 NN 
Tree Size IError Rate %1 CYCLES #HUIError  Rate '% 

Bef°relAfter IBef°rel After I IBef°rel After 

CorrAL 14.6 13.0 6.0 D.0 1000 3 4.55 9.09 
Monkl 43.0 41.0 0.7 0.0 1000 3 50.68 37.84 
Monk2 16.3 16.3 21.1 21.1 1000 3 29.73 29.73 
Monk3 19.0 19.0 1.1 1.1 1000 3 12.i6 0.0 
Par3+3+3 13.0 15.0 17.2 i0.0 i+- 1000 5 59.09 9.09 

WBC 38.0 36.0 6.6 6.0 1000 5 8.05 6.78 
LED-7 19.0 19.0 0.0 0.0 1000 4 0.0 0.0 

6660:0 6113.0 28.1 27.9 15000 8 75'.5 61.42 
LYM 26.9 29.6 21.8 21.0 <--- 7000 9 25.0 29.17 
Vote 16.0 19.0 2.8 2.3 <-- 4000 8 6.67 4.0 
KrVsKp 54.8 64.8 0.52 0 .83 +--8000 18 2.07 1.50 

Letter 

Table  2. Results of C4.5 (10-fold cross validation) and Back-propagation neural net- 
work. # H U  - number of hidden units. 

s tudy suggests tha t  (1) ABB removes irrelevant, redundant ,  a n d / o r  correlated 
features even with the presence of  noise (as in Monk3 with 5% noise); and (2) 
the performance of  a classifier with the features selected by ABB also improves. 
Another  finding f rom this s tudy  is Focus and ABB complement  each other  due 
to  their opposi te  search directions. 
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