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A b s t r a c t .  To recover complicated surfaces, single information sources 
often prove insufficient, In this paper, we present a unified framework 
for 3-D shape reconstruction that allows us to combine image-based 
constraints, such as those deriving from stereo and shape-from-shading, 
with geometry-based ones, provided here in the form of 3-D points, 3-D 
features or 2-D silhouettes. 
Our approach to shape recovery is to deform a generic object-centered 
3-D representation of the surface so as to minimize art objective function. 
This objective function is a weighted sum of the contributions of the var- 
ious information sources. We describe these various terms individually, 
our weighting scheme and our optimization method. Finally, we present 
results on a number of difficult images of real scenes for which a single 
source of information would have proved insufficient. 

1 I n t r o d u c t i o n  

The problem of recovering surface shape from image cues, the so-called "shape 
f rom X" problem, has received tremendous attention in the computer vision 
community.  But no single source of information "X," be it stereo, shading, tex- 
ture, geometric constraints or any other, has proved to be sufficient across a 
reasonable sampling of images. To get good reconstructions, it is necessary to 
use as many  different kinds of cues with as many views of the surface as possible. 
In this paper, we present and demonstrate a working framework for surface re- 
construction that  combines image cues, such as stereo and shape-from-shading, 
with geometric constraints, such as those provided by laser range finders, area- 
and edge-based stereo algorithms, linear features and silhouettes. 

Our framework can incorporate cues from many images, including images 
taken f rom widely differing viewpoints. It  accomodates such viewpoint-dependent 
effects as self-occlusion and self-shadowing. It  accomplishes this by using a full 
3 -D object-centered representation of the est imated surface. This representation 
is used to generate synthetic views of the est imated surface from the viewpoint 
of each input image. Using standard computer graphics algorithms, those parts  
of the surface that  are hidden from a given viewpoint can be identified and 
eliminated from the reconstruction process. The remaining parts are then in 
correspondence with the input images. The corresponding cues are applied in an 
iterative manner  using an optimization algorithm. 
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In many recent publications about surface reconstruction, such as [Delingette 
et al., 1991, Terzopoulos and Vasilescu, 1991, Szeliski and Tonnesen, 1992], the 
authors fit a surface to previously computed 3-D data, such as the output laser 
range finders or correlation-based stereo algorithms. In other words, the deriva- 
tion of the 3-D data from the images is completely divorced from the surface 
reconstruction. In contrast, our framework allows us to directly use such image 
cues as stereo, shading, and silhouette edges in the reconstruction process while 
simultaneously incorporating previously computed 3-D data. In a previous pub- 
lication [Fua and Leclerc, 1993] we describe how stereo and shading are used 
within the framework described below, and the relationship of this approach 
to previous work. Here, we focus on the incoporation of additional image cues, 
silhouette edges and previously computed 3-D data. 

Combining these different sources of information is not a new idea in itself. 
For example, Blake et al. [1985] discuss the complementary nature of stereo 
and shape from shading. Both Cryer et aL [1992] and Heipke et aL [1992] have 
proposed algorithms to combine shape-from-shading and stereo while Liedtke et 
al. [1991] use silhouettes to derive an initial estimate of the surface and improve 
the result using multi-image stereo. However, none of the algorithms we know 
of uses an object-centered representation and an optimization procedure that  
are general enough to incorporate all of the cues that we present here. This 
generality should also make possible the use of a very wide range of other sources 
of information, such as shadows, in addition to those actually discussed here. 

We view the contribution of this paper as providing both the framework that  
allows us to combine diverse sources of information in a unified and computa- 
tionally effective manner, and the specific details of how these diverse sources of 
information are derived from the images. 

In the next section, we describe our framework and the new information 
sources introduced here. We then demonstrate that the framework successfully 
performs its function on real images and allows us to achieve results better than 
those we could derive from any one, or even two, sources of information. 

2 F r a m e w o r k  

Our approach to recovering surface shape and reflectance properties from mul- 
tiple images is to deform a 3-D representation of the surface so as to minimize 
an objective function. The free variables of this objective function are the co- 
ordinates of the vertices of the triangulation representing the surface, and the 
process is started with an initial surface estimate. Here we assume that  images 
are monochrome, and that  their camera models are known a priori. 

We represent a surface $ by a hexagonally connected set of vertices called 
a mesh. Such a mesh is shown in Figure l(a). The position of a vertex vj is 
specified by its Cartesian coordinates (xj, yj, zj). 

For each input image, we generate a "Facet-ID" image by encoding the index 
i of each facet fi as a unique color, and projecting the surface into the image 
plane, using a standard hidden-surface Mgorithm. As discussed in Sections 2.3 
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(a) (b) (c) 
Fig. 1. Mesh representation and computation of the image terms of the objective func- 
tion: (a) Wireframe representation of the a mesh. (b) Facets are sampled at regular 
intervals, the circles represent the sample points. The stereo component of the objective 
function is computed by summing the variance of the grey level of the projections of 
these sample points, the gis .  (c) Each racer's albedo is estimated using its normal N, 
the light source direction L and, the average gray level of the projection of the facet 
into the images. The shading component of the objective function is the sum of the 
squared differences in estimated albedo across neighboring facets. 

and 2.4, we use it to determine which surface points are occluded in a given view 
and on which facets geometric constraints should be brought to bear. 

2.1 O b j e c t i v e  F u n c t i o n  a n d  O p t i m i z a t i o n  P r o c e d u r e  

The objective function E(~q) that  we use to recover the surface is a sum of 
terms that take into account the image-based constraints--stereo and shape from 
shading--and the geometry-based constraints~--features and si lhouettes-- that  
are brought to bear on the surface. To minimize E(S), we use an optimization 
method that  is inspired by the heuristic technique known as a continuation 
method [Terzopoulos, 1986, Leclerc, 1989] in which we add a reguIarization term 
to the objective function and progressively reduce its influence. We define the 
total  energy of the mesh, ET(S), as 

ET(8) = ADs + g(S)  with E(S) = ~ A i s  . (1) 
i 

The Ei(S) represent the image and geometry-based constraints discussed below, 
and the Ai their relative weights. ED(S), the regularization term, serves a dual 
purpose. First, we define it as a quadratic function of the vertex coordinates, so 
that  it "convexities" the energy landscape when At) is large and improves the 
convergence properties of the optimization procedure. Second, in the presence of 
noise, some amount of smoothing is required to prevent the mesh from overfitting 
the data, and wrinkling the surface excessively [Fua and Leclerc, 1993]. 

In our implementation, we take E9 to be a measure of the curvature or 
local deviation from a plane at every vertex. Using finite differences, ED can be 
expressed as a quadratic form [Fua and Leclerc, 1993] 

E (s) = K x  + K v  + ZT K Z )  , (2) 
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where X , Y ,  and Z are the vectors of the x,y and z coordinates of the vertices, 
and K is a sparse and banded matrix. 

Because $D is quadratic and decouples the three spatial coordinates, our 
energy term is amenable to a "snake-like" optimization technique [Kass et al., 
1988]. We treat S as a physical surface embedded in a viscous medium and 
evolving under the influence of the potential s We solve the minimization 
problem by solving the dynamics equation of this system. We can either optimize 
the three spatial components, X, Y and Z simultaneously or separately. 

To speed the computation and prevent the mesh from becoming stuck in 
undesirable local minima, we typically use several levels of mesh size--three 
in the examples of Section 3--to perform the computation. We start with a 
relatively coarse mesh that we optimize. We then refine it by splitting every 
facet into four smaller ones and reoptimizing. Finally, we repeat the split and 
optimization processes one more time. 

2.2 Combining the Components 

The total energy of Equation 1 is a sum of terms whose magnitudes are image- 
or geometry-dependent and, as a result, not necessarily commensurate. One 
therefore needs to scale them appropriately, that is to define the A weights so as 
to make the magnitude of their contributions commensurate and independent 
of the specific radiometry or geometry of the scene under consideration. Since 
the dynamics of the optimization are controlled by the gradient of the objective 
function, an effective way to normalize the contributions is to introduce a set of 
weights A~ such that A~ = 1 - ~<i_<~ A~ > 0. The As are taken to be 

- , - , (3) 

II V&(s~ II II VE ,(s~ 

where S ~ is the surface estimate at the start of each optimization step. In prac- 
tice we have found that, because the normalization makes the influence of the 
various terms comparable irrespective of actual radiometry or dimensions, the 
user-specified A} weights are context-specific but not image-specific. In other 
words, we use one set of parameters for images of faces when combining stereo, 
shape-from-shading, and silhouettes, and another when dealing with aerial im- 
ages of terrain using stereo and 3-D point constraints, but we do not have to 
change them for different faces or different landscapes. The continuation method 
of Section 2.1 is implemented by first taking A~ to be 0.5 and then reducing it 
while keeping the relative values of the A}s constant. 

2.3 Geometric Constraints 

We have explored the constraints generated by 3-D points, 3-D linear features, 
and 2-D silhouettes. 
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(a) (b) (c) (d) 
Fig. 2 .3-D and 2-D point constraints: (a) Point attractor modeled as a spring attached 
to a vertex. (b) Point attractor modeled as a spring attached to the closest surface 
point. (c) Occlusion contours are the locus of the projections of the (x~, y.,, z~) surface 
points for which a camera ray is tangential to the surface. (d) In practice, the (u~, v~) 
projection of such a point must be colinear with the projections of the vertices of the 
facet that produces the observed silhouette edge. 

3 - D  P o i n t s  They are treated as attractors and 3-D linear features are taken 
to be collections of such points. The easiest way to handle attractors is to model 
each one as a spring by adding the following term to the objective function 

r = 1/2((x  - + (vo - w )  + (zo  - 2) (4) 

where x i , y i ,  and zi are the coordinates of the mesh vertex closest to the attractor 
(xa, y~, za). This, however, is inadequate if one wishes to use facets that are large 
enough so that  attracting the vertices, as opposed to the surface point closest 
to the attractor,  would cause unwarranted deformations of the mesh. This is 
especially important  when using a sparse set of attractors. In this case, the 
energy term of Equation 4 must be replaced by one that attracts the surface 
without warping it. In our implementation, this is achieved by redefining e~ as 

e~ = 1 / 2 d  2 (5) 

where da is the orthogonal distance of the attractor to the closest facet. It is easy 
to show that  d~ can be expressed as the ratio of two second order polynomial 
in terms of the vertex coordinates. These two sorts of attractors are depicted in 
Figure 2 (a,b). The search for the "closest facet" is made efficient and fast by 
assuming that the attractors can be identified by their projection in an image. We 
project the mesh into that image, generate the corresponding Facet-ID image- -  
which must be done in any case for other computat ions--and look up the facet 
number of the point 's projection. This applies, for example, to range maps, 
edge- or correlation-based stereo data, and hand-entered features that can be 
overlaid on various images. We typically recompute the facet attachments at 
every iteration of the optimization procedure so as to allow facets to slide as 
necessary. Since the points can potentially come from any number of images, 
this method can be used to fuse 3-D data from different sources. 
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Si lhouet tes  Contrary to 3-D edges, silhouette edges are typically 2-D features 
since they depend on the viewpoint and cannot be matched across images. How- 
ever, as shown in Figure 2(c), they constrain the surface tangent. Each point 
of the silhouette edge defines a line that goes through the optical center of the 
camera and is tangent to the surface at its point of contact with the surface. 
The points of a silhouette edge therefore define a ruled surface that is tangent 
to the surface. In terms of our facetized representation, this can be expressed 
as follows. Given a silhouette point (u~, v~) in an image, there must be a facet 
with vertices (xi ,  yi, zi)l<i<a whose image projections (ui,  vi)l<j<z, as well as 
(us, vs), all lie on a single line as depicted by Figure 2(d). This is enforced by 
adding, for each silhouette point, a term of the form 

ui Uj u s 2 
e~ = 1/2 ~ vi vj v~ , 

Ki_<aj<j<_31 1 1 1 
(6) 

where the (ui, vi)s are the projections of the (z i ,  yi, zi) using the camera model. 
This term constrains the determinants to be small and, therefore, the projections 
of the vertices and the silhouette point to be collinear. 

As with the 3-D attractors, the main problem is to find the "silhouette facet" 
to which the constraint applies. Since the silhouette point (u,, v,) can lie outside 
the projection of the current estimate of the surface, we search the Facet-ID 
image in a direction normal to the silhouette edge for a facet that minimizes 
es and that is therefore the most likely to produce the silhouette edge. This, 
in conjunction with our coarse-to-fine optimization scheme, has proved a robust 
way of determining which facets correspond to silhouette points. 

2.4 Image  Cons t ra in t s  

In this work, we use two complementary image-based constraints: stereo and 
shape-from-shading. 

The stereo component of the objective function is derived by comparing the 
gray-levels of the points in all of the images for whicla the projection of a given 
point on the surface is visible, as determined using the Facet-ID image. As shown 
in Figure l(b), this comparison is done for a uniform sampling of the surface. 
This method allows us to deM with arbitrarily slanted regions and to discount 
occluded areas of the surface. 

The shading component of the objective function is computed using a method 
that does not invoke the traditional constant Mbedo assumption. Instead, it 
attempts to minimize the variation in Mbedo across the surface, and can therefore 
deal with surfaces whose albedo varies slowly. This term is depicted by Figure 
1(c). 

Stereo information is very robust in textured regions but potentially unre- 
liable elsewhere. We therefore use it mainly in textured areas by weighting the 
stereo component most strongly for facets of the triangulation that project into 
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Fig. 3. Combining stereo and shape-from-shading: (a) First image of a triplet (courtesy 
of INRIA). (b,c) Shaded views of the reconstructed surface. 

textured image areas. Conversely, the shading information is more reliable where 
there is little texture and is weighted accordingly. 

These two terms are central to our approach: they are the ones that  allow the 
combination of geometric information with image information. However, since 
their behavior and implementation have already been extensively discussed else- 
where, we do not describe them any further here and refer the interested reader 
to our previous publication [Fua and Leclerc, 1993]. In Figure 3, we show the 
reconstruction of a face using only stereo and shape-from-shading. 

3 Applications 

Our framework lets us combine geometric constraints with image-based con- 
straints either to derive surface reconstructions or to refine previously computed 
surfaces. We now demonstrate its capabilities using difficult imagery. 

Our system deals with the various sources of 3-D information, whether dense, 
such as range maps or correlation-based stereo disparity maps, or linear, such 
as edge-features, in the same fashion. They are sampled at regular intervals to 
generate collections of 3-D attractors or 2-D silhouette points. 

D e n s e  3 - D  D a t a  In Figure 4, we show an image of a face and a correspond- 
ing range map computed using structured light. Although fairly accurate, this 
particular method introduces artifacts in the range image. As a result, fitting a 
surface to this data by treating the range points as attractors yields the exces- 
sively wrinkly result shown in Figure 4(c). Simply smoothing would lose impor- 
tant  details such as the mouth or the fine structures on the side of the nose. Our 
approach provides us with a better way of dealing with this problem: we can 
fuse the range information with the shading information of the intensity image 
of Figure 4(a) by taking the objective function to be a weighted sum of the term 
that  attracts the surface towards the range data and of the the shading term. 
The result, shown in Figure 4(d,e,f), is much smoother, but the mouth is well 
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Fig. 4. Combining range data with shape-from-shading information: (a) Image of a face 
(Courtesy of ETH Ziirich). (b) Corresponding range image computed using structured 
light. (c) Shaded views of the surface reconstructed by using the range-data points as 
attractors. (d)(e)(f) Shaded views of the reconstruction refined using shading. 

preserved and the side of the nose better defined. Note, however, that in the side 
view the bottom of the nose is not flat enough. This is not surprising since the 
shading information is of no use there. We address this problem below. 

Sparse  3 -D  D a t a  We now turn to sparse 3-D data. In Figure 5, we show 
a stereo pair of a rock outcrop forming an almost vertical cliff. Correlation- 
based algorithms typically fail in the cliff area. To demonstrate the data-fusion 
capabilities of our approach, we have used the 3D-snakes embedded in the SRI 
Cartographic Modeling Environment to supply 3-D edges whose projections are 
shown in Figure 5(c,d). 

We first attract an initially fiat surface to both the output of a simple 
correlation-based algorithm--it  yields information only in the fiat parts of the 
scene--and the 3-D outlines and produce the roughly correct but excessively 
smooth estimate of Figure 5 (e). By adding either the stereo term alone to ET, 
Figure 5 (f), or both the stereo and shading terms, Figure 5 (g,h), we can gen- 
erate a much more realistic model of the surface. 
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Fig. 5. Seminutomated cartography of a rugged site: (a,b) A hard-to-fuse stereo pair 
of a rock outcrop with an almost vertical cliff. (c,d) The projections of a few 3-D 
features outlined using 3-D snakes. (e) Reconstructed surface using the 3-D features 
as attractors. (f) Refinement using stereo. (g,h) Refinement using both stereo and shape 
from shading. 

S i l h o u e t t e s  Very few vision algorithms consistently provide a perfect answer 
across scenes using a predetermined set of information sources and analysis pa- 
rameters. It is often important  to be able to easily refine a previously derived 
result, and silhouettes are very effective for this purpose. For example, the re- 
construction of the bot tom of the nose in Figure 4(e) is not quite right, as can 
be seen in Figure 6(5). To correct this, we use the silhouettes of Figure 6(a,b) 
that  have been outlined using 2-D snakes. We take the total energy CT to be a 
weighted sum of the silhouette attraction terms of Equation 5 and of the shading 
term of Section 2.4. We use these terms to deform the nose region and generate 
the improved result of Figure 6(c). 

The face reconstruction of Figure 3 presents us with a slightly different prob- 
lem. We have used a correlation-based stereo algorithm to provide us with an 
initial estimate. This algorithm gave us no information on the sharply slanted 
parts of the face, which are therefore missing from the reconstruction. The sil- 
houettes of the face, however, are clearly visible and easy to outline, as shown 
in Figure 6(d). To take advantage of these, we start with a larger and coarser 
mesh that  evolves under the influence of the silhouettes and the vertices of the 
original reconstruction that  are treated as attractors. When the mesh has been 
refined and optimized, we complete the optimization procedure by turning on 
the full objective function including stereo and shape-from-shading. The results 
are shown in Figure 6(e,f). 
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Fig. 6. Using silhouettes to improve a reconstruction: (a) The face of Figure with a 
silhouette at the bottom of the nose outfined. (b) A side view of the same face with 
a second nose silhouette. (c) Shaded views of the refined reconstruction using both 
shading and the two silhouettes. (d) Faze silhouette outlined in the first image of the 
triplet of Figure . (e,f) Shaded views of the reconstructed surface after optimization 
using stereo, shading, and the constraints provided by the silhouettes. 

4 Summary and Conclusion 

We have presented a surface reconstruction method that  uses an object-centered 
representation to recover 3-D surfaces. Our method uses both monocular shading 
cues and stereoscopic cues from any number of images while correctly handling 
self-occlusions. It  can also take advantage of the geometric constraints derived 
from measured 3-D points and 2-D silhouettes. These complementary sources 
of information are combined in a unified manner so that  new ones can be added 
easily as they become available. 

Using a variety of real imagery, we have demonstrated that  the resulting 
method  is quite powerful and flexible, allowing for both  completely automat ic  re- 
construction in straightforward circumstances, and for user-assisted reconstruc- 
tion in more complex ones. User assistance is provided primarily through the 
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introduction of a small number of hand-entered linear and point features using 
semi-automated "snake" technology. The method is controlled by a small num- 
ber of image-independent parameters that specify the relative importance of the 
various information sources. 

The method has valuable capabilities for applications such as 3-D graphics 
model generation and high-resolution cartography in which a human can select 
the sources of information to be used and their relative importance. 
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