
Teleoperation with virtual force feedback

Robert J. Anderson

Sandia National Laboratories,
Intelligent Machine Systems Division I: 1661,

- P.O.Box 5800, Albuquerque, NM 871851

ABSTRACT

In this paper we describe an algorithmfor generating virtual forces in a bilateral teleoperator system. The virtu-
al forces _ generated from a world model and are used to provide real-time obstacle avoidance and guidance

capabilities. The algorithm requires that the slave's tool and every object in the environment be decomposed into
convex polyhedral primitives. Intrusion distance and extraction vectors are then derived at every time step by
applying Gilbert's polyhedra distance algorithm, which has been adapted for the task. This information is then used
to determine the compression and location of n¢,nlinear virtual spring-dampers whose total force is summed and

applied to the manipulator/teleolr,erator system. Experimental recruitsvalidate the whole approach, showing that it
is possible to compute the algorithm and generate realistic, useful psuedo forces for a bilateral teicoperator system
using standard VME bus hardware.

.L.[NTRODUC'TION

Sandia National Laboratories has been developing telerobotic technology for environmental restoration, waste management

and agile manufacturing. Our goal is to achieve the optimal blend of human and robot behaviors for a given task. One of the pre- •
requisites for intelligent teleoperation is the ability to convey world model information to the operator. This is useful for prevent-
ing misguided human operator commands (e.g., knocking out the windows in a glove box, or breaching a waste tank container's
walls) for intelligently guiding redundant robots through cluttered environments (e.g., for decommissioning nuclear facilities) or
for creating entirely virtual worlds for operator training and task planning. In this paper we describe the development of a real-
tit,tc, high-resolution 6 DOF, obstacle avoidance representation and avoidance cap',_bility for tclerobotic systems, using a priori
world model information to generate force barriers. The algorithm not only prevents inadvertent collisions, but generates intuitive
contact information which the operator can feel using a force-reflecting master.

Sandia's search for flexible, modular teleoperator control systems has lead to the development of SMART (Sequential
Modular Architecture for Robotics and Teleoperation) which is currently being used at multiple sites inside and outside of Sandia
[1]. SMART is a real-time telerobotic control architecture which allows the user to construct a telerobot system using independent
modules describing input devices (e.g., space ball, force reflecting masters), manipulators (e.g., PUMA, Schilling Titan) sensors
(proximity sensors, force sensors). Each module represents a one-port or a two-port network element which can either perturb the
force or hre velocity of the telcoperator system. This paper describes the development of a module which will generate large forces
whenever the manipulator tool comes into close proximity to a modeled object in the environment. Additional modules can be
combined with this module to achieve force reflection, force compliance or obstacle avoidance behaviors for the manipulator. By
attaching a force-reflecting master, the operator can feel virtual forces [2].

1This work was performedat SandiaNational Laboratoriesand supportedby theU.S. Department of Energy undercontract

DE-ACO4-76DP00789.

IEGEIVE

DISTRII_JTION OF THIS DOCUMENT IS UNLIMITFr) _ 15 IT' I

¢

2. APPROACH

Using the network based passivity philosophy of SMART we decided to generate boundary functions around obstacles using
non-linear springs and dampers, where the spring/damper combination would provide zero force disturbance outside a given
threshold region, and would ramp up to a large force at the surface of the object. Figure I shows a diagram to illustrate this

approach. As the gripper approaches the corner workpiece, computer generated spring-dampers push away the gripper from points
of nearest contact. The method of using nonlinear springs is similar in concept to the potential field approach [3], but substantially

different in implimentation. Here, only object geometry is embedded and no attraction functions exist. The springs provide a bar-
rier function over a very limited region, and serve only to repel. The influence function is zero over the vast majority of the work-

space.

In order to calculate the forces from a number of nonlinear springs we

developed an algorithm which would compute the distances and the points of ':+++:,i!!i!i!i_i!!!_!_::_:i_:_:!_!!ii!i_.....
nearest contact in real-time. The first step in the development of this algorithm

is data representation. We considered three candidates, memory map, C-space
and convex polyhedra primitives. Memory map techniques represent a number ii!
of methods by which the Cartesian space of the manipulator has been segment- Iii i!
cd into a 3-D array, and geometric data (e.g. occupancy or object potential) is

storedat each location. These methods, ai though offering great speed, do not _ "_ __. _ _
readily deal with the tool's geometry, and cannot be readily queried for surface
normal information. C-space methods [4], we felt could deal with tool geome- %.-_._

try, but would be difficult to apply to systems having 5 or more DOF. Both C- Figure 1: Use of spring-dampers for
space and Cartesian memory-map approaches we felt would have resolution simulating contact.
problems and would not be easily derivible from our polyhedra based graphical
representation. Thus, by default, we decided to decompose the environment
into convex polyhedra.

Consider the gripper shown in Figure 2a. lt can a) b)

be decomposed into convex polyhedra in many
ways. We prefer to choose a decomposition con-
sisting of the minimum number of sections using
the maximum amount of overlap. We want the
minimum number because it reduces the computa-

tion required, and we want maximal overlap to
reduce the likelihood of driving the system to a
zero-potential at the interface of two polyhedra.
Such a decomposition is shown in Fig 2b. The
overlap areas are shown in grey.

Figure 2: Convex object decomposed into primitives, a) original object;
b) decomposed object with shading showing the overlap.

Once every object of interest in the workspace has been decomposed i_,to convex polyhedra, and the manipulator tool has been
similarly decomposed, we need to determine when object pairs (i.e., one object from the set of gripper polyhedra, and one object
from the set of environment polyhedra) come into close proximity. Furthermore, this needs to be done at a high sampling rate in
order to achieve realistic stiffness and a minimal region of perturbation. After studying various possible approaches [5, 6], we

decided to implement an algorithm based on Gilbert's algorithm [7] using a few enhancements. The basic algorithm computes the
unique distance and the not necessarily unique vector between the convex hulls of two sets of points in Cartesian space. The con-
vex hull of a set of points generates a polyhedron. The algorithm has two main drawbacks, lt won't return anything if the two
obstacles are in collision, and if two objects have parallel edges or sides the algorithm will only return a single vector with no infor-
mation about the type of contact. The next two subsections explains how we deal with these drawbacks.

2. l Deali0g with o_ect collisions

The first problem with Gilbert's algorithm is that it gives no infomlative answer when objects are in collision, lt comes back
immediately telling when two polytopes overlap, but does not tell which directiou the polytopes should move to best extricate
themselves. For our real time architecture this was unacceptable. Because our real-time system can only generate a boundary
function spring with a finite maximum stiffness (infinite proportional gain is difficult to implement in a sampled data system), we
cannot guarantee a priori, that a barrier won't be breached. Thus actual collision of polytopes is always possible. In some cases
collision is desirable as we try to simulate membranes and other soft tissue which can naturally be penetrated.

The simplest solution is to drive the objects apart in the opposite direction from the initial collision direction. This solution is
unacceptable for sustained collision however, since movement along some other direction might provide quicker disentanglement.
To explain this scenario, consider Figure 3, which shows a small rectangle as it moves into a box from the left side. In Fig 3a the
polytopes first collide and the extraction vector should oppose the motion. In Fig 3b however the rectangle has intruded substan-
tially into the rectangle, and the extraction vector should be at some angle. Finally, by Fig 3c the rectangle should be extracted by
directing a force upwards.

a) b) c)

Figure 3: Determining extraction vectors for objects in collision a) Objects just collided;
b) Objects after substantial intrusion; c) Objects after full intrusion.

Our solution to this problem is to use reduced primitives. For each convex object primitive we generate a linked list of sub-

polytopes such that each sub-polytope is fully contained and centered inside a delta window of its parent. Each sub-polytope has
its own embedded sub-polytope until finally the original polytope is reduced to a point. Figure 4 gives several examples. For
example a cube can be reduced to any number of smaller cubes, and finally to a point. A long square box can be reduced to a line
then to a point. An arbitrary box can be reduced to a plane, then a line, and then finally to a point. A cylinder can be reduced to a
line and then to a point.

Using the reduced poly- a) d)
tope concept, if two convex _i_!_i_:_::_i_i_i_::- _

objects are found to be in colli- __:__

sion then the same test is made ::_._:_:_:_:_:_,_,._ _o _ _ _ ousing smaller and smaller sub- __
polytopes until no collision

condition exists. The nearest b) e

distance vector between the _ [[

sub-polytopes is used as the
extraction vector for the parent _ _ o _ _ o
polytopes, and the "distance" is
derived from the computed
sub-polytope distance and the

combined delta functions. The C) # _-4_--,_ ')__

beauty of this approach is that " _ _ _ o
the same algorithm can be _ o
used, and that time spent in
computing overlapping poly-
topes can be recovered since
the sub-polytopes typically Figure 4: Convex object reductions: a) cube; b) long square box;
contain fewer vertices and are c) generic box; d) sphere; e) cylinder; f) disk.

thus faster to compute.

i

Furthernlore, tile distance function between objects can be made continuous and monotonically non-increasing (although not
monotonically decreasing) as a function of object position. This is important since the total spring force is a direct function of
position and should not jump in magnitude for an infinitesimally small change of the object's position. The following two-dimen-
sional example clarifi¢.> <he issue. Consider the triangle moving toward the rectangle in Fig. 5 below. The thick lines show the

polytope used for making the distance and extraction vector calculations. In samples a) through d) the extraction vector will point
to the right. In sample e) it will point straight up, and in samples 0 thru h) it will point to the left. The grey area on the triangle
shows the "equidistance" region on the triangle. When the nearest distance vector points to this region on the triangle, the distance

function stays constant. This is illustrated in Figure 6, which gives the distance function for the example shown in Figure 5. The
sub-polytopes method allows us to use Gilbert's algorithm without significant modification and allows us to achieve a suitable
extraction vector whenever two objects collide.

a) b) c) d)

I . :i:Z:!::':"

: I®:iii : _1 'I I ::!:i::::'"'

, I_i ,_ :
I |
I II I !

I I I I
I I I I I
I I I I I I
I I • I I

Q,III._-

e) .. f) ,.-- g) h)
:"" "l ' "l ;..... "l "".... "

I I I . I
II I , I

! , i I

_1 l i i
' i ,I I I

I : : ' '

' '
I I I I

l I I 'I
I I I I

Figure 5: Example showing use of sub-polytopes to determine extrication vectors and distances:a) no collision;

b) within delta window; c) Using rectangle line sub-polytope; d) using triangle point sub-polytope;
e) Using both point sub-polytopes; f) Using line sub-polytope; g) Using-full triangle polytope;
h) Using both full polytopes.

l Intrusion Distance vs. Xe)

. _ g)

0 I '

Figure 6: Distance function for rectangle/triangle collision path example of Figure 5.

2.2 Determining the type of contac!

Rigid three dimensional convex polytopes can interact in a finite number of ways. Corners can collide with surfaces, edges or
other corners. F_,dgescan align in parallel or skewed. A summary of edge contact conditions is given in [8, 9], and numerous
examples are shown in Figure 7.

Gilbert's algorithm does not distinguish between the type of contact, it just returns a unique nearest distance, and a not neces-
sarily unique direction vector and interaction point. Thus instantaneously there is no way to distinguish between point-to-point,
point-to-edge, edge-to-edge, point-to-surface,
edge-to-surface and surface-to-surface con-
tacts. Furthermore, if surfaces and edges are

parallel the algorithm typically returns a ver-
tex rather than a midpoint.

This originally causedconcernsince we edge-to-edge
thought an interaction point at the middle of a
parallel surfacemade the most sensefor rep- point-to-edge
rwcnting parallel contact. Later we conjec-
tured that the instantaneous determination of

contact type and the exact location of nearest
contact vectors was inconsequential. What
mattered was how the system reacts to instan- su
taneous rotations. If small shifts in orienta-

tion are opposed in two directions there is
surface contact, if opposed in one there is
edge contact, if opposed in no directions
there is point contact. In essence, the type of
contact did not need to be determined instan-

taneously, but could be determined over time
by gauging the net effect of reaction forces.

Consider the parallel plate interaction Figure 7: Surface Contact types.
shown in Figure 8. The distance algorithm
might return any of the four points (A, B, C or D) as being the nearest point. The algorithm presented in this paper will generate a
virtual force at this point, which due to the impedance algorithm implemented for the manipulator will result in that vertex rotating
away from the surface. This will cause another vertex to become the "nearest" vertex, and the algorithm will next rotate that corner
away. Tiffs will continue indefinitely. The extrusion vector will race ali across the surface of the teel opposing any infinitesimal

infraction, and the plates should remain in parallel

The question to be answered through experimental work
was would it work? Could an algorithm which utilized rapid

switching of contact points achieve smooth tool-environment

...._i_i_::_::_:i!_::_i_".i_'___1"Manipulator

interactions through some type of averaging phenomena, or __
Impedancewould objects chatter wildly whenever brought near parallel? possible virtual ii

Could the algorithm be computed fast enough using com- spring damper _%
mercial hardware to make it viable for building virtual force locations C
fields in a telerobotic system? Was determination of contact_:.:.:_;.._
type unneccesary for developing obstacle avoidance algo-
rithms?

Figure 8: Parallel plate interaction.

q • •

3. ALGORITHM SUMMARY

Before we describe the results of the experiments, we summarize the algorithm used for generating virtual forces below:

Virtual Force Algorithm

I. Decompose tool and the environment into overlapping convex object primitives.

A. Divide environment and tool into convex objects, using maximal overlap.

B. Approximate convex objects by polytopes.

C. For each convex object primitive determine a list of embedded sub-polytopes ending in a point.

II. Determine object interactions.

A. Use bounding boxes to eliminate object pairs which are definitely outside a deita region.

B. Apply Gilbert algorithm (using the last computed distance vectors asa starting poin0 to ali remain-
ing pairs of objects.

C. For any objects pairs found to be in collision use the reduced polyhedra until an intrusion distance,
an interaction point, and an extrusion vector can be determined.

III. Determine force on tool.

A. For each pair within a delta distance, compute the force _) as a function of intrusion distance based

on non-linear spring/damper (spring constant chanl'es from 0 at object interaction boundary to
maximum value at contact point).

B. Apply repulsive force element along the extrusion vector at the interaction point.

C. Determine net force (fToot) and moment (Nroot) on tool by summing up repulsive forces (f/), and

computing sum of cross products of the distances to the point of nearest contact (di).

f TOOL = _'_ f i NTOOL = _'_ ai × f i
Pairs in Pairs in

proximity proximity

IV. Compute motion of manipulator based on impedance law.

A. Add force from world model interaction to forces from other inputs and sensors.

B. Compute delta change of position based on local dynamics and impedance parameters.

C. Go back to II.

4. EXPERIMENTAL SETUP

The algorithm was implemented in C using Gilbert's code as a starting point. Gilbert's algorithm utilizes varying amounts of
iteration, requiring irregular amounts of computation time. For instance it typically takes more time to compute extraction vectors
for objects near parallel. Because each iteration of the algorithm had to be computed in a finite time step the following approach
was taken. Every time stop the Gilbert algorithm was run on as many convex object pairs as could be computed. If ali pairs

couldn't be computed in the time step then old vector/distance data would be used for that pair during that time sample.

The module representing obstacle avoidance was incorporated into the SMART architecture as the OBSTACLE module using
a multi-processor VME-Bus environment running under VxWorks. The OBSTACLE module itself was run on a Mercury MC860
Intei I860 based attached processor. Update rates of 400 Hz were achieved for a tool consisting of 4 convex objects, and an envi-
ronment consisting of 8 convex objects.

The SMART module connection diagram for this experiment is shown below(Fig. 5), and uses the following modules: A

torque arm for 1 DOF force reflection, a MULTIPLEX module for coupling a 1 DOF device to 6 DOF and scaling forces and
velocities, a SPACEBALL module for enabling 6 DOF unilateral motion from a Dimension 6 Force Ball, a RELIEF module to

enable compliance along arbitrary DOF, a KBB2 module to provide filtering and reduce wave reflections, the OBSTACLE module
implementing the algorithm described here, a PUMA_KIN module for mapping the PUMA's kinematics from world space to joint
space, a LIMITS module for imposing joint limit restrictions, a VISUAL module for displaying the system in a 3-D modeling envi-
ronment (Deneb's IGRIP) and a PUMA_JOINTS module to _onnect to the PUMA 560 hardware.

The system was run using the two input devices and with various compliance modes. The simulated gripper was driven into
environment objects at various angles. At ali times the resulting motion of the gripper was smooth and intuitive. No chattering
was ever observed for any type of contact. In addition the virtual forces provided more than obstacle avoidance capabilities, they

_ooO .°'" "%.. _

J I_ I B:_ wtJIw_J

41' 7
OBSTACLE PUMA KIN LIMITS VISUAL PUMAJOINTS

'
NO Con|Icl •

w w w J w. _J wgJ wgJ_ e:

6 ii N l

Fig. 9: SMART Modules used for experimental validation.

al q t, •

generated constraint forces which could be utilized to achieve task objectives. For example, tools could be aligned with virtual sur-
faces and slid into virtual corners.

4. Conclusions.

The experiments described in this work demonstrated that it is possible to use a very simple algorithm with no knowledge of
interaction types, to achieve smooth, intuitive, object interactions for a complex gripper teel working in a complex environment.
Although requiring substantial computation every sample instant, the computation can be achieved using relatively inexpensive off
the shelf computer hardware.

The SMART module deriving from this work (i.e., the OBSTACLE module) is now a core module of the SMART architecture

and virtual forces generated from this module can be used in addition to the existing sensor feedback and simulated dynamics, to
control any type of robot. In particular, it is being applied to obstacle avoidance in our underground storage tank laboratory and for
task planning in our waste processing operation_ lab, and is providing virtual force information for a kinesthetic virtual reality labo-
ratory.

Currently, we are extending the virtual force concept to the entire arm, rather than just the teel. In the case of the PUMA this
requires modelling the arm and forearm as two addition rigid body polyhedra moving with respect to the same set of fixed polyhe-
dta in the environment. The net virtual force signal will then be mapped back into joint space using the appropriate Jaeobians to
achieve the de,sired behavior.

5. References,

1. R.J. Anderson, "SMART: A Modular Architecture for Robotics and Teleoperation",Proceedings of the Fourth

ISRAM, 1992, Santa Fe, NM, pp 467-474.

2. W. S. Kim, "Developments of New Force Reflecting Control Schemes and an Application to a Teleoperation Training
Simulator," 1992 IEEE Int. Conf. on R&A, pp 261-266, Nice.

3. O., Khatib,, "Real-time Obstacle Avoidance for Manipulators and Mobile Robots", The International Journal of
Robotics Research, VGl 5, No 1, Spring 1986.

4. T. Wikman, and W. S. Newman, "A Fast On-line Collision Avoidance Method for a Kinematically Redundant

Manipulator Based on Reflex Control", 1992 IEEE Int. Conf. on R&A, pp 1412-1419, Nice.

5. J.E. Bobrow, "A Direct Minimization Approach for Obtaining the Distance Convex Polyhedra", The International
Journal of Robotics Research, VGl. 8, No. 3, 1989, 65-76.

6. M.C. Lin, and Canny J. F., "A Fast Algorithm for Incremental Distance Calculation", Prec. IEEE Int. Conf. on
Robotics and Automation, 1991, pp. 1008-1014.

7. E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, "A Fast Procedure for Computing the Distance Between Complex

Objects in Three-Dimensional Space," IEEE Journal efR&A, vgl. 4, no. 2, pp193-203, April 1988.

8. S. Hirai and K. Iwata, "Recognition of Contact State Based on Geometric Model", 1992 IEEE Int. Conf. on R&A, pp
1507-1518, Nice.

9. M.T. Mason, "Compliance and Force Control for Computer Controlled Manipulators", IEEE Trans on Systems, Man,

and Cybernetics, vGl. 11, pp. 418-432, 1981.
,i

DISCLAIMER

This report was preparedas an accountof worksponsoredby an agencyof the United States
Government.Neither the UnitedStates Governmentnoranyagencythereof,noranyof their
employees,makesany warranty,expressor implied,or assumesany legal liabilityor responsi-
bility for the accuracy,completeness,or usefulnessof any information,apparatus,product,or
processdisclosed,or representsthat its use wouldnot infringeprivatelyowned rights.Refer-
ence hereinto any specificcommercialproduct,process,or serviceby tradename,trademark,
manufacturer,or otherwisedoes not n_e,ssarilyconstitute or implyits endorsement,recom-
mendation,or favoringby the United States Governmentor any agencythereof. The views
and opinionsof authors expressedherein do not necessarilystate or reflect those of the
UnitedStates Governmentor anyagencythereof.

