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Abstract.  This paper explores the use of Support Vector Machines 
(SVMs) for learning text classifiers from examples. It analyzes the par- 
ticular properties of learning with text data and identifies why SVMs 
arc appropriate for this task. Empirical results support the theoretical 
findings. SVMs achieve substantial improvements over the currently best 
performing methods and behave robustly over a variety of different learn- 
ing tasks. Furthermore, they are fully automatic, eliminating the need 
for manual parameter tuning. 

1 I n t r o d u c t i o n  

With the rapid growth of online information, text categorization has become one 
of the key techniques for handling and organizing text data. Text categorization 
techniques are used to classify news stories, to find interesting information on 
the WWW, and to guide a user's search through hypertext. Since building text 
classifiers by hand is difficult and time-consuming, it is advantageous to learn 
classifiers from examples. 

In this paper I will explore and identify the benefits of Support Vector Ma- 
chines (SVMs) for text categorization. SVMs are a new learning method intro- 
duced by V. Vapnik et al. [9] [1]. They are well-founded in terms of computational 
learning theory and very open to theoretical understanding and analysis. 

After reviewing the standard feature vector representation of text, I will 
identify the particular properties of text in this representation in section 4. I 
will argue that SVMs are very well suited for learning in this setting. The em- 
pirical results in section 5 will support this claim. Compared to state-of-the-art 
methods, SVMs show substantial performance gains. Moreover, in contrast to 
conventional text classification methods SVMs will prove to be very robust, 
eliminating the need for expensive parameter tuning. 

2 T e x t  C a t e g o r i z a t i o n  

The goal of text categorization is the classification of documents into a fixed 
number of predefined categories. Each document can be in multiple, exactly one, 
or no category at all. Using machine learning, the objective is to learn classifiers 
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from examples which perform the category assignments automatically. This is 
a supervised learning problem. Since categories may overlap, each category is 
treated as a separate binary classification problem. 

The first step in text categorization is to transform documents, which typ- 
ic,~lly are strings of characters, into a representation suitable for tim learning 
algorithm and the classification task. Information Retrieval research suggests 
that word stems work well as representation units and that their ordering in a 
document is of minor importance for many tasks. This leads to an attribute- 
value representation of text. Each distinct word 1 wi corresponds to a feature, 
with the number of times word wl occurs in the document as its value. To avoid 
unnecessarily large feature vectors, words are considered as features only if they 
occur in the training data at least 3 times and if they are not "stop-words" (like 
"and", "or", etc.). 

This representation scheme leads to very high-dimensional feature spaces 
containing 10000 dimensions and more. Many have noted the need for feature 
selection to make the use of conventional learning methods possible, to improve 
generalization accuracy, and to avoid "overfitting". Following the recommenda- 
tion of [11], the reformation gain criterion will be used in this paper to select a 
subset of features. 

Finally, from IR it is known that scaling the dimensions of the feature vector 
with their inverse document frequency (IDF) [8] improves performance. Here 
the "tfc" variant is used. To abstract from different document lengths, each 
document feature vector is normalized to unit length. 

3 Support Vector Machines 

Support vector machines are based on the Structural Risk Minimization principle 
[9] fi'om computational learning theory. The idea of structural risk minimization 
is to find a hypothesis h for which we can guarantee the lowest true error. The 
true error of h is the probability that h will make an error on an unseen and 
randomly selected test example. An upper bound can be used to connect the 
true error of a hypothesis h with the error of h on the training set and the 
complexity of H (measured by VC-Dimension), the hypothesis space containing 
h [9]. Support vector machines find the hypothesis h which (approximately) 
minimizes this bound on the true error by effectively and efficiently controlling 
the VC-Dimension of H.  

SVMs are very universa l  learners .  In their basic form, SVMs learn linear 
threshold function. Nevertheless, by a simple "plug-in" of an appropriate kernel 
function, they can be used to learn polynomial classifiers, radial basic function 
(RBF) networks, and three-layer sigmoid neural nets. 

One remarkable property of SVMs is that their ability to learn can be in- 
d e p e n d e n t  o f  the  d lmens iona l i ty  of  the  f ea tu re  space. SVMs measure 
the complexity of hypotheses based on the margin with which they separate the 

t The terms "word" and "word stem" will be used synonymously in the following. 
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Fig. 1. Learning without using the "best" features. 

data., not the number of features. This means that we can generalize even in tile 
presence of very many features, if our data is separable with a wide margin using 
functions from the hypothesis space. 

The same margin argument also suggest a heuristic for select ing good  pa- 
r a m e t e r  se t t ings  for the learner (like the kernel width in all RBF network) 
[9]. The best parameter setting is the one which produces the hypothesis with 
the lowest VC-Dimension. This allows fully automatic parameter tuning without 
expensive cross-validation. 

4 W h y  S h o u l d  S V M s  W o r k  W e l l  f o r  T e x t  C a t e g o r i z a t i o n ?  

To find out what methods are promising for learning text classifiers, we should 
find out more about the properties of text. 

High  d imens iona l  i npu t  space: When learning text classifiers, one has to 
deal with very many (more than 10000) features. Since SVMs use overfitting 
protection, which does not necessarily depend on the number of features, 
they have the potential to handle these large feature spaces. 

Few i r re levant  fea tures :  One way to avoid these high dimensional input spaces 
is to assume that most of the features are irrelevant. Feature selection tries 
to determine these irrelevant features. Unfortunately, in text categorization 
there are only very few irrelevant features. Figure 1 shows the results of an 
experiment on the Reuters "acq" category (see section 5). All features are 
ranked according to their (binary) information gain. Then a naive Bayes 
classifier [2] is trained using only those features ranked 1-200, 201-500,501- 
1000, 1001-2000, 2001-4000, 4001-9962. The results in figure 1 show that 
even features ranked lowest still contain considerable information and are 
somewhat relevant. A classifier using only those "worst" features has a per- 
forlnance much better than random. Since it seems unlikely that all those 
features are completely redundant, this leads to the conjecture that a good 
classifier should combine many features (learn a "dense" concept) and that 
aggressive feature selection may result in a loss of information. 
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D o c u m e n t  vec tors  are  sparse: For each document, the corresponding docu- 
ment vector contains only few entries which are not zero. Kivinen et al. [4] 
give both theoretical and empirical evidence for the mistake bound model 
that "additive" algorithms, which have a similar inductive bias like SVMs, 
are well suited for problems with dense concepts and sparse instances. 

Most  text  ca tegor iza t ion  problems  are  l inear ly  separable:  All Ohsumed 
categories are linearly separable and so are many of the Reuters (see section 
5) tasks. The idea of SVMs is to find such linear (or polynomial, RBF, etc.) 
separators. 

These arguments give theoretical evidence that SVMs should perform well 
for text categorization. 

5 E x p e r i m e n t s  

The following experiments compare the performance of SVMs using polyno- 
mial and RBF kernels with four conventional learning methods commonly used 
for text categorization. Each method represents a different machine learning 
approach: density estimation using a naive Bayes classifier [2], the Rocchio al- 
gorithm [7] as the most popular learning method from information retrieval, 
a distance weighted k-nearest neighbor classifier [5][10], and the C4.5 decision 
tree/rule learner [6]. SVM training is carried out with the SVM ~aht2 package. 
The SVM liaht package will be described in a forthcoming paper. 

Test Collections: The empirical evaluation is done on two test collection. The 
first one is the "ModApte" split of the Reuters-21578 dataset compiled by David 
Lewis. The "ModApte" split leads to a corpus of 9603 training documents and 
3299 test documents. Of the 135 potential topic categories only those 90 are used 
for which there is at least one training and one test example. After preprocessing, 
the training corpus contains 9962 distinct terms. 

The second test collection is taken from the Ohsumed corpus compiled by 
William Hersh. From the 50216 documents in 1991 which have abstracts, the 
first 10000 are used for training and the second 10000 are used for testing. 
The classification task considered here is to assign the documents to one or 
multiple categories of the 23 MeSH "diseases" categories. A document belongs 
to a category if it is indexed with at least one indexing term from that category. 
After preprocessing, the training corpus contains 15561 distinct terms. 

Results: Figure 2 shows the results on the Reuters corpus. The Precision/Recall- 
Breakeven Point (see e. g. [3]) is used as a measure of performance and mi. 
croaveraging [10][3] is applied to get a single performance value over all binary 
classification tasks. To make sure that the results for the conventional methods 
are not biased by an inappropriate choice of parameters, all four methods were 
run after selecting the 500 best, 1000 best, 2000 best, 5000 best, (10000 best,) 
or all features using information gain. At each number of features the values 
fl E {0, 0.1, 0.25, 0.5,1.0} for the Rocchio algorithm and k E {1, 15, 30, 45, 60} 

2 http://www-ai.informatik.uni-dortmund.de/thorsten/svm-light.html 
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Bayes Rocchio C4,5 k-NN 
earn 95.9 9 6 . 1  96,1 97.3 
acq 91.5 92,1 85,3 92.0 92,6 9,1.6 95.2 95.2 
money-fx 62.9 67.6 69.4 78,2 66.97215 75.4 74,9 
grain 72.5 7 9 . 5  89.1 82.2 91.3 931192~4 91.3 
crude 81.0 81.5 75.5 85.7 86.13 87.3 88.6 88.9 
trade 50.0 7 7 . 4  59.2 77.4 69.2 75.5i 76.6 77.3 
interest 58.0 72.5 49.1 74.0 69.8 63.367.9 73.1 

78.7 83.1 80.9 79.2 _.821'0 85.4 i 86.0 86.5  ship 
wheat 60.6 79.4 85.5 76.6 83.184.5 85.2 85.9  

i 

corn 47.3 62.2 87.7 77.9 86.0 86.5 i 85.3 85 ,7  

microavg.[] 72.0 I 79.9 7 ' 8412185.1185.9 [ 86.2 [ I c°mbined:,,86"° 

SVM (poly)" SVM (rbf) 
degree d = width 7 = 

1 I 2 I 3 [ .4 I 5 0.610.811.0 [ L2 
98.2 98.4 98.5 98.4 98.3 98.5 98.5 98.4 98.3 

95.3 95.0 95.3 95,3 95.4 
7 6 . 2  74.0 75.4 76.375.9 
89.9i 93.1 91.9 91.9 90.6 

87.8 i 88.9 89.0 88.9 88.2 
77.1 76.9 78.0 77.8 76.8 
76.2  74.4 75.0 76.2 76.1 
86.01 85.4 86.5 87.6 87.1 
:83.8 85.2 85.9 85.9 85.9 
83.9 85.1i85.7 85.7 84.5 

85.9 tt 86.4186.5186.3186.2 
II combined: 86.4 

Fig.  2. Precision/recall-breakeven point on the ten most frequent Reuters cat- 
egories and microaveraged performance over all Reuters categories, k-NN, Roc- 
ohio, and C4,5 achieve highest performance a,t 1000 features (with k = 30 for 
k-NN and/3 = 1.0 for Rocchio), Naive Bayes performs best using all featurcs. 

for the k-NN classifier were tried. Tile results for the parameters with the best 
performance on the test set are reported. 

On the Reuters data  the k-NN classifier performs best among the conven- 
tional methods (see figure 2). This replicates the findings of [10]. Compared to 
tile conventional methods all SVMs perform better independent of the choice 
of parameters. Even for complex hypotheses spaces, like polynomials of degree 
5, no overfitting occurs despite using all 9962 features. The numbers printed in 
bold in figure 2 mark the parameter setting with the lowest VCdim estimate as 
described in section 3. The results show that  this strategy is well-suited to pick 
a good parameter setting automatically and achieves a microaverage of 86.0 for 
the polynomial SVM and 86.4 for the RBF SVM. With this parameter selection 
strategy, the RBF support vector machine is better than k-NN on 63 of the 90 
categories (19 ties), which is a significant improvement according to the binomial 
sign test. 

The results for the Ohsumed collection are similar. Again k-NN is the best 
conventional method with a microaveraged precision/recall-breakeven point of 
59.1. C4.5 fails on this task (50.0) and heavy overfitting is observed when using 
more than 500 features. Naive Bayes achieves a performance of 57.0 mad Roc- 
chio reaches 56.6. Again, with 65.9 (polynomial SVM) and 66.0 (KBF SVM) the 
SVMs perform substantially better than all conventional methods. The RBF 
SVM outperforms k-NN on all 23 categories, which is again a significant im- 
provement. 

Comparing training time, SVMs are roughly comparable to C4.5, but they 
are more expensive than naive Bayes, Rocchio, and k-NN. Nevertheless, cur- 
rent research is likely to improve efficiency of SVM-type quadratic programming 
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problems. SVMs are faster than k-NN at classification time. More details can 
found in [3]. 

6 C o n c l u s i o n s  

This paper introduces support vector machines for text categorization. It pro- 
vides both theoretical and empirical evidence that SVMs are very well suited for 
text categorization. The theoretical analysis concludes that SVMs acknowledge 
the particular properties of text: (a) high dimensional feature spaces, (b) few 
irrelevant features (dense concept vector), and (c) sparse instance vectol-s. 

The experimental results show that SVMs consistently achieve good perfor- 
mance on text categorization tasks, outperforming existing methods substan- 
tially and significantly. With their ability to generalize well in high dimensional 
feature spaces, SVMs eliminate the need for feature selection, making the ap- 
plication of text categorization considerably easier. Another advantage of SVMs 
over the conventional methods is their robustness. SVMs show good performance 
in all experiments, avoiding catastrophic failure, as observed with the conven- 
tional methods on some tasks. Furthermore, SVMs do not require any parameter 
tuning, since they can lind good parameter settings automatically. All this makes 
SVMs a very promising and easy-to-use method for learning text classifiers from 
examples. 
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