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Abs t r ac t .  A new method for solving the stereo matching problem in 
the presence of large occlusion is presented. A data structure - -  the 
disparity space image - -  is defined in which we explicitly model the ef- 
fects of occlusion regions on the stereo solution. We develop a dynamic 
programming algorithm that finds matches and occlusions simultane- 
ously. We show that while some cost must be assigned to unmatched 
pixels, our algorithm's occlusion-cost sensitivity and algorithmic com- 
plexity can be significantly reduced when highly-reliable matches, or 
ground control points, are incorporated into the matching process. The 
use of ground control points eliminates both the need for biasing the 
process towards a smooth solution and the task of selecting critical prior 
probabilities describing image formation. 

1 I n t r o d u c t i o n  

Occluded regions are spatially coherent groups of pixels that  can be seen in 
one image of a stereo pair but not in the other. These regions mark  depth 
discontinuities and can be used to improve segmentation, motion analysis, and 
object identification processes , all of which must preserve object boundaries. 
There is psychophysical evidence that  the human visual system uses geometrical 
occlusion relationships during binocular stereopsis[11] to reason about  the spatial 
relationships between objects in the world. In this paper  we present a stereo 
algori thm tha t  does so as well. 

Most stereo researchers have generally either ignored occlusion analysis or 
t reated it as a secondary process that  is postponed until matching is completed 
and smoothing is underway[6]. Consequently, occlusion regions are often a major  
source of error[3]. Stereo images of everyday scenes, such as people walking 
around a space, can contain contain disparity shifts and occlusion regions over 
eighty pixels wide[9] - much larger than occlusion regions found in typical stereo 
test imagery. 

Our approach is to explicitly model occlusion edges and occlusion regions and 
to use them to drive the matching process. We develop a data  structure which 
we will call the disparity-space image (DSI), and we use this data  structure to 
develop a stereo algorithm that  finds matches and occlusions simultaneously. We 
show tha t  while some cost must be assigned to unmatched pixels, an algori thm's  
occlusion-cost sensitivity and algorithmic complexity can be significantly reduced 
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when highly-reliable matches, or ground control points (GCPs), are incorporated 
into the matching process. 

Some previous stereo work has used the occlusion constraint explicitly in 
the matching process[l, 7, 5]. Our approach differs in that we use no additional 
criteria such as smoothness and intra and inter-scanline consistency since we use 
GCPs to eliminate sensitivity to occlusion costs. 

2 T h e  D S I  R e p r e s e n t a t i o n  

The DSI is an explicit representation of matching space; it is related to figures 
that have appeared in previous work[4, 7, 13, 12]. We generate the DSI represen- 
tation for i th seanline in the following way: Select the i th seanline of the left and 
right images, s L and s~ respectively, and slide them across one another one pixel 
at a time. At each step, the scanlines are subtracted and the result is entered as 
the next line in the DSI. The DSI representation stores the result of subtracting 
every pixel in s L with every pixel s~ and maintains the spatial relationship be- 
tween the matched points. As such, it may considered an (x, disparity) matching 
space, with x along the horizontal, and disparity along the vertical. Given two 
images IL and In the value of the DSI is given: 

DSI~(x, d) = ( IR(x,  i) - In(x  + d, i) 
when 0 _< (x + d) < N (1) 

where all other values are not defined and 0 < d < N and 0 < x < N. The 
superscript of R on DSI R indicates the right DSI. DSI L is simply a negated, 
skewed version of the DSI~. 

The above definition generates a "full" DSI where there is no limit on dispar- 
ity. By considering camera geometry and some maximum possible disparity shift, 
we can crop the representation. Further, to make the DSI more robust to effects 
of noise, we use correlation with a simplified version of adaptive windows[10] 
that preserves sharp boundaries at occlusion jumps in the DSI L [9]. 

Figure 1-c shows the cropped, correlation DSI for a scanline through the 
middle of the test image pair shown in Figure 1-b. Near-zero values have been 
enhanced. Notice the characteristic streaking pattern that results from holding 
one scanline still and sliding the other scanline across. When a textured region 
on the left scanline slides across the corresponding region in the right seanline, a 
line of matches can be seen in the DSI L. When two textureless matching regions 
slide across each other, a diamond-shaped region of near-zero matches can be 
observed. The more homogeneous the region is, the more distinct the resulting 
diamond shape will be. The correct path through DSI space can be easily seen 
as a dark line connecting block-like segments. 

3 O c c l u s i o n  A n a l y s i s  a n d  D S I  P a t h  C o n s t r a i n t s  

In a discrete formulation of the stereo matching problem, any region with non- 
constant disparity must have associated unmatched pixels. Any slope or disparity 
jump creates blocks of occluded pixels. Because of these occlusion regions, the 
matching zero path through the image cannot be continuous. The regions labeled 
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Fig. 1.: (a) A physical model of a sloping wedding cake, (b) a simulated image pair of 
the cake, (c) the enhanced, cropped DSI L and DSlg for one scan line. 

"D" in Figure 1-c mark horizontal gaps in the enhanced zero line in DSI L and 
DSI~. The regions labeled "V" mark vertical jumps from disparity to disparity. 
These jumps correspond to left and right occlusion regions. We use this "occlu- 
sion constraint" [7] to restrict the type of matching path that can be recovered 
from each DSI L. Each time an occluded region is proposed, the recovered path 
is forced to have the appropriate vertical or diagonal jump. 

Nearly all stereo scenes obey the ordering constraint (or monotonicity con- 
straint [7]): if object a is to the left of object b in the left image then a will be 
to the left of b in the right image. Thin objects with large matching disparities 
violate this rule, but they are rare. By assuming the ordering rule we can impose 
a second constraint on the disparity path through the DSI that significantly re- 
duces the complexity of the path-finding problem. In the DSI L, moving from left 
to right, diagonal jumps can only jump forward (down and across) and vertical 

R jumps can only jump backwards (up). In the DSI~ the relationship is reversed: 
moving left to right diagonal jumps can only jump backwards and across and 
vertical jumps can only jump forwards (down). If this rule is broken the ordering 
constraint does not hold. 

4 Finding the Best Path 

Using the occlusion constraint and ordering constraint, the correct disparity 
path is highly constrained. From any location in the DSI L, there are only three 
directions a path can take - a horizontal match, a diagonal occlusion, and a 
vertical occlusion. This observation allows us to develop a stereo algorithm that 
integrates matching and occlusion analysis into a single process. 

Our algorithm for finding the best path through the DSI is formulated as 
a dynamic programming (DP) path-finding problem in (x, disparity) space. We 
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wish to find the minimum cost traversal through the DSI L image when the 
occlusion constraints are imposed. 

4.1 Dynamic Programming Constraints 

The occlusion constraint and ordering constraint severely limit the direction the 
path can take from the path's current endpoint. If we base the decision of which 
path to choose at any pixel only upon the cost of each possible path we can take 
and not on any previous moves we have made, we satisfy the DP requirements 
and can use DP to find the optimal path. 

Our DSI analysis led us to consider the occlusio n problem in a "state-like" 
manner. As we traverse through the DSI image finding the optimal path, we 
can be in any of three states: match (M), vertical occlusion (V), or diagonal 
occlusion (D). Figure 2 symbolically shows the legal transitions between each 
type of state. The path is further constrained at the edges of the DSI image, 
where several types of transitions may be invalid. 

cij,1 

r state e~ 
L~.afloa dj 

dj+i 

xi Xi+l 

M = M a t c h  state 
V = V e r t i c a l  occlusion 
D = H o r i z o n t a l  occlusion 

Fig. 2.: State diagram of moves the DP algorithm can choose through the DSI. 

A cost is assigned to each pixel in the path depending upon the current state. 
We design our DP algorithm to minimize the cost of a path where the cost 
of a match is the value of the DSI L pixel at the match point. The better  the 
match, the lower the cost assessed. The algorithm will a t tempt  to maximize 
the number of "good" matches in the final path. Since the algorithm will also 
propose unmatched points - -  occlusion regions - -  we need to assign a cost for 
unmatched pixels in the vertical or diagonal jumps. Otherwise the "best path" 
would be one that  matches almost no pixels. 

For the work presented here we chose a constant occlusion pixel cost. Without  
an additional constraint the algorithm is quite sensitive to this cost. In the next 
section we propose an alternative approach to reducing occlusion cost sensitivity 
that  reduces complexity and does not artificially restrict the disparity path. 

4.2 G r o u n d  Control Points 

Unfortunately, slight variations in the occlusion pixel cost can change the globally 
minimum path through the DSI L space, particularly with noisy data[5]. Because 
this cost is incurred for each proposed occluded pixel, the cost of a proposed 
occlusion region is linearly proportional to the width of the region. 

In order to overcome this occlusion cost sensitivity, we need to impose an- 
other constraint in addition to the occlusion and ordering constraints. How- 
ever, unlike previous approaches we do not want to bias the solution towards 
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any generic property such as smoothness[7], inter-scanline consistency[12, 5], or 
intra-scanline "goodness" [5]. 

Instead, we use high confidence matching guesses: Ground control points 
(GCPs). These points are used to force the disparity path to make large dis- 
parity jumps that might otherwise have been avoided because of large occlusion 
costs. 

Figure 3 illustrates this idea showing two GCPs and a number of possible 
paths between them. We note that regardless of which disparity path is cho- 
sen, the discrete lattice ensures that path-a, path-b, and path-c all require 6 
occlusion pixels. Therefore, all three paths incur the same occlusion cost. Our 
algorithm will select the path that minimizes the cost of the proposed matches 
independent of where occlusion breaks are proposed and the occlusion cost value. 
If there is a single occlusion region between the GCPs in the original image, the 
path with the best matches is similar to path-a or path-b. On the other hand, if 
the region between the two GCPs is sloping gently, then a path like path-c, with 
tiny, interspersed occlusion jumps will be preferred. The path through (x, dis- 
parity) space, therefore, will be constrained solely by the occlusion and ordering 
constraints and the goodness of the matches between the GCPs. Am exception 
to this situation occurs if the algorithm proposes additional occlusion regions as 
in path-d; such solutions typically have a much higher cost than the correct one. 

P~th A Path  S ~ t h  c path D 

Paths A, B, and C have 6 occluded pixels. 
�9 = Ground Control  Point ~ = Occluded Plxe! Path D has 14 occluded pixels. 

Fig. 3.: Four possible paths through two GCPs. 

4.3 Select ing and  Enforcing G C P s  

If we force the disparity path through GCPs, their selection must be highly 
reliable. We use several heuristic filters to identify GCPs before we begin the 
DP processing. The first heuristic requires that a control point be both the best 
left-to-right and best right-to-left match[8]. Second, to avoid spurious "good" 
matches in occlusion regions, we also require that control points have match value 
that is smaller than the occlusion cost. Finally, to further reduce the likelihood 
of a spurious match, we exclude any proposed GCPs that have no immediate 
neighbors that are also marked as GCPs. 

Once we have a set of control points, we force our DP algorithm to choose a 
path through the points by assigning zero cost for matching with a control point 
and a very large cost to every other path through the control point's column. 
In the DSI L, the path must pass through each column at some pixel in some 
state. By assigning a large cost to all paths and states in a column other than a 
match at the control point, we have guaranteed that the path will pass through 
the point. 

An important feature of this approach of incorporating GCPs is that this 
method allows us to have more than one GCP per column. Instead of forcing 
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Fig. 4.: Results for the (a) noise-free and (b) noisy sloping wedding cake. 

the path through one GCP, we force the path through one of a few GCPs. 
Even using multiple windows and left-to-right, right-to-left matching, it is still 
possible that we will label a GCP in error if only one per column is permitted. It 
is unlikely, however, that none of several proposed GCPs in a column will be the 
correct GCP. By allowing multiple GCPs per column, we have eliminated the risk 
of forcing the path through a point erroneously marked as high-confidence due 
image noise without increasing complexity or weakening the GCP constraint. 

The use of GCPs reduces the complexity of the DP algorithm. With several 
GCPs the complexity can be less than 25% of the original problem[9]. 

5 Dynam ic  Programming  Algori thm - Resul ts  

Input to our algorithm consists of a stereo pair. Epipolar lines are assumed to 
be known and corrected to correspond to horizontal scanlines. We assume that 
additive and multiplicative photometric bias between the left and right images is 
minimized, although the birch tree example shows our algorithm will work with 
significant additive differences. 

The results generated by our algorithm for the noise-free sloping wedding 
cake are shown in Figure 4-a in the cyctopean view. The top layer of the cake 
has been shifted 84 pixels. Our algorithm :found the occlusion breaks at the edge 
of each layer, indicated by black regions. Sloping regions have been recovered as 
a sloping region interspersed with tiny occlusion jumps. Since we have not used 
any smoothing or inter- or intra-scanline consistency, the solution in the sloping 
regions is governed only by the ground control points and the best matches in 
the region. Figure 4-b shows the results for the sloping wedding cake with noise 
(SNR = 18 dB). The algorithm still locates occlusion regions well. 

Figure 5-a shows the '%itch" image from the JISCT stereo test set[2]. The 
occlusion regions in this image are difficult to recover properly because of the 
skinny trees, some textureless regions, and a 15 percent brightness difference 
between images. The skinny trees make occlusion recovery particularly sensitive 
to occlusion cost when GCPs are not used, since there are relatively few good 
matches on each skinny tree compared with the size of the occlusion jumps to 
and from each tree. Figure 5-b shows the results of our algorithm without using 
GCPs, The occlusion cost prevented the path on most scanlines from jumping 
out to some of the trees. Figure 5-c shows the algorithm run with the same 
occlusion cost using GCPs. The occlusion regions around the trees are recovered 
reasonably well since GCPs on the tree surfaces eliminated the dependence on 
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Fig. 5." (a) Image pair and results without (b) and with (c) GCPs. 

the occlusion cost. The algorithm fails where the image is washed-out, the image 
is textureless, or where no GCPs were recovered on some trees. 

Figure 6-a is the left image of a stereo image pair of some people. Figure 6- 
b shows the left image results obtained by the algorithm developed by Cox et 
al.[5]. The Cox algorithm is a similar DP procedure which uses inter-scanline 
consistency instead of GCPs to reduce sensitivity to occlusion cost. Figure 6-c 
shows our results on the same image. The Cox algorithm does a reasonably good 
job at finding the major occlusion regions, although many rather large, spurious 
occlusion regions are proposed. When the algorithm generates errors, the errors 
are more likely to propagate over adjacent lines, since inter-and intra-scanline 
consistency are used[5]. To be able to find the numerous occlusions, the Cox 
algorithm requires a relatively low occlusion cost, resulting in false occlusions. 
Our higher occlusion cost and use of GCPs finds the major occlusion regions 
cleanly. For example, the man's head is clearly recovered by our approach. The 
algorithm did not recover the occlusion created by the man's leg as well as hoped 
since it found no good control points on the bland wall between the legs. The 
wall behind the man was picked up well by our algorithm, and the structure 
of the people in the scene is quite good. Most importantly, we did not use any 

smoothness  or inter-  and intra-scanline consistencies to generate these results. 

We should note that our algorithm does not perform well on images that 
only have short match regions interspersed with many disparity jumps. In such 
imagery our conservative method for selecting GCPs fails to provide enough con- 
straint to recover the proper surface. However, the results on the birch imagery 
illustrate that in real imagery with many occlusion jumps, there are likely to be 
enough stable regions to drive the computation. 

6 S u m m a r y  

We have presented a stereo algorithm that incorporates the detection of occlusion 
regions directly into the matching process. We develop an dynamic programming 
solution that obeys the occlusion and ordering constraints to find a best path 
through the disparity space image. To eliminate sensitivity to occlusion cost 
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Fig. 6.: (a) Left image. Results of (b) Cox et al. algorithm[5], and (c) our algorithm. 

we use ground control points ( G C P s ) - -  high confidence matches. These points 
improve results, reduce complexity, and minimize dependence on occlusion cost 
without arbitrari ly restricting the recovered solution. 
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