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A b s t r a c t .  We propose a new approach to the correspondence prob- 
lem that makes use of non-parametric local transforms as the basis for 
correlation. Non-parametric local transforms rely on the relative order- 
ing of local intensity values, and not on the intensity values themselves. 
Correlation using such transforms can tolerate a significant number of 
outliers. This can result in improved performance near object boundaries 
when compared with conventional methods such as normalized correla- 
tion. We introduce two non-parametric local transforms: the rank trans- 
form, which measures local intensity, and the census transform, which 
summarizes local image structure. We describe some properties of these 
transforms, and demonstrate their utility on both synthetic and real 
data. 

1 Introduct ion 

The correspondence problem is a fundamental  problem in vision, as it forms 
the basis for stereo depth computat ion and most optical flow algorithms. Given 
two images of the same scene, a pixel in one image corresponds to a pixel in 
the other if both  pixels are projections along lines of sight of the same physical 
scene element. If  the two images are temporally consecutive, then computing 
correspondence determines motion. If the two images are spatially separated but 
simultaneous, then computing correspondence determines stereo depth. Area- 

based approaches to the correspondence problem [4] find a dense solution, usually 
by relying on some kind of statistical correlation between local intensity regions. 

In this paper  we propose a new area-based approach to the correspondence 
problem, based on non-parametr ic  local transforms followed by correlation. We 
begin by motivat ing our approach, then show how non-parametr ic  local trans- 
forms can be used to determine correspondence. In section 3 we introduce the 
rank and census transforms, and describe their properties. We give empirical 
evidence of the performance of our methods in section 4, using both natural  and 
synthetic images. Finally, in section 5 we survey related work and discuss some 
planned extensions. 

2 Non-parametr ic  local transforms 

Our approach to the correspondence problem is first to apply a local t ransform 
to the image, and then to use correlation. In this respect, our work is similar 
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to that of Nishihara [12] and Seitz [14, 1]. Nishihara's transform is the sign bit 
of the image after convolution with a Laplacian, while Seitz's transform is the 
direction of the intensity gradient. 

Most approaches to the correspondence problem have difficulty near discon- 
tinuities in disparity, which occur at the boundaries of objects. Near such a 
boundary, the pixels in a local region represent scene elements from two distinct 
instensity populations. Some of the pixels come from the object, and some from 
other parts of the scene. As a result, the local pixel distribution will in general 
be multimodal near a boundary. This poses a problem for many correspondence 
algorithms, such as normalized correlation [6]. 

Correspondence algorithms are usually based on standard statistical meth- 
ods, which are best suited to a single population. Parametric measures, such 
as the mean or variance, do not behave well in the presence of distinct sub- 
populations, each with its own coherent parameters. This problem, which we 
will refer to as factionalism, is a major issue in computer vision, and has been 
addressed with a variety of methods, including robust statistics [2, 3], Markov 
Random Fields [5] and regularization [13]. 

The fundamental idea behind our approach is to define a local image trans- 
form that tolerates factionalism. Correspondence can be computed by trans- 
forming both images and then using correlation. For this approach to succeed, 
the transform must result in significant local variation within a given image; in 
addition, it must give similar results near corresponding points between the two 
images. (Marr and Nishihara [10] refer to these two properties as sensitivity and 
stability.) Finally, to handle stereo imagery, the transform should be invariant 
under changes in image gain and bias. 

Our approach relies on local transforms based on non-parametric measures 
that are designed to tolerate factionalism. Non-parametric statistics [9] is dis- 
tinguished by the use of ordering information among data, rather than the data 
values themselves. Non-parametric local transforms, which we introduced in [15], 
are local image transformations that rely on the relative ordering of intensities, 
and not on the intensity values themselves. 

3 T h e  r a n k  t r a n s f o r m  a n d  t h e  c e n s u s  t r a n s f o r m  

We next describe two non-parametric local transforms. The first, called the rank 
transform, is a non-parametric measure of local intensity. The second, called the 
census transform, is a non-parametric summary of local spatial structure. 

Let P be a pixel, I(P) its intensity (usually an 8-bit integer), and N(P) the 
set of pixels in some square neighborhood of diameter d surrounding P. All non- 
parametric transforms depend upon the comparative intensities of P versus the 
pixels in the neighborhood N(P). The transforms we will discuss only depend 
on the sign of the comparison. Define ~(P, P') to be 1 if I(P') < I(P) and 0 
otherwise. The non-parametric local transforms depend solely on the set of pixel 
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comparisons, which is the set of ordered pairs 

~(P) = U (P"~(P'P'))" 
P' EN(P) 

They differ in terms of their exact reliance on ~.  
The first non-parametric local transform is called the rank transform, and is 

defined as the number of pixels in the local region whose intensity is less than 
the intensity of the center pixel. Formally, the rank transform R(P) is 

R(P) = il{ P' e N(P)  I I(P'  ) < I (P)  }ll. 

Note that  R(P) is not an intensity at all, but rather an integer in the range 
{0 , . . . ,  d 2 - 1}. This distinguishes the rank transform from other attempts to 
use non-parametric measures such as median filters, mode filters or rank filters 
[7]. To compute correspondence, we have used L1 correlation (minimizing the 
sum of absolute values of differences) on the rank-transformed images. 

The second non-parametric transform is named the census transform. R~- (P) 
maps the local neighborhood surrounding a pixel P to a bit string representing 
the set of neighboring pixels whose intensity is less than that  of P.  Let N(P)  = 
P @ D, where | is the Minkowski sum and D is a set of displacements, and let 
| denote concatenation. The census transform can then be specified, 

R ~ ( P ) =  ( ~  ~(P,P+[i, j]) .  
[~,jleD 

Two pixels of census transformed images are compared for similarity using the 
Hamming distance, i.e. the number of bits that  differ in the two bit strings. 
To compute correspondence, we have minimized the Hamming distance after 
applying the census transform. 

These local transforms rely solely upon the set of comparisons ~ ,  and are 
therefore invariant under changes in gain or bias. The tolerance of these trans- 
forms for factionalism also results from their reliance upon ~.  If a minority of 
pixels in a local neighborhood has a very different intensity distribution than 
the majority, only comparisons involving a member of the minority are affected. 
Such pixels do not make a contribution proportional to their intensity, but pro- 
portional to their number. This limited dependence on the minority's intensity 
values is a major distinction between our approach and parametric measures. 

To illustrate the manner in which these transforms tolerate factionalism, 
consider a three-by-three region of an image whose intensities are 

127 127 129 
126 128 129 
127 131A 

for some value 0 < A < 256. Consider the effect on various parametric and non- 
parametric measures, computed at the center of this region, as A varies over its 
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Fig. 1. Comparison of rank (o), normalized (A) and SSD (*) correlation on Aschwan- 
den data-set with salt-and-pepper noise 

256 possible values. The mean 3 of this region varies from 114 to 142, while the 
variance ranges from 2 to 1823. These parametric measures exhibit continuous 
variation over a substantial range as A changes. 

Non-parametric transforms are more stable, however. All the elements of S 
except one will remain fixed as A changes. S will be 

1 1 0  
1 0 
1 0 a  

where a is 1 if A < 128, and otherwise 0. The census transform simply results in 
the bits of S in some canonical ordering, such as {1, 1, 0, 1,0, 1,0, a}. The rank 
transform will give 5 if A < 128, and otherwise 4. 

This comparison shows the tolerance that  non-parametric measures have for 
factionalism. A minority of pixels can have a very different value, but  the effect 
on the rank and census transforms is limited by the size of the minority. 

4 Empirical results 

We have implemented these non-parametric local transforms, and have explored 
their behavior on both real and synthetic imagery. The motivation for our ap- 
proach was to obtain better  results near the edges of objects. We have obtained 
comparative results on synthetic data which show that  our methods can out- 
perform normalized correlation. 

In [1], Aschwanden and Guggenbiihl have described the performance of a 
number of area-based stereo algorithms under several different noise models. 

3 For convenience, we are rounding the actual values 
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Figure 1 compares correlation with the rank transform against two standard 
stereo algorithms, namely normalized correlation and sum of squared differences 
(SSD) correlation. Performance is measured as function of template radius, as 
described in [1]. 

Fig. 2. Right and left random-dot stereograms 

Fig. 3. Disparities from normalized correlation, rank and census transforms 

Another way to compare correlation methods is with random dot imagery. 
Figure 2 shows a random dot stereogram of a square floating in front of a flat 
surface, on which there is a vertical intensity edge. The images are noise-free, 
but the intensities differ by fixed gain and bias. 

Figure 3 shows the disparities computed from normalized correlation and 
from correlation with the rank and census transforms. There should only be 2 
disparities in this scene: one for the background surface (which is at disparity 
0), and one for the foreground square (which is at disparity 104). Notice the 
comparatively poor performance of normalized correlation near the edges, where 
it introduces spurious disparities. The performance of our approach can be seen 
by counting the pixels with incorrect disparities, as shown below. 

Algorithm Incorrect matches 
Normalized 1385 
Rank transform 609 
Census transform 407 
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On this example, the non-parametric local transforms appear to exhibit better 
performance than normalized correlation. 

The best evidence in favor of the non-parametric local transforms is their 
performance on real images. We have used the rank transform and the census 
transform on a number of different images to obtain stereo depth. Depth maps 
are shown with lighter shades indicating larger disparities and thus nearer scene 
elements. All the depth maps shown were generated with the same parameters 
(a transform radius of 7 pixels, and a correlation radius of 4 pixels). 

Figure 4 shows a beam-splitter image of a puppet (Elmo from the television 
show "Sesame Street"). The depth results of the non-parametric local transforms 
are shown in figure 5. Figure 6 shows an image from a tree sequence 4 captured 
by moving a camera along a rail, and the depth results from the transforms. 

5 R e l a t e d  w o r k  a n d  p l a n n e d  e x t e n s i o n s  

The algorithms we describe are related to non-parametric measures of associ- 
ation, such as Spearman's correlation coefficient rs or Kendall's T. These are 
measures of association of paired data that are based upon comparisons. How- 
ever, such measures are very expensive to compute, and do not capture the 
spatial structure of images. 

Probably the most similar approach to ours is the work based on robust statis- 
tics [2, 11, 3]. Robust statistics differs from our approach in that they emphasize 
reducing the influence of outliers. Implicit in this work is the assumption that 
outliers are distributed randomly. However, at the edges of objects, factionalism 
produces outliers with consistent distributions. Our approach tolerates outliers 
with consistent distributions, and does not allow pixels from a small faction to 
contribute in a manner proportional to their intensity. 

One limitation of the non-parametric transforms we have described is that 
the amount of information they associate with a pixel is not very large. We hope 
to address this shortcoming by combining a number of different non-parametric 
transforms into a vector of measures associated with a pixel. Ultimately, we 
would like to avoid the correlation phase altogether and simply match pixels 
according to a set of semi-independent measures, in a manner similar to that 
proposed by Kass [8]. 

Another limitation of our approach is that the local measures rely heavily 
upon the intensity of the center pixel. This has not been an issue in practice, 
but we propose to address it by doing comparisons from a local median intensity 
instead of I(P). An additional idea we intend to pursue is to generalize ~,  
which currently uses the sign of the intensity differences. We plan to explore 
using higher-order differences, as well as the information contained in the total 
ordering of the local pixel intensities. 

We are also interested in efficient algorithms for implementing such trans- 
forms. [15] describes a number of fast algorithms for computing the rank trans- 

4 The tree imagery appears courtesy of Harlyn Baker and Bob Bolles 
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form based on dynamic programming. We have recently implemented an approx- 
imation of the census transform on a Sun workstation, which produces stereo 
depth with 24 disparities on 640 by 240 images at 1-2 frames per second. 
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Fig.  4. Elmo stereo pair from beam-splitter 

Fig.  5. Rank and census results on Elmo 

Fig.  6. Tree image with rank and census correlation results 


