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Abstrac t .  In this paper, we propose a general method for designing 
convergent Reinforcement Learning algorithms in the case of continuous 
state-space and time variables. The method is based on the discretiza- 
tion of the continuous process by convergent approximation schemes : the 
Hamilton-Jacobi-Bellman equation is replaced by a Dynamic Program- 
ming (DP) equation for some Markovian Decision Process (MDP). 
If the data of the MDP were known, we could compute the value of 
the DP equation by using some DP updating rules. However, in the 
Reinforcement Learning (RL) approach, the state dynamics as well as 
the reinforcement functions are a priori unknown, leading impossible to 
use DP rules. 
Here we prove a general convergence theorem which states that if the 
values updated by some RL algorithm are close enough (in the sense 
that they satisfy a "weak" contraction property) to those of the DP, 
then they converge to the value function of the continuous process. The 
method is very general and is illustrated with a model-based algorithm 
built from a finite-difference approximation scheme. 

1 I n t r o d u c t i o n  

This paper  proposes a convergence result for Reinforcement Learning (RL) al- 
gori thms in the case of continuous state-space and t ime variables. RL uses the 
method  of Dynamic  Programming (DP) which defines the opt imal  feed-back con- 
trol by approximat ing the value function, which is the best future cumulative 
reinforcement as a function of initial state. 

A classical approach in opt imal  control for computing the value function 
consists in using approximation schemes (deduced from finite-element or finite- 
difference methods)  which replace the continuous process by a discrete one (see 
[KD92]) for some given resolution. We obtain a finite Markovian Decision Process 
(MDP) whose DP equation may be computed by classical value i teration DP 
rules, knowing tha t  (in the discounted case) the convergence of this method 
is guaranteed by some "strong" contraction proper ty  satisfied by the upda ted  
values. 

However, in the RL approach, the state dynamics as well as the reinforcement 
functions are considered (at least partially) unknown from the system. Thus 
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the values of the DP updat ing rule are unknown and the "strong" contraction 
proper ty  is no more valid. 

This paper  states tha t  if this contraction proper ty  is weakened, we still have 
the convergence of the method  as the resolution of the discretization tends to 
zero and the number of iterations tends to infinity. This result allows approxima- 
tion while keeping the convergence. The theorem is very general and may  apply 
for a wide class of RL algorithms such as model-based or model-free algorithms, 
with some "on-line" or "off-line" updat ing rule, for deterministic or stochastic 
s tate  dynamics. We propose an example of model-based algorithm in the deter- 
ministic case whose values satisfy the "weak" contraction property, thus insuring 
its convergence. 

Section 2 proposes the formalism for opt imal  control problems in the con- 
tinuous case. The method of DP is described : the value function is introduced 
and the Hamilton-Jacobi-Bellman (HJB) equation is stated.  A finite-difference 
approximation scheme is detailed and a theorem of convergence for the scheme 
is stated. Section 3 is concerned with RL algorithms. The  general theorem is 
s ta ted and its proof is given. Then an example of model-based algori thm built 
from a finite-difference scheme is described and the proof tha t  the computed  
values satisfy the "weak" contraction proper ty  is given in appendix A. 

2 T h e  O p t i m a l  C o n t r o l  F o r m a l i s m  

We illustrate our method in the particular case of deterministic controlled sys- 
tems with infinite time horizon and discounted reinforcement. A study of the 
stochastic case may be found in [MB97]. 

Let x(t) C 0 be the s ta te  of the system with O an open and bounded subset 
of IR d . The evolution of the system (its state dynamics f)  depends on the current 
state x(t) and control u(t) ; it is defined by a controlled differential equation : 

d 
-~x(t) : f(x(t),  u(t)) (1) 

where the control u(t) is a bounded, Lebesgue measurable function with values 
in a compact  U. Prom any initial s tate x, the choice of a control u(t) leads 
to a unique trajectory x(t). Let T be the exit time of x(t) from () (with the 
convention that  if x(t) always stays in 6 ,  then T = OO). Then,  we define the 
discounted reinforcement functional of s ta te  x, control u(.) : 

J(x; u(.)) = ~/tr(x(t), u(t))dt + 7rR(x(T)) 

Where  r( x, u) is the running reinforcement and R( x ) the boundary reinforcement. 
~/is the discount factor (0 _~ ~ < 1). 

The o b j e c t i v e  o f  t h e  c o n t r o l  p r o b l e m  is to find the opt imal  control (which 
can be expressed here as a feed-back law u*(x)) tha t  optimizes the reinforcement 
functional for any s tate  x. 
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2.1 The M e t h o d  of  D y n a m i c  P r o g r a m m i n g  (DP)  

The DP method computes the optimal control by introducing the value function, 
maximal value of the functional as a function of initial state x : 

V(x) = sup J(x; u(.)) (2) 

Following the DP principle, we prove that  the value function satisfies a first- 
order nonlinear partial differential equation called the Hamilton-Jacobi-BeUman 
equation (see [FS93] for a survey) (in the stochastic case, it is of a second order). 

T h e o r e m  1 : H a m i l t o n - J a c o b i - B e l l m a n .  I f  V is differentiable at x E O, let 
DV(x)  be the gradient of V at x, then the following HJB equation holds at x. 

V(x) ln~/ + sup[DV(x).f(x, u) + r(x, u)] = 0 
u E U  

H y p o t h e s e s  1 In the following, we assume that :  
- f and r are bounded with Mf  (respectively Mr) and Lipschitzian: 

[f(x,u) - f(y,u)I <_ L I lix - Yi]a (resp. ]r(x,u) - r(y,u)l <_ Lr ]Ix - YI[1), 
d 

with the n o r m  HxHi ~-- ~-~i~-I t x i [  " 

- R is Lipschitzian : JR(x) - R(y)[ _ LR [Ix - YH1- 
- The boundary 0 0  is C 2. 

Besides, we consider the following hypothesis concerning the state dynamics 
around the boundary, and we state a result of continuity for V (see [Bar94]). 

Hypothes is  2 For all x E 00 ,  let -~(x) be the outward normal of O at  x, we 
assume that  : 
- / f 3 u  E U, s.t. f (x ,u) . -~(x)  <_ 0 then 3v E U, s.t. f (x ,v ) -~(x)  < O. 
- / f 3 u  e U, s.t. f (x ,u) . -~(x)  >_ 0 then3 v E U, s.t. f (x ,v) -~(x)  > O. 

T h e o r e m  2 : C o n t i n u i t y .  Suppose that these hypotheses hold, then the value 
function is continuous in O. 

2.2 Approximat ion Schemes 

In order to approximate the value function, we use the numerical schemes (for ex- 
ample based on finite-element (FE) or fimte-differences (FD) methods) of Kush- 
net [KD92], which replace the continuous problem by a discrete one. The HJB 
equation is discretized, for some resolution/f, by a DP equation for some MDP, 
whose value is V ~. We state that  the value V 8 of the approximation scheme 
converges to the value function V of the continuous process as the discretisation 
step ~ tends to 0. As an illustration, we describe here the FD method. 
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D e s c r i p t i o n  o f  a F D  s c h e m e  : Let  e l ,e2,  ...,ed be a basis for IR d. T h e  s ta te  
dynamics  is : f = ( f l ,  ...,fd). Let the  posit ive and  negative par t s  o f  f~ be  : 
f~ = max(f,, 0), f; = max(-f,, 0). 

={ , } For any discret ization step 6, we consider the  latt ice 5Z d 5. Y'~=I Jiei 
where Jl ,  ..., jd a r e  any  integers,  and define : 

- the  d i s c r e t i z e d  s t a t e  s p a c e  : ~ = 5 ~  d f'~O (see figure 1), and  
- its f r o n t i e r  0 E  ~ = {~ C 5Z d \ ~ ,  such tha t  a t  least one adjacent  points  

± 5e~ ~ O} 

.)  

Fig. 1. The discretized state space X: 6 (the square dots) and its frontier 0 Z  ~ (the round 
dots). A trajectory x(t) crosses the neighbourhood N(~) (in dark grey) of vertex ~. Let 
2 points of the trajectory x - x(to) and y = x(to + "r) be such that the control u is 
kept constant during t E [to, to + T]. Then we make the model ]'(~, u) = Y~= of the 
state dynamics f(~, u). 

We approximate  the control  space U by some finite control  spaces U 8 C U 
such tha t  for 5 < 5' we have U ~' c U ~ and  besides, U~U ~ = U. 

The  FD approximat ion  consists in discretizing the  H J B  equat ion  b y :  

vq¢)ln'r+ sup + f;(¢'u)'aTvq¢)] + } ,=1 
(3) 

where the gradient  DV(~) is replaced by the  forward and  backward  difference 
quotients  of V at  ~ in direction i = 1..d : 

1 
Z~+V(¢) = ~ [V(¢ + &~) - V(¢)] 

1 
Z~'iV(~) = ~ [V(~ - &~) - V(~)] 
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Knowing that  (At In 7) is an approximation of (7 A~ -- 1) as At tends to 0, we 
obtain from (3) the following equivalent equation: for ~ ~ Z~, 

! 6 v'(()  = sup p((,(  , . ) . v  ( a ) +  
u ~ U  ~ 

(4) 

with : ~-(~, u) = 
IIf(~,u)]ll 

a n d :  p ( ( ,~ ' ,u )  - f~ (~ ,u )  (,  IIf(~,u)lll for = ~=6e~ (5) 

= 0 otherwise. 

This equation is a DP equation for a finite MDP (see [FS93]) whose state 
space is Z 6 U 0~7 ~. Its control space is U 8 and the probabilities of transition 
p(~,~t,u) from the state  ~, to the next  state ~' with some control u are the 

normalized coordinates I/,(~,~,)l 
~lf(~,U)l l l  " 

Besides, we have the boundary condition Vs(~) = R(~) for ~ E 0 E  6. 

Resolut ion  of  the scheme : By defining the approximation scheme F ~, oper- 
ator on the space of functions on Z 8 : 

sup (6) 
u E U  ~ 

equation (4) becomes V 8 --- F ~ IV6]. The solution V 6 may be computed by 
some DP value iteration method where V 8 is obtained as a limit of successive 
iterations : 

[v:]. (7) 
For any initial V06, we compute V1 ~ ~- F 6 [V08] , then V26 *-- F 8 [V16] , and so 
on. Thank to the discounted factor % such updated values satisfy the following 
" s t r o n g "  contraction property (with some A = 1 - ~ In ¼): 

(with It-tls denoting sup(~_-1.1), from which we deduce that  for any given dis- 
cretisation step 6, the constant A < 1 thus the values V~ converge to V 6 as n 
tends to infinity. 

C o n v e r g e n c e  o f  the scheme The following theorem, whose proof uses the 
general convergence result of Barles (see [BS91] and [Bar94]) and the strong 
comparison result between sub- and super- viscosity solution (see [FS93]) of 
HJB equations, insures tha t  V ~ is a convergent approximation of V. 

Th e or e m 3 : C o n v e r g e n c e  o f  the  scheme.  Let us assume that the hypothe- 
ses 1 and 2 hold, then V ~ converges to V as 5 tends to 0 : 

lim V~(~) = V(x)  uniformly on any compact f'2 c 0 
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Figure 2 summerizes the two previous results of convergence, which are : for 
any distretization step 5, the values Vn 5 computed by the DP updat ing  rule (7) 
tend to the value V ~ of the DP equation (4) as n tends to infinity, and  from the 
convergence of the scheme (theorem 3), V ~ tends to the value function V of the 
continuous process as 6 tends to zero. 

HJB equation 

V ~p . . . . . . . . . . .  

DP equation 
~ o  

Fig. 2. The HJB equation is discretized, for some resolution 6, into a DP equation 
whose solution is V 6. The convergence of the scheme insures that V ~ -~ V as V --* 0. 
Thanks to the "strong" contraction property, the iterated values V~ tend to VSas 
n - - ~  (:XZ 

3 R e i n f o r c e m e n t  L e a r n i n g  

RL is a constructive and iterative process, based on experience, tha t  intends 
to est imate the value function by successive approximations. Thus, in t h e  R L  
a p p r o a c h ,  we  h a v e  t h e  c o n s t r a i n t  t h a t  t h e  s t a t e  d y n a m i c s  f a n d  t h e  
r e i n f o r c e m e n t  f u n c t i o n s  r, R a r e  a p r i o r i  u n k n o w n  f r o m  t h e  s y s t e m .  

Thus the probabilities of transit ion p(~, ~', u) and the t ime T(~, u) are un- 
known and have to be approximated.  We deduce that  the strong contraction 
proper ty  (8) cannot hold any more. However, we prove tha t  if some weaker 
contraction proper ty  does hold, then we can obtain the convergence as well. 
The  following section states the general convergence theorem for RL algorithms 
provided that  the upda ted  values satisfy some " w e a k "  c o n t r a c t i o n  p r o p e r t y .  
The statement of such "good approximations" satisfying this property is the basis 
for designing convergent algorithms. 

3.1 A g e n e r a l  T h e o r e m  of  C o n v e r g e n c e  

T h e o r e m  4 : C o n v e r g e n c e  o f  R L  a l g o r i t h m s .  Suppose that the values V~ 
updated urith some algorithm satisfy the following " w e a k "  c o n t r a c t i o n  p r o p -  
e r t y  with respect to a solution V ~ of a convergent approximation scheme (such 
as (6)) :  

llv/+  - v ll , -< (1 - IV: - v ll , + (9) 

IlY:+l- v llo , _ k .6 (10) 
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for some positive constants kl, k2 and some fonction e(5) x,~ 0 as 5 ~ O. 
for all e > O, there exists A and N, such that V5 <_/1, Vn >_ N,  

sup IIV: -- VII < e on any compact n C O. 
Z~n,~ 

Then 

Remark. Here, one cannot expect any more tha t  for a given 5 the values V~ 
converge to V ~. However the theorem states tha t  the convergence occurs as 
6 "N 0 and n --* oo. Figure 3 summerizes this result. 

HJB equation DP equation 
5-~0 

V . I / 

~ ' ~ 0 ~  contraction ] 

Fig. 3. When the "strong" contraction property property does not hold any more, 
one cannot expect that the computed values V~ tend to V ~. However, the theorem 
states that, thanks to the "weak" contraction property, the values V~ tend to the value 
function V as n --+ oo and 5 N~ 0. 

Proof of theorem 4. Let us denote En ~ = I]V~ - VSIIz~uaz~. Let n C O be any 
compact .  For any e > 0, let us choose ~1 > 0 and ~2 > 0 such tha t  ~1 + e2 = c. 
From the convergence of the scheme, theorem 3 states tha t  there exists AI such 
tha t  for all 5 < Al,SUp=e n IVS(x) - V(x)l <_ ~1. The idea is to prove tha t  there 
exists A2, for 5 <_ A2, there exists N, for all n _> N,  

E~ _< ~2. (11) 

Then we will obtain tha t  for any 5 < A = min{A1,/12}, for all n > N,  

sup  Iy~ (~ )  - y ( ~ ) l  _< s u p  I y ~ ( x )  - v ( x ) l  + sup  I y g ( ~ )  - y ~ ( ~ ) l  
~E~nE~ xEn  ~EE6UO~ ~ 

A suf f i c i en t  c o n d i t i o n  fo r  (11) : Suppose tha t  there exists a positive 
constant  c~ such tha t  the following conditions hold t rue:  

I f /~n ~ > e2 then IIV~6+1- V~llz6 _< En 8 - a  (12) 

_ y. ~ (13)  I f  E~ < ~2 then II n + , -  V~IIz~ <- e2 
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then we deduce that  there exits N such that  for n > N, lIVe+ 1 - V~[[~ < ¢2. 

Besides, from the property (10), for 5 < ~ IV/ - V ~ - ~ ,  I~ ~+1 IL0~ < ¢5, t hus  E ~  < ¢5. 
P r o o f  o f  t h e  suf f ic ient  c o n d i t i o n  : 
Let us prove that  for all ¢2 > 0, there exists A2 such that  for all ~ < A2, 

conditions (12) and (13) are satisfied. For any ¢2 > 0, from the convergence of 
e(~) to 0 as fi I 0, there exists A2 such that  for ~ < z22 the following condition 

hold: 
e(~) - kl .  2 _< 0 (14)  

First, suppose that  E~ > ¢2, then from (9), 

Iiv:+l  - VS[[n~ < (1 - kl.~)E~ + e(~).6 <_ Z~ - k1.~.¢2 + e(5).6. 

and from (14), [iV:+ 1 - Va[[~ < E ~ - k l . 5 . ~  + e(5).5-  kl .5 .~ < E ~ - k l . 5 . ~ .  
Thus condition (12) hold true for a = k l .6 .~ .  

Now suppose that  E~ __. ¢2, then from (9), 

and condition (13) is true. Thus conditions (12) and (13) are true and for ~ 

> N,  we have: A = min{A1, A2, k~ }, for all n 

sup  Iy~(~)  - y ( ~ ) l  _< sup Iv~ (~ )  - V ( x ) l  + sup  ] y~ ( ~ )  - y ~ ( ~ ) l  
~E~n,~,~ x ~  ~ u 0 ~  ~ 

~ ¢ ~ + ¢ ~ = ¢  I 

This theorem provides a general method for designing convergent RL al- 
gorithms. It may apply to model-free (see [Mun961 or [Mun971) or model-based 
algorithms, with on-line or off-line (for example synchronous, Gauss-Seidel, asyn- 
chronous) DP updating methods, and for deterministic or stochastic dynamics. 

3 .2  A n  E x a m p l e  o f  M o d e l - B a s e d  A l g o r i t h m  

The idea is to build a model of the state dynamics f and of the reinforcement 
function r at the vertices ~ of the discretization from samples of trajectories 
going through their neighbotLrhood. Then, from this model, we define the ap- 
proximated transition probabilities which are used, instead of the exact ones 
p(~, ~', u), in the updating rule (7). 

In the following, we assume that  the state dynamics f is bounded from below 
(there exists rnf such that  IIflll >- ml)-  

- E s t i m a t i o n  for  ~ E ~ : For any vertex ~ E Z a, any control u E U ~, we 
build a model l a n d  F, approximations of f and r from trajectories x(t) going 
through the neighbourhood of ~: we consider some states x = x(to) and 
y = x(to + T) such that  : 
- x E N(~) neighbourhood of ~ (whose diameter is inferior to kg.5 for some 
positive constant kg).  
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- the control u is kept constant for t E [to, to + T], 
- the time T satisfies, for two positive constantes kl et k2, the relation: 

kxdi < T < k2~5. (15) 

See figure 1. Then we make the following model for state ~ and control u : 

- y - = 

T 
u )  = r ( x ,  u) 

Then we compute the approximated probabilities ff(~, ~', u) and time ~(~, u) 
by using in the equations (5) the model Y instead of f and obtain the fol- 
lowing updating rule based on (7) : 

t 6 t 
Vn~+X (~)  e-- 7 ~r(~'u) . ~ p ( ~ ,  ~ , u ) .V  n (~ ) -~- "T(~, ~d).'r(~, u) 

4' 
(16 )  

which can be used as an "off-line" (synchronous, Gauss-Seidel, asynchronous) 
or "on-line" (for example by updating Vn~(~) as soon as a trajectory leaves 
the neighbourhood of ~) updating DP method (see [BBS95]). 

- E s t i m a t i o n  for ~ C 0 Z  ~ : As soon as a trajectory x(t) exits from the 
state space at y E 00 ,  we consider the states ~ C 0 r  ~ whose respective 
neighbourhoods N(~) contain y and we update their value with: 

R ( y )  (17 )  

The following theorem states that  the algorithm consisting in updating reg- 
ularly all the states ~ E E ~ with rule (16) and all states ~ e 0~U ~ (at least 
once each) with (17) satisfies the "weak" contraction property (9) and (10) thus 
defines a convergent algorithm. The proof is given in appendix A. 

T h e o r e m  5. C o n v e r g e n c e  o f  t h e  m o d e l - b a s e d ,  F D  a l g o r i t h m .  The up- 
dating rules (15) and (17) satisfy the "weak" contraction property (9) and (10) 
with respect to the convergent approximation scheme (6), thus the theorem ]~ 
applies and the model-based FD algorithm is convergent. 

4 C o n c l u s i o n  

We proposed a framework for designing RL algorithms and proving their con- 
vergence. The method is very general since the only required property is the 
"w~ak" contraction property with respect to some convergent approximation 
scheme. The choice of such a mtmerical scheme is free and may come from any 
discretization method such as finite difference or finite element method, using a 
constant or a variable resolution. As an illustration, we proposed a very simple 
model-based algorithm build from a finite-difference approximation scheme and 
proved its convergence. 
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A C o n v e r g e n c e  o f  t h e  M o d e l - B a s e d  F D  A l g o r i t h m  

A.1 S o m e  M a j o r a t i o n s  

C o m p a r i s o n  o f  t h e  t i m e s  T(4, u) a n d  ~(4, u). 
Prom the Lipschitz property of f,  we have the following Taylor majoration : 

[ [ y -  x -  f(x,u).T[[1 <_ ½L/.T 2 

Since the neighbourhood of 4 is of a diameter inferior to kw.5, we have : 

[[f(x,u)-  :(4,u))[1 _< n: . ) Ix-  4)[1 _< L:ky& 

But I[Y - x - f(4,u). 'r[ll = [lY - x - f(x,u):- + T{I(x,u) --/(4, u)]Ill, thus 
from (15), we have: [[y - x - f(4, U).T[[: <_ (~  + kN) Lfk262. And because the 
state dynamics f is bounded from below by m/ and that 7- _ k15, we have 
[[Y- x[h >_ k:m:6, thus: 

I?-(``,u) - ~(``,u)[ < k,52 (18) 

(~+kN)Lik~ with: k~ = klm, } . We deduce, by using a property of the exponential 

function that  : 
- 7~(~'~) [" _< k~ In 1.52 (19) 7~(~,~) 

I 7 
C o m p a r i s o n  o f  t h e  p robab i l i t i e s  p(~, ~', v) a n d  ~(``, ~', v). 
For 4' 5~ `  ̀+ 6e~, i:(``, ``', v) = p(``, ``/, v) = 0 and for ``' = `  ̀+ 5ei, we have: 

II/(:,~>II: lls(::.)ii, - H:(:,-),: 

From what precedes, y(``, u) - :(``, u)l 1 _< ( ~  + kN) LI5 and we deduce: 

IV,', ( ,  v) - p(L 4', v)t <_ m@ (k2 + 2kN)5 (20) 

A.2 C o n v e r g e n c e  of  t h e  M o d e l - B a s e d  F D  A l g o r i t h m  

The value V~(~) is updated with: 

Vns+1(~)e--sup{ 7?(&u)'~(``'4''u)'V~n(``')+~(~'u)'~(``'u) } u e v ~  ~, 

and its difference to the value V 6 of the scheme, is : 

_- < ,  

+~(``, ~).~(4, ~) - :(4, ~).~(4,-)} 
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vq¢) - v:+~(¢) = ~,~"p { ~(~'") X~, Iv(C, ¢', u) - ~(~, ¢,  ~)] v~(¢ ') 

+~(~,~) ~ ( ~ ,  ¢,.). [v ' (¢) -  v~(¢)] 

+~(~, ~) [~(~, ~) - ~(¢, ~)1 + [~(~, ~) - ~(~, u)l ~(~, ~1} 

And from (19), (18) and the Lipschtz property of r, we deduce: 

-- u6U~ 

+~(~'°) ~ ,~(~,~ ,  ). Ivq¢) -  v:(¢)l} 
+kr In 1.Mv~.62 + k2Lr 52 + k~.Mr62. 

7 k lml  

(21) 

M a j o r a t i o n  o f  y]~¢, ~v(~, ~', u) - ~(~, ~', u)] V~(~') : 

We have: Y~(~ ') = V~(~) + [V~(~ ') - V~(~)] . But  from the properties of the 
probabilities p(~, ~', u) and ~(~, ~', u), we deduce: 

~(~, ~', ~) -~(~, ¢, u)] vS(¢ ') = ~ ~(~, (', ~) -~(¢, ¢, ~)] [vq¢) - vq¢)] 

(22) 
Moreover, IV 6 (~') - Y 6 (~)[ < IV 6 (~') - V(~') I + [V(~') - Y(~)[ + IV(C) - Y 6 (~)1. 

From the theorem 3, the approximation error supn IV ~ - V t of the scheme tends 
to 0 as 5 + 0 for any compact f2 C O and thanks to the continuity of V (theorem 
2), sup ~en IV(z) - V(z + h)l tends to 0 as 6 + 0. 

]~hH<_6 
We deduce: IV~(~ ') - V~(~)l < e(6), 
with e(6) = 2sup~en IVY(z) - V(z)l + sup zen IV(z) - Y(z  + h)t , which 

Ilhtl<~ 
tends to 0 as 5 + 0. From (22) and (20), we obtain: 

~ ,  ~(~, ¢', u) - ~(¢, ¢', u)] v~(¢') l _< ~(k2 + 2kN)e.4e) (23) 

T h e  " w e a k "  c o n t r a c t i o n  p r o p e r t y  (9) a n d  (10) ho lds  : 

- Suppose that  ~ 6 Z ~ : from the property of the exponential function 3 ,~t < 
1---~ --! In ~ for At small enough, we deduce: 7 ~(G~) ~ I--~-~2 u in 1, thusT~(~,~) < 
1 - ~ In ~ for small 6, and from (21) and (23) we deduce that: 

tvg+~(¢) - v'(¢)] _< (1 - k.~)E~ + ~(~).~ 
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1 1 
with: k -- ~ In 

a n d :  e(~) = L f  (k2 + 2kg)~(~) + k~ In 1.Mv~.~  + k2Lr 5 + k~Mr~ 
m I "), k l m  I 

Since ¢(~) ~ 0 as 5 .[ 0, e(~) also tends to 0 and the proper ty  (9) holds. 
- Now suppose that  ~ E 0 Z  ~ : from the Lipschitz property of R, 

IVY+,  (¢) - V~(¢ ) I  --  IR(y) - R(~) I  _< L R .  IlY - ¢lJ < LR.kN.~ 

and the proper ty  (10) holds. 

Thus the theorem 4 applies and the model-based FD algorithm is conver- 
gent. | 

R e f e r e n c e s  

[Bar94] 

[BBS95] 

[BS91] 

[FS93] 

lED92] 

[MB97] 

[Mun96] 

[Mun97] 

Guy Barles. Solutions de viscositd des dquations de Hamilton-Jacobi, vol- 
ume 17 of Mathdmatiques et Applications. Springer-Verlag, 1994. 
Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning to act 
using real-time dynamic programming. Artificial Intelligence, (72):81-138, 
1995. 
Guy Barles and P.E. Souganidis. Convergence of approximation schemes for 
fully nonlinear second order equations. Asymptotic Analysis, 4:271-283, 1991. 
Wendell H. Fleming and H. Mete Soner. Controlled Markov Processes and 
Viscosity Solutions. Applications of Mathematics. Springer-Verlag, 1993. 
Harold J. Kushner and Dupuis. Numerical Methods for Stochastic Control 
Problems in Continuous Time. Applications of Mathematics. Springer-Verlag, 
1992. 
R~mi Munos and Paul Bourgine. Reinforcement learning for continuous sto- 
chastic control problems. Neural Information Processing Systems, 1997. 
R~mi Munos. A convergent reinforcement learning algorithm in the continu- 

ous case : the finite-element reinforcement learning. International Conference 
on Machine Learning, 1996. 
R6mi Munos. A convergent reinforcement learning algorithm in the continu- 

ous case based on a finite difference method. International Joint Conference 
on Artificial Intelligence, 1997. 


