
Experimental Robotics III, Proceedings of the 3rd International
Symposium on Experimental Robotics, Kyoto, Japan, October 28-30,
1993, Springer Verlag, London, 1994, pp501-513.

Mobile robot miniaturisation:

A tool for investigation in control algorithms.

Francesco Mondada, Edoardo Franzi, and Paolo Ienne

Swiss Federal Institute of Technology

Microcomputing Laboratory

IN-F Ecublens, CH-1015 Lausanne
E-mail: Francesco.Mondada@di.ep
.ch

Edoardo.Franzi@di.ep
.ch

Paolo.Ienne@di.ep
.ch

Abstract

The interaction of an autonomous mobile robot with
the real world critically depends on the robots mor-
phology and on its environment. Building a model
of these aspects is extremely complex, making sim-
ulation insu�cient for accurate validation of control
algorithms.

If simulation environments are often very e�cient,
the tools for experimenting with real robots are often
inadequate. The traditional programming languages
and tools seldom provide enought support for real-
time experiments, thus hindering the understanding
of the control algorithms and making the experimen-
tation complex and time-consuming.

A miniature robot is presented: it has a cylindri-
cal shape measuring 55 mm in diameter and 30 mm
in height. Due to its small size, experiments can be
performed quickly and cost-e�ectively in a small work-
ing area. Small peripherals can be designed and con-
nected to the basic module and can take advantage
of a versatile communication scheme. A serial-link is
provided to run control algorithms on a workstation
during debugging, thereby giving the user the oppor-
tunity of employing all available graphical tools. Once
debugged, the algorithm can be downloaded to the
robot and run on its own processor.

Experimentation with groups of robots is hardly
possible with commercially available hardware. The
size and the price of the described robot open the
way to cost-e�ective investigations into collective be-
haviour. This aspect of research drives the design of
the robot described in this paper. Experiments with
some twenty units are planned for the near future.

1. Introduction

Today the mobile robotics �eld receives great atten-
tion. There is a wide range of industrial applications
of autonomous mobile robots, including robots for au-
tomatic 
oor cleaning in buildings and factories, for
mobile surveillance systems, for transporting parts in
factories without the need for �xed installations, and
for fruit collection and harvesting. These mobile robot
applications are beyond the reach of current technol-
ogy and show the inadequacy of traditional design
methodologies. Several new control approaches have
been attempted to improve robot interaction with the
real world aimed at the autonomous achievement of
tasks. An example is the subsumption architecture

proposed by Brooks [1] which supports parallel pro-
cessing and is modular as well as robust. This ap-
proach is one of the �rst solutions systematically im-
plemented on real robots with success. Other re-
searchers propose new computational approaches like
fuzzy logic [2] or arti�cial neural networks [3].

The interest in mobile robots is not only directed to-
ward industrial applications. Several biologists, psy-
chologist and ethologists are interested in using mo-
bile robots to validate control structures observed in
the biological world. Franceschini [4] uses a robot to
validate the structure of the retina observed on a 
y,
Beer [5] to replicate the mechanism that coordinates
leg movements in walking insects, Deneubourg [6] to
get a better understanding of collective behaviour in
ant colonies.

All these research activities are based on mobile
robot experimentation. A simpler way to validate con-
trol algorithms is to use simulations, but the simpli-
�cations involved are too important for the results to

1



be conclusive. The control algorithm embedded in the
robot must consider its morphology and the proper-
ties of the environment in which it operates [7]. Real
world features and anomalies are complex and di�-
cult to modelise, implying that the experimentation
of control algorithms through simulation can only be
used in preliminary study but cannot prove the suc-
cess of the control algorithm in the real world. The
sole way to validate an algorithm to deal with these
problems is to test it on a real robot [8].
Many robots have been designed to perform experi-

ments on control algorithms but only a few make cost-
e�cient experiments possible. Brooks has designed
several robots with e�ective electronics and mechan-
ics [9]. The control algorithms are programmed in
the subsumption behavioural language, taking into ac-
count software modularity, and real-time and parallel
processing. Unfortunately, during experiments, only a
few tools are available to improve the understanding
of the control process. Moreover, the custom program-
ming language makes code portability and algorithm
di�usion di�cult. Steels [10] uses a video-camera to
record robot actions during experiments but all the
data concerning the robot control process are available
only at the end of the experiment. Other platforms,
such as the Nomad robot [11], make real-time inter-
action possible via a radio link, and have standard
programming languages, but the size of the robot and
the environment it requires make experimentation un-
comfortable.
The lack of a good experimentation mobile robot

for single-robot experiments, means that it is im-
possible today to perform collective-behaviour exper-
iments. The programming environment and the real-
time visualisation tools are totally insu�cient for this
purpose.
The development of the miniature mobile robot

Khepera addresses the problems mentioned above. Its
hardware is designed so that it is small enough for the
operation of several at the same time and in small ar-
eas, for example on a desk-top. Modularity allows new
sensors and actuators to be easily designed and added
to the basic structure. A versatile software structure
is provided to help the user to debug the algorithms
and to visualise the results.

2. Hardware

Miniaturisation is an important challenge for indus-
try: CD players, computers, video cameras, watches
and other consumer products need to implementmany
functionalities in a small volume. In the robotics �eld
many applications need small actuators, small teleop-
erated machines or tiny autonomous robots. Dario

[12] gives a comprehensive description of the research
�eld and of the available technology. In the Khep-
era design, miniaturisation is the key factor in making
cost-e�ective experimentations possible both for single
or multiple robot con�gurations.

2.1. Generalities

The robot presented in this paper is only a �rst step
in the direction of miniaturisation. Dario de�ne this
category of robots as miniature robots. They mea-
sure no more than a few cubic centimetres, generate
forces comparable to those applied by human opera-
tors and incorporate conventional miniature compo-
nents. The next miniaturisation step needs special
fabrication technologies, today in development. Khep-
era uses electronic technology available today: the new
family of 683xx microcontrollers fromMotorola makes
the design of complete 32 bit machines extremely com-
pact. Surface mounted devices (SMD) allow an impor-
tant increase in component density on printed circuit
boards. New compact sensors, including some signal
preprocessing on the sensing chip, reduce the need
of additional circuitry. Only the mechanical parts
(wheels, gears, manipulator) are built expressly for
Khepera, as well as the magnetic sensors for count-
ing the wheel revolutions.

The design of such miniaturised robots demands
a great e�ort spanning several �elds. The result is
a complex compromise between functionalities to be
implemented, available volume, current technology,
power requirements, etc.

Khepera is composed of two main boards (�gure 2).

pince.eps

81 � 72 mm

Figure 1. The Khepera robot.

2



architecture.eps

155 � 107 mm

MotorPWM

Multi-microcontroller
extension network

MC68331 16MHz 32-bit microcontroller
512-KByte of RAM and EPROM
6 x analog inputs with 10-bit resolution
Asynchronous serial link

A

Control2 x motors
2 x incremental sensors (600 imp./turn)
8 x IR proximity sensors
4 x NiCd accumulators

Synchronous multi-microcontroller link Serial link (RS232)

- Vision

Processor-less turrets for:

A D

RAM
EPROM

NiCd's

Power

Simple turrets

CPU board (Master)

Sensory/motor board

I/O

- Manipulator
- Inter-robot communications

Intelligent turrets (Slaves)

CPU
68020
Core

CPU
6811
Core

HC11 microcontroller based for:

- Memory extension
- Smart sensor interfaces
- Debugging

Basic configuration

Parallel main
processor bus

Figure 2. Khepera hardware architecture.

topology.eps

58 � 52 mmMaster
68331

Basic configuration
of Khepera

Slave
HC11

Communication

Slave
HC11

Manipulator

Slave
HC11

Vision

Slave
HC11

Other

Figure 3. Khepera communication network topology.

Application-speci�c extension turrets for vision, for
inter-robot communications, or which are equipped
with manipulators can be directly controlled via the
Khepera extension busses. Khepera can be powered
by an external supply when connected for a long time
to a visualisation software tool; however, on-board ac-

cumulators provide Khepera with thirty minutes of
autonomous power supply.

2.2. Distributed processing

One of the most interesting features of Khepera is the
possibility of connecting extensions on two di�erent
busses. One parallel bus is available to connect sim-
ple experimentation turrets. An alternative and more
sophisticated interface scheme implements a small lo-
cal communication network; this allows the connec-
tion of intelligent turrets (equipped with a local micro-
controller) and the migration of conventional or neu-
ral pre-processing software layers closer to the sensors
and actuators. This communication network (�gure 3)
uses a star topology; the main microcontroller of the
robot acts as a master (at the centre of the star). All
the intelligent turrets are considered as slaves (on the
periphery of the star) and use the communication net-
work only when requested by the master.
This topology makes it possible to implement dis-

tributed biological controls, such as arm movement
coordination or feature extraction and pre-processing
in the vision, as observed in a large number of insects.
The multi-microcontroller approach allows the main

3



microcontroller of Khepera to execute only high level
algorithms; therefore attaining a simpler programming
paradigm.

2.3. Basic con�guration

The new generation of Motorola microcontrollers and
in particular the MC68331 makes it possible to build
very powerful systems suitable for miniature neural
control. Khepera takes advantage of all the micro-
controller features to manage its vital functionality.
The basic con�guration of Khepera is composed of the
CPU and of the sensory/motor boards.

The CPU board is a complete 32 bit machine in-
cluding a 16 MHz microcontroller, system and user
memory, analogue inputs, extension busses and a se-
rial link allowing a connection to di�erent host ma-
chines (terminals, visualisation software tools, etc.).
The microcontroller includes all the features needed
for easy interfacing with memories, with I/O ports
and with external interruptions. Moreover, the large
number of timers and their ability to work in associ-
ation with the I/O ports indicate that this device is
the most important component in the design.

The sensory/motor board includes two DC mo-
tors coupled with incremental sensors, eight analogue
infra-red (IR) proximity sensors and on-board power
supply. Each motor is powered by a 20 kHz pulse

width modulation (PWM) signal coming from a ded-
icated unit of the microcontroller. These signals are
boosted by complete four-quadrant NMOS H bridges.
Incremental sensors are realised with magnetic sen-
sors and provide quadrature signals with a resolution
of 600 impulsions per wheel revolution. IR sensors
are composed of an emitter and of an independent
receiver. The dedicated electronic interface is built
with multiplexers, sample/hold's and operational am-
pli�ers. This allows the measurement of the absolute
ambient light and the estimation, by re
ection, of the
relative position of an object from the robot.

2.4. Additional turrets

To make experiments involving environment recog-
nition, object detection, object capture and object
recognition possible, two intelligent turrets have been
designed and built: one for stereoscopic vision, the
other containing a manipulator.

The stereoscopic vision turret employs two 64 pixel
linear photoelement arrays and a dedicated optical el-
ement. The analogue value of each pixel is coded on
16 grey levels. To obtain useable data under a wide
spectrum of enlightenment conditions, an additional
sensor is used to perform as an automatic iris: the in-
tegration time necessary for the photoelement arrays

piggy-back.eps

75 � 138 mm

10 mm

Sensory/motor

CPU

Vision

Bus

Figure 4. Khepera physical structure: Basic sen-
sory/motor, CPU and vision boards.

is controlled by intensity of the ambient light. Mon-
dada et al. [8] proved the validity of this stereoscopic
vision in robot navigation (spatial frequency �ltering
was used in obstacle detection and avoidance).

The manipulator turret makes Khepera capable of
an interaction with objects of its environment. Two
DC motors control the movements of the manipulator
(elevation and gripping). Di�erent classes of objects
can be detected by the gripper sensors which measure
sizes and resistivities.

Robots displaying collective behaviour need means
to perform inter-robot communications and localisa-
tion. Turrets providing Khepera with these function-
alities are under study at the time of writing.

4



software.eps

71 � 131 mm

Mail box

External interruption

Stand-alone process

Motion control

IR control

Protocol with
a visualisation
software tool

Turret
communications

Main board

High level
main

Application

High level
turret

control

Communication
network

Gripper board

To the other turrets

Gripper control

Arm control

Object control

Hardware link

Figure 5. Hierarchical software structure.

3. Software

Managing all the Khepera resources is a complex task.
The large number of asynchronous events to control,
and the necessity to share some critical interfaces led
to the development of a complete low-level software
organised as a collection of basic I/O primitives [13].

3.1. Hierarchical software structure

The multi-microcontroller approach and the complex
tasks to manage required a hierarchical approach to
the software structure. The concept chosen applies
when intelligent turrets (equipped with a microcon-
troller) are used. Two software structures are imple-
mented: a single high-level application program and
a number of stand-alone local processes (�gure 5).
Stand-alone local processes (e.g., for IR sensor se-
quencing, motion control, wheel incremental-sensor

counting, etc.) are executed cyclically according to
their own event timer and possibly in association
with external interruptions. The high-level applica-
tion software run the control algorithm and commu-
nicate with the stand-alone local processes via a mail-
box mechanism. This decoupling of low- and high-
level tasks makes the development of complex appli-
cations quick and easy.

3.2. Control of Khepera

Experiments with Khepera are performed in two dif-
ferent ways: by running algorithms on autonomous
robots or in connection with visualisation software
tools.

As already mentioned, the details of the basic in-
put/output activities are managed through a library
of stand-alone processes. During the development,
the standard RS232 link is used, through a generic
high level protocol, to communicate with these pro-
cesses from a workstation. The application software
is therefore run on the workstation and calls to the
basic primitives make it possible to monitor the robot
activity possible. All standard and specialised visual-
isation tools can be employed to simplify the control
algorithm debugging.

Because the application software is written in stan-
dard C language, debugged algorithms can easily be
converted to run on the Khepera CPU. Applications
can be downloaded to Khepera and the robot becomes
autonomous from the development environment.

4. Experimentation environment

The quality of the measurements obtained in robot
experiments and the e�ciency of the whole experi-
mentation process critically depends on the structure
of the working environment. Tools currently available
for simulation are far better developed than those used
for experimenting with real robots. The real time in-
teraction with the control process and the continuous
visualisation of the parameters make possible a faster
and better understanding of the mechanisms involved.
For these reasons, it is necessary to develop better vi-
sualisation and interactive software tools adapted to
the experimentation tasks.

The simplest way to implement a comprehensive
graphical interface is to use a scienti�c workstation.
This must be connected to the robot to collect the
data for display and to communicate the orders com-
ing from the user. The physical arrangement of all ele-
ments involved in the experiment must be compact, al-
lowing a complete and comfortable control. Thanks to
miniaturisation, this can be obtained as illustrated in
�gure 6: the entire con�guration, including robot, en-

5



environment.eps

76 � 56 mm

Figure 6. Khepera experimentation environment.

vironment and workstation, is conveniently arranged
on a normal table. In the arrangement shown in �g-
ure 6 the serial link cable does not disturb the move-
ment of the robot. A device to prevent the cable from
rolling up is placed at mid-length on the serial cable.
For experiments involving more than one robot, the
wired serial link can no longer be used. Special radio
communication modules are being developed for this
purpose. This additional module will provide means
to control several Khepera at the same time.

With a wired or a radio serial link, the data 
ow be-
tween workstation and robot must be as little as pos-
sible. To minimise this 
ow without restricting user
ability, the control algorithm runs on the workstation
and communicates to the robot only the data concern-
ing sensors and motors. This con�guration is optimal
when an important number of parameters must be dis-
played and controlled.

Several programming and visualisation tools are
used to perform experiments with Khepera. Here,
three programming styles will be presented: the �rst
uses a classical programming language to build stand-
alone applications, the second a complete graphical
programming interface and the third is a compromise
between the previous two, making the best of both.

4.1. Complete applications

A �rst programming possibility is to code the con-
trol algorithm and the user interface in a traditional
way. This is a good choice for software engineers or re-
searchers who have already developed a visualisation
and control interface, for instance in a simulation en-
vironment. It is often the case that, when a researcher
starts to perform real robot experiments, a simulator
has already been developed and used for preliminary

studies. In this situations, the simulator can easily be
adapted by replacing the simulated actions with calls
to the interface with the real robot. This can usually
be made without modifying the user interface.
Some very interesting results have been achieved

with this approach on the neural networks simulator
developed by Ph. Gaussier [14]. The simulator is used
as a tool to design neural networks for robot control.
A real time visualisation interface permits a veri�able
step-by-step learning process on the robot.
A similar experience in interfacing Khepera with a

simulator is in progress using the simulator BugWorld,
developed at the Institute f�ur Informatik of the Uni-
versity of Z�urich. In this case, the control interface will
be complemented with a measurement system which
enables the user to plot the trajectory of the robot in
real time on the host screen.

4.2. LabVIEW

The software package LabVIEW is a commercial prod-
uct fromNational Instruments [15] and runs on several
host machines (PC, Macintosh or Sun workstations).
LabVIEW has been developed as an environment for
the design of virtual instruments (VI). Every VI com-
prises a control panel and an interconnection diagram.
On the panel, the user can interactively specify graph-
ical devices for input (e.g., sliding cursors, buttons,
text controls) and for output (e.g., gauges, images,
graphs). In the diagram, the user graphically enters
the functionality of the VI. A library of standard func-
tionalities is available to perform this task: icons per-
forming numerical functions, string treatment, matrix
computations, etc. can be linked together to design an
algorithm. An icon can be associated with a complete
VI and used hierarchically in the diagram of another
instrument, thus allowing a modular approach. More-
over, modules can be written in standard program-
ming languages, such as C or Pascal.

An sample experiment is shown in �gure 7. The
diagram represents the computation of a subsumption-
based algorithm [1]. Two modules, collide and turn

wall, take inputs from the sensors (bottom left icon)
and are connected to feed appropriate commands to
the motors (right icon). The sensors and motor icons
communicate with the robot through the wired serial
link. The two graphs on the panel visualise the state of
one motor and of one sensor. The modules in the top
right part of the diagram evaluate the period required
to recompute the algorithm; this is displayed at the
bottom left of the panel.
LabVIEW is an optimal tool for the design of ex-

perimentation environments without the use of pro-
gramming languages. The complete graphical inter-

6



labview.eps

169 � 85 mm

Figure 7. LabVIEW display.

face helps specifying the interaction items of the panel
but becomes ine�cient when designing complex con-
trol algorithms. In this case, it is more e�cient to de-
sign modules using standard programming languages.
The only disadvantage of LabVIEW version 2 is that
the display possibilities are somehow limited. The ver-
sion 3 will provide more interactive capabilities and
will be a better design tool for mobile robot experi-
mentation.

4.3. Grapher

Grapher [16] is an experimentation tool developed
at LAMI by Y. Cheneval and L. Tettoni for the Es-
prit Elena Project. Due to code optimisation and to
improve performance, the software package is avail-
able only on SUN SparcStations. In the Grapher en-
vironment, an experiment is de�ned interconnecting
modules that perform sub-tasks such as pure compu-
tation, visualisation or control. The programming of
these modules is done in C language. The intercon-
nections are graphically speci�ed by the user. The
wiring diagram is on a single level, therefore prevent-
ing a hierarchical approach. For this reason, and to
avoid over-complicated wiring schemes, the modules
perform quite complex tasks. To facilitate the de-
velopment, a large number of standard modules are
available, making the best of the available hardware
possibilities; the performance and 
exibility of the vi-

sualisation is particularly impressive. Comparing Gra-
pher to LabVIEW, the former is less intuitive, needs
some programming knowledge but make complex ex-
perimentation e�cient. The experiment described in
the next section illustrates this aspect.

5. Experimentation in Distributed
Adaptive Control

As an example of the development techniques out-
lined above, the environment to evaluate a control ar-
chitecture will be presented in this section. The con-
trol mechanism is developed according to the design
methodology of distributed adaptive control [17]. This
approach is in turn derived from a distributed self-
organising model of the behavioural phenomenon of
classical conditioning [18] [19]. The example involves
an autonomous agent that can learn to avoid obstacles
using collision and proximity sensors.
The control structure consists of a neural net with

three groups of neurons (�gure 9) named Uncondi-

tioned Stimulus (US), Conditioned Stimulus (CS) and
Motor actions (M). Neurons of the US group are di-
rectly connected with collision sensors, simulated here
by the saturation of the proximity sensors. A prewired
connection between the US and the M groups imple-
ments the robot basic re
ex of avoiding obstacles at
the time of a collision. Neurons of the CS group obtain
their inputs from the proximity sensors. The learning

7



grapher.eps

170 � 119 mm

Figure 8. Grapher display.

is performed with an Hebbian rule on the connections
between CS and US. The weights Ki;j of these con-
nections are updated according to:

�Ki;j =
1

N
(� � sisj � � � s �Ki;j) (1)

where N de�nes the number of units in the CS, � is
the learning rate, � the decay rate, and s the average
activation in the group US.
This way, the robot can develop a conditional re-

sponse, learning to avoid obstacles using the proxim-
ity sensors without producing collisions. During the
experimentation it is interesting to observe the evolu-
tion of the learning process on the matrix K, which
depends on � and �.
The software environment used for this experiment

is Grapher (see section 4.3). Figure 8 shows the ex-
periment display on a SUN SparcStation. The princi-
pal window, on the top left, illustrates the functional
diagram of the experiment: The dac module (centre
top) performs the computation of the algorithm and

interacts with the module khepera (centre bottom) to
control the robot. Three other modules permit user
interface. The panel module (top right) allows the
user to control �, � and the algorithm computation
period by means of sliding cursors. The xview module
displays the K matrix in the centre bottom window.
Finally, the cgraph module (bottom right) displays the
sensor state and the trajectory of the robot, as visible
in the rightmost window.
If the control algorithm C source with no display ca-

pabilities is available, the experimental set-up can be
designed in less than one day. The user gains com-
plete control of the physical robot, the development
environment and all the parameters of the algorithm
in real time, thus obtaining an optimal visualisation
of the process.

6. Conclusions

The miniaturisation of Khepera makes a compact and
e�cient experimentation environment possible. As-
sociated with e�ective software tools, this robot is an

8



dac.eps

79 � 72 mm

Conditioned Stimulus

Hebbian rule

Unconditioned Stimulus

prewired reflexes

avoid right

avoid left

go forward
(default)

collision detectors

proximity 
sensors

Motor actions

CS

US

Figure 9. Distributed Adaptive Control experiment
architecture.

optimal platform to test control algorithms. The mod-
ularity at the hardware, software and control tools lev-
els gives to the user the necessary 
exibility to perform
accurate experiments quickly. An example of exper-
imentation environment has been presented. The re-
duced size and cost of the miniature robots described
make possible experimentation on collective behaviour
among groups of robots. This will be the main re-
search activity in the near future.

Acknowledgements

The authors would like to thank Andr�e Guignard
for the important work in the design of Khepera
and Jelena Godjevac, Paul Verschure, Claude Touzet,
Philippe Gaussier, St�ephane Zrehen, Yves Cheneval
and Laurent Tettoni for help in testing the algorithms
and in the development of the experimentation tools.
This work has been supported by the Swiss National
Research Foundation (project PNR23).

References

[1] R. A. Brooks. A robust layered control system for a
mobile robot. IEEE Robotics and Automation, RA-
2:14{23, March 1986.

[2] J. Heller. Kollisionsvermeidung mit fuzzy-logic. Elek-
tronik, 3:89{91, 1992.

[3] U. Nehmzov and T. Smithers. Using motor actions for
location recognition. In F. J. Varela and P. Bourgine,
editors, Proceedings of the First European Conference
on Arti�cial Life, pages 96{104, Paris, 1991. MIT
Press.

[4] N. Franceschini, J.-M. Pichon, and C. Blanes. Real
time visuomotor control: From 
ies to robots. In
Proceedings of the Fifth International Conference on

Advanced Robotics, pages 91{95, Pisa, June 1991.

[5] R. D. Beer, H. J. Chiel, R. D. Quinn, K. S. Espen-
schied, and P. Larsson. A distributed neural network
architecture for hexapod robot locomotion. Neural

Computation, 4:356{65, 1992.

[6] J. C. Deneubourg, S. Goss, N. Franks, A. Sendova,
A. Franks, C. Detrin, and L. Chatier. The dynam-
ics of collective sorting: Robot-like ant and ant-like
robot. In J. A. Mayer and S. W. Wilson, editors,
Simulation of Adaptive Behavior: From Animals to

Animats, pages 356{365. MIT Press, 1991.

[7] R. A. Brooks. Intelligence without representation.
Arti�cial Intelligence, 47:139{59, 1991.

[8] F. Mondada and P. F. M. J. Verschure. Modeling
system-environment interaction: The complementary
roles of simulations and real world artifacts. In Pro-

ceedings of the Second European Conference on Arti-

�cial Life, Brussels, 1993.

[9] R. A. Brooks. Elephants don't play chess. Robotics

and Autonomous Systems, 6:3{15, 1990. Special issue.

[10] L. Steels. Building agents out of autonomous behav-
ior systems. In The Biology and Technology of Intel-

ligent Autonomous Agents. NATO Advanced Study
Institute, Trento, 1993. Lecture Notes.

[11] Nomadic Technologies, Inc., Palo Alto, Calif. The

NOMAD Robot. Data-sheet.

[12] P. Dario, R. Valleggi, M. C. Carrozza, M. C. Mon-
tesi, and M. Cocco. Microactuators for microrobots:
A critical survey. Journal of Micromechanics and Mi-

croengineering, 2:141{57, 1992.

[13] E. Franzi. Low level BIOS of minirobot Khepera. In-
ternal report R93.28, LAMI - EPFL, Lausanne, 1993.

[14] P. Gaussier. Simulation d'un syst�eme visuel com-

prenant plusieurs aires corticales: Application �a l'-

analyse de sc�enes. PhD thesis, Paris XI - Orsay, Paris,
November 1992.

[15] National Instruments Corporation. LabVIEW 2, Jan-
uary 1990. User Manual.

[16] Y. Cheneval, P. Bovey, and P. Demartines. Task B2:
Uni�ed Graphic Environment. Delivrable R1-B2-P,
ESPRIT Elena Basic Research Project no. 6891, June
1993.

[17] P. F. M. J. Verschure, B. J. A. Koese, and R. Pfeifer.
Distributed adaptive control: The self-organization
of structured behavior. Robotics and Autonomous

Agents, 9:181{96, 1992.

[18] P. F. M. J. Verschure and A. C. C. Coolen. Adap-
tive �elds: Distributed representations of classically
conditioned associations. Network, 2:189{206, 1991.

[19] I. P. Pavlov. Conditioned Re
exes. Oxford University
Press, London, 1927.

9


