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Abs t rac t .  A variety of computer vision problems can be optimally 
posed as Bayesian labeling in which the solution of a problem is de- 
fined as the maximum a posteriori (MAP) probability estimate of the 
true labeling. The posterior probability is usually derived from a prior 
model and a likelihood model. The latter relates to how data is observed 
and is problem domain dependent. The former depends on how various 
prior constraints are expressed. Markov Random Field Models (MRF) 
theory is a tool to encode contextual constraints into the prior proba- 
bility. This paper presents a unified approach for MRF modeling in low 
and high level computer vision. The unification is made possible due to a 
recent advance in MRF modeling for high level object recognition. Such 
unification provides a systematic approach for vision modeling based on 
sound mathematical principles. 

1 I n t r o d u c t i o n  

Since its beginning in early 1960's, computer vision research has been evolving 
from heuristic design of algorithms to systematic investigation of approaches 
for solving vision problems. In their search for solutions, researchers have real- 
ized the importance of contextual information in image understanding. In this 
process, a variety of vision models using context have been proposed. Among 
these are Markov Random Field (MRF) theory based models (of which analytic 
regularization theory based models are special cases). 

MRF modeling is appealing for the following reasons (Preface of [4]): (1) 
One can systematically develop algorithms based on sound principles rather 
than on some ad hoc heuristics for a variety of problems; (2) It makes it easier 
to derive quantitative performance measures for characterizing how well the 
image analysis algorithms work; (3) MRF models can be used to incorporate 
various prior contextual information or constraints in a quantitative way; and 
(4) The MRF-based algorithms tend to be local, and tend themselves to parallel 
hardware implementation in a natural way. 

Complete stochastic vision models based on MRF are formulated within the 
Bayesian framework. The optimal solution of a problem is defined as the max- 
imum a poster ior i  (MAP) probability estimate of the truth, the best that  one 
can get from random observations. Most of vision problems can be posed as one 
of labeling using constraints due to prior knowledge and observations. In this 
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case, the optimal solution is defined as the MAP labeling and is computed by 
minimizing a posterior energy. The posterior probability is derived, using the 
Bayesian rule, from a prior model and a likelihood model. The latter relates to 
how data is observed and is problem domain dependent. The former depends on 
how various prior constraints are expressed. Results from MRF theory provide 
us tools to encode contextual constraints into the prior probability. This is the 
main reason for MRF vision modeling. 

MRF based approaches have been successful in modeling low level vision 
problems such as image restoration, segmentation, surface reconstruction, tex- 
ture analysis, optical flow, shape from X, visual integration and edge detection 
(There are a long list of references. Readers may refer to collections of papers in 
[15, 4] and references therein). Relationships between low level MRF models are 
discussed in [16, 7] and those between MRF models and regularization models in 
[16]. The unifying theme of Bayesian modeling for low level problems appear for 
example, in [7, 2, 18]. A prototypical Bayesian formulation using MRF is that 
of Geman and Geman [8] for image restoration. 

Investigation of MRF modeling in high level vision such as object matching 
and recognition, which is more challenging (Introduction of [15]), begins only 
recently. In an initial development of an MRF model for image interpretation 
[17], the optimal solution is defined as the MAP labeling. Unfortunately, the 
posterior probability therein is derived using heuristic rules instead of the laws 
of probability, which dissolves the original promises of MRF vision modeling. A 
coupled MRF network for simultaneous object recognition and segmentation is 
described in [5]. 

In a recent work [11], an MRF model for high level object matching and 
recognition is formulated based ou sound mathematical principles. Mathemati- 
cally, like the typical low level MRF model of Gemau and Geman [8], the model 
utilizes MRF theory to characterize prior contextual constraints. This, plus an 
observation model for the joint likelihood, enables the derivation of the posterior 
probability. The model [11] is more general than the low level model [8] in that 
it makes use of contextual observations and allows non-homogeneous sites and 
non-isotropic neighborhood systems. 

This makes it possible to formulate a larger number of low and high level 
problems in the single Bayesian framework in a systematic way. This is of signif- 
icance in both theory and practice. It provides a rational approach on a sound 
basis. It implies some intrinsic properties or common mechanisms in seemingly 
different vision problems. It also suggests that these problems could be solved 
using a similar architecture. 

This paper presents such a unified MRF modeling approach [10]. The sys- 
tematic way to the MP~F modeling is summarized as five steps: 

1. Pose the vision problem as one of labeling in which a label configuration 
represents a solution (See.2). 

2. Further pose it as a Bayesian labeling problem in which the optimal solution 
is defined as the MAP label configurations (See.3), 

3. Use Gibbs distribution to characterize the prior distribution of label config- 
urations (Sec.3.2), 
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4. Figure out the likelihood density of data based on an assumed observation 
model (domain dependent and exemplified in Sec.4) and 

5. Use the Bayesian rule to derive the posterior distribution of label configura- 
tions, to measure the cost of a solution (Sec.3.3 and Sec.4). 

(How to search for the MAP configuration is not discussed in this paper.) Two 
MRF models are described as cases in low and high level vision, respectively. 
The first is the prototypical Geman and Geman's low level model (Sec.4.1) and 
the second is the recent high level object recognition model [11] (Sec.4.2). The 
latter is described using the Geman-Geman's  model as the reference point. The 
presentation is done in such as way that parallel concepts are seen clearly. 

2 V i s i o n  P r o b l e m s  a s  L a b e l i n g  

2.1 The Labeling P r o b l e m  

A labeling problem is specified in terms of a set of sites and a set of labels. Let 
d be a set of m discrete sites. 

d = {1 , . . . , r n}  (1) 

The ordering of the sites is not important;  their relationship is determined by a 
neighborhood system (the definition of neighborhood systems is central in MRF 
theory and will be introduced later). Let D be a set of labels. Labeling is to 
assign a label from D to each of the sites in d. 

A set of sites can be categorized in terms of their "homogeneity" and a set of 
labels in terms of their "continuity". Sites on a lattice such as those correspond- 
ing to an array of image pixels are considered as being spatially homogeneous 
whereas those corresponding to features extracted from images such as critical 
points, line segments or surface patches are considered as being inhomogeneous. 
Usually, homogeneous sites lead to an isotropic neighborhood system and inho- 
mogeneous sites to an anisotropic neighborhood system. 

A label can be continuous such as a continuous intensity or range value. The 
value can usually be confined to a real interval 

D = xh] (2) 

In this case, there are an infinite number of labels. In the other case, a label may 
be discrete 

f~ E D = { 1 , - . . , M )  (3) 

For example, a label may index to one of model object lines or regions. 
Let F = {F1 , . . . ,  Fro} be a family of random variables defined on d, in which 

each random variable Fi assumes a value in D. A joint event {F1 = f l ,  �9 -., Fm= 
fro}, abbreviated F = f ,  is a realization of F where f = { f l , . . - ,  fro} is called 
a configuration of F .  A configuration may represent an image, an edge map, 
or a matching (mapping) from image features to object features. The set of all 
configurations is 

S = D m = D x D . . .  • D (4) 
Y 

m t i m e s  
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The space of admissible solutions may be identical to S or if additional con- 
straints are imposed, a subset of it. A configuration f can be interpreted in one 
of the two ways: It is a mapping f : d ~ D; or it is a labeling { f l , . . . ,  fro} of 
the sites. 

2.2 Labeling Problems in Vision 

In terms of the homogeneity and the continuity, we may classify a vision labeling 
problem into one of the following four categories: 

LPI: Homogeneous sites with continuous labels. 
LP2: Homogeneous sites with discrete labels. 
LP3: Inhomogeneous sites with discrete labels. 
LP~: Inhomogeneous sites with continuous labels. 

The former two categories characterize low level processing performed on ob- 
served images and the latter high level processing on extracted token features. 
The following describes some vision problems in terms of the categories. 

Restoration of grey scale images, or image smoothing, is an LP1. The set d 
of sites corresponds to image pixels and the set D of labels is a real interval. 
The restoration is to estimate the  true image signal from a degraded or noise- 
corrupted image. 

Restoration of binary or multi-level images is an LP2. Similar to the continu- 
ous restoration, the aim is also to estimate the true image signal. The difference 
is that  each pixel in the resulting image here assumes a discrete value and thus 
D in this case is a set of discrete labels. 

Image segmentation is an LP2. It partitions an observation image into mutu- 
ally exclusive regions, each of which has some uniform and homogeneous prop- 
erties whose values are significantly different from those of neighboring regions. 
The property can be for example grey tone, color or texture. Pixels within each 
region is assigned a unique label. 

The prior assumption in these problems is that  the signal is smooth or piece- 
wise smooth. This is complimentary to the assumption about edges at which 
abrupt changes occur. 

Edge detection is also an LP2. Each pixel (more precisely, between each pair 
of neighboring pixels) is assigned a label in {edg% non-edge] if along an arc 
passing through the pixe] there are abrupt changes in some properties in the 
direction tangent to the arc. The property can be the pixel value or directional 
derivatives of pixel value function. Continuous restoration with discontinuities 
[8, 16, 3] is a combination of LP1 and LP2. 

Perceptual grouping [14] is an LP3. The sites usually correspond to initially 
segmented features (points, lines and regions) which are inhomogeneously ar- 
ranged. The fragmentary features are to be organized into perceptually mean- 
ingful groups. Between each pair of the features can be assigned a label in 
{connected,disconnected}, indicating whether the two features should be joined. 

Feature-based object matching and recognition is an LP3. Each site indexes 
an image feature such as a point, a line segment or a region. Labels are discrete 
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in nature and each of them indexes a model feature. The resulting configuration 
is a mapping from the image features to those of a model object. Stereo matching 
is a similar LP3. 

Pose estimation from a set of point correspondences might be formulated 
as an LP4. Each label may assume the value of a real matrix, representing an 
admissible (orthogonal, affine or perspective) transformation. A prior (unary) 
constraint is that  the label of transformation itself must be orthogonal, affine 
or perspective. A mutual constraint is that the labels f l , ' "  ", fm should be close 
to each other to form a consistent transformation. When outliers are present, a 
line process field [8, 16, 3] may be introduced to separate transformation labels 
which form a consistent cluster from those due outliers. 

3 B a y e s i a n  L a b e l i n g  b a s e d  o n  M R F  

3.1 B a y e s i a n  L a b e l i n g  

Bayesian statistics is of fundamental importance in estimation and decision mak- 
ing. Let D be a set of truth candidates and r the observation. Suppose that we 
know both the a priori probabilities P ( f )  of configurations f and the likelihood 
densities p(r I f )  of the observation r. The best estimate one can get from these 
is that  maximizes the a posteriori probability (MAP). The posterior probability 
can be computed by using the Bayesian rule 

P ( f  [ r) = p(r ] f ) P ( f ) / p ( r )  

where p(r), the density function of r, does not affect the MAP solution. The 
Bayesian labeling problem is that given the observation r, find the MAP config- 
uration of labeling f* = argmaxfe  S P ( F  = f I r). 

To find the MAP solution, we need to derive the prior probabilities and the 
likelihood functions. The likelihood function p(r I F = f )  depends on the noise 
statistics and the underlying transformation from the truth to the observation. 
It will be discussed in conjunction with specific problems. Knowing the a priori 
joint probability P ( F  = f )  is difficult, in general. Fortunately, there exists a 
theorem which helps us specify the a priori probabilities of MRFs. This is the 
main reason for MRF modeling. 

3.2 M R F  P r i o r  a n d  Gibbs  D i s t r i b u t i o n  

MRF is a branch of probability theory which provides a tool for analyzing spa- 
tim or contextual dependencies of physical phenomena. Define a neighborhood 
system for d 

A/" ={Afi I Vi E d} (6) 

where Af~ is the collection of sites neighboring to i for which (1) i ~ A~ and (2) 
i E Afj .-2--->. j E Aft. The pair (d, X)  is a graph in the usual sense. A clique c for 
(d, H )  is a subset of d such that  c consists of a single site c = {i}, or a pair of 
neighboring sites c = {i, j}, or a triple of neighboring sites c = {i, j, k}, and so 
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on. We denote the collection of single-site cliques, that of two-site cliques, ---, by 
C1, Ca, .-., respectively. The collection of all cliques for (d, 3/)  is g = gl U C2 tO..-. 

A family F of random variables is said to be an MRF on d with respect to 3 / i f  
and only if the following two conditions are satisfied: (1) P ( F  = f )  > O, V f  E S 
(positivity), and (2) P(Fi = fi [ Fj = f j , j  E d , j  ~s i) = P(Fi = fi ] Fj = 
f j ,  j E if/)  (Markovianity). Condition (1) above is for F to be a random field. 
Condition (2) is called the local characteristics. It says that the probability of 
a local event at i conditioned on all the remaining events is equivalent to that 
conditioned on the events at the neighbors of i. It can be shown that the joint 
probability P ( F  = f )  of any random field is uniquely determined by these local 
conditional probabilities [1]. However, it is usually difficult to specify the set of 
the conditional probabilities. Nonetheless, the Hamrnersley-Clifford theorem [1] 
of Markov-Gibbs equivalence provides a solution. 

According to the ttammersley-Clifford theorem [1], F is an MRF on d with 
respect to 3 / i f  and only if the probability distribution P ( F  = f )  of the config- 
urations is a Gibbs distribution with respect to 32. A Gibbs distribution of the 
configurations f with respect to 3 / i s  of the following form 

P ( f )  = Z -1 x e --}U(]) (7) 

In the above, Z is a normalizing constant, T is a global control parameter called 
the temperature and U(f)  is the prior energy. The prior energy has the form 

U ( f ) = ~ V ~ ( f ) =  ~ V~(fli)+ ~ V 2 ( f i , f j ) + . . .  (8) 

where "..." denotes possible higher order terms. The practical value of the the- 
orem is that it provides a simple way of specifying the joint prior probability 
P ( F  = f )  of the configurations by specifying the prior potentials V~(f) for all 
c E C. One is allowed to choose appropriate potentials for desired system be- 
havior. The potential functions contain the a priori knowledge of interactions 
between labels assigned to neighboring sites and reflect how individual matches 
affect one another - -  a priori. 

3.3 Posterior MRF Energy 

Let the likelihood function be expressed in the exponential form 

p(r  h r = f )  = z ;  -1 • e 1 ])  (9) 

where U(r  [ f )  is called the likelihood energy. Then the posterior probability is 
a Gibbs distribution 

P ( F  = f [ r) = ZE 1 • e -E(]) (10) 

with posterior energy 

E ( f )  = U( f  I r) = U ( f ) / T  + U(r [ f )  (11) 
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Hence, given a fixed r, F is also an MRF on d with respect to N'. The MAP 
solution is equivalently found by 

f* = arg m ~  U ( f  I r) (12) 

To summarize, the MRF modeling process consists of the following steps: 
Defining a neighborhood system N', defining cliques g, defining the prior clique 
potentials, deriving the likelihood energy, and deriving the posterior energy. 

4 Two Cases of MRF Vision Modeling 

In this section, the prototypical low level MRF model of Geman and Geman [8] 
for image restoration is described first and is taken as the reference point. It is 
prototypieal because it can model problems falling in categories LP1 and LP2. 
It forms the basis for other low level problems such as edge detection, motion, 
stereo and texture [16, 7, 15, 4]. The high level MRF model for object matching 
[11] is described next as a prototype for LP3. 

4.1 I m a g e  R e s t o r a t i o n  a t  Low Level  

Low level processing is performed on images. The set of sites d = {1 , . . . ,  m} 
index image pixels in a 2D plane and the observation r represents the array of 
pixel values. The set D contains discrete label to be assigned to the pixels. The 
configuration f = {fi E D I i E d}, or the state of  labeling, is a realization of a 
Markov random intensity field. 

Let the neighbors of pixel i consist of the four nearest pixels 

Xi  = { j  I dist(pixel i, pixelj) _< 1} (13) 

where dist(A,  B)  is the distance between A and B. For simplicity, here consider 
only two-site cliques 

g = g2 = {{i, j}  ] j E Aft, Vi E d} (14) 

Examples of more complex cliques can be found in Fig.5 of [8]. 
Now define the prior clique potentials in Eq.(8). When only two-site cliques 

are considered, only second order prior potentials are nonzero. The second order 
potential is defined by 

V2(fi, f j )  = V2o g(fi  - f j )  (15) 

where v20 is a real scalar and g(7/) is a function measuring the cost due to 
the smoothness violation caused by f i  - f j .  For continuous restoration with 
discontinuities [8, 3], g(~) = min(~ ~, a).  For piecewise constant reconstruction 
with discontinuities [8, 9], g(r~) = [1 - 5(fi - fj)] where 5(~) is the Dirichlet 
function. A general definition of g for discontinuity-adaptive restoration is given 
in [13]. 
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Geman and Geman [8] describe a general degraded image model based on 
which the likelihood function is obtained. In an important  special case, each ob- 
served pixel value is assumed to be ri = fi + n where n ,,~ N(0, ~r) is independent 
Gaussian noise. In this case, the likelihood energy is 

u ( r  I / )  = - f02/  (16) 
ied 

The posterior energy E ( f )  = U ( f  I t )  can be computed from U( f )  and 
u(r l f) nsing (11) 

u( /  I1") = - / j ) / T  +  (ri- 
iEdJEhf~ ied 

The above with g(~) = min(y 2, ~) is the notion of the weak string model [3] and 
that  with g(y) - [1 - 5(fi - fj)] is the minimal length coding model [9]. 

4.2 O b j e c t  M a t c h i n g  a t  H i g h  Leve l  

High level processing is performed on token features extracted from images. A 
typical problem is (partial) matching from image features to those of a mod- 
eled object. Unlike the previous case, the observation r in this case include not 
only components describing each feature itself but also those describing contex- 
tual relations between them. Moreover, the neighborhood relationship between 
features is not isotropic as is in the image case. 

Both an object and a scene are represented by a set of features, (unary) 
properties of the features and (bilateral or higher order) contextual relations 
between them. The features, properties and relations can be denoted compactly 
as a relational structure (RS). An P~S describes a scene or a (part of) model 
object. 

The scene RS is denoted by g = (d , r )  where d = { 1 , . . . , m }  indexes a 
set of m features and r = {h ,  r2,..., rH} denotes the set of observation data  
of order 1 through order H (When H = 2, the RS is reduced to a relational 
graph (RG)). For order n = 2, r2(i , j )  = [r2,1(i , j) , . . . ,r~,K~(i , j)]  T consists of 
K2 binary (bilateral) relations between features i and j .  

A model RS is similarly denoted as G = (D, R)  where D = { 1 , . . . ,  M} and 
R = {/~1,.R2,-. . ,RH}. For particular n and k (1 < k < Kn; 1 < n < h), R~,k 
represent the same type of constraint as rn,k. Introduce a virtual NULL model 
Do = {0} to represents everything not modeled by G. Then in matching the 
scene to the model object plus the NULL , the set of all labels is 

D + = Do U D = {0,1, . . ., M} (18) 

S = (D+) m is the admissible space of label configurations. 
In RS matching, the set ~ of neighbors of i E d can comprises all related 

sites. But when the scene is very large, Hi needs to include only those which are 
within a spatial distance ~ from i. 

2r = { j  ~s i I dist(featurej,  feature/) < a, j ~ d} (19) 
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The size a may reasonably be related to the size of the considered model object. 
Now define the prior clique potentials in Eq.(8). The single-site potential is 

defined as 
Vlo if fi = 0 

Vl(f~) = 0 otherwise (20) 

where vl0 is a constant. This definition says that if fi is the NULL label, it incurs 
a penalty vl0; or otherwise no penalty. The two-sites potentiM is defined as 

SV2o i f f i : O o r  S j :O  V2(fi, fj) = (21) to otherwise 

where v~0 is a constant. This says that  if either fi or fj is the NULL , it incurs 
a penalty v20; or otherwise no penalty. 

The joint likelihood function p(r [ F = f )  has the following properties: (1) 
It is conditioned on pure non-NULL matches f~ r 0; (2) It is regardless of the 
neighborhood system H;  and (3) It depends on how the model object is observed 
in the scene, which depends on the underlying transformations and noise. Assume 
that  R and r consist of types of relations which are invariant under the group of 
underlying transformations and that the observation model is r = R + n where 
n is independent Gaussian noise. Then the likelihood energy is 

U(rlF=Z)= Z V2( IS ,fj) (22) 
icd&#0 ied,s,~0 jed,/ ir  

Because the noise is independent, we have U(r I fi) = U(rl(i) ]fi) and U(r I fi, fj) = 
V(r2(i, j) Ifi, fj). The likelihood potentials are 

K1 
Vl(rl(i) l f~) = (23) 

and 

V:(r~( i , j )  [ f~, f~)  = 
K2 

E[ r 2 ,k (  i, J) -/~2,k(f i ,  fj)]2/2a~,k (24) 
k = l  

where c~n, k2 (k = 1, . . . ,  K~ and n = 1, 2) are the standard deviations of the 
noise components. The vectors R1 (fi) and R2 (fi, fj) is the "mean vector" for the 
random vectors rl(i) and r2(i, j), respectively. When the noise is correlated, there 
are correlating terms in the likelihood potentials. The assumption of independent 
Gaussian may not be accurate but offers a good approximation when the accurate 
likelihood is not available. 

The posterior energy E(f) can be computed from U(f) and U(r I f) using 
(11) 

U(f ] d) = )-~4ed Vlo(fi)/T + ~ i c d  ~ j c *  r, V20(fl, fj)/T+ 
(25) 

~ied Vl(rl(i) ! fi) + ~ied ~ ied  V2(r2(i,J) ] fi ,fj) 

The MAP configuration f* of (12) is the optimal labeling of the scene in terms 
of the model object. Matching to multiple model objects can be resolved after 
matching to each of the objects [11]. 
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5 C o n c l u s i o n  

A variety of low and high level vision problems can formulated as Bayesian 
labeling using a unified MP~F modeling approach. A labeling of an image, of an 
edge map  or of a scene is considered as a configuration of an MRF. The solution 
to a problem is defined as the MAP label configuration which minimizes the 
posterior energy. The MRF modeling provides a systematic approach for vision 
modeling based on the rationale principles. 

Related to the MRF modeling is estimation of involved parameters.  In LP1 
and LP2 at low level, the estimation can be done, for example, using the coding 
method [1] and least square error method [6]. A learning-from-example method 
for MRF parameter  estimation in object recognition (LP3) is proposed in [12]. 
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